
PERFORMANCE EVALUATION OF QUERY TRIMMING 
STRATEGIES IN SEMANTIC CACHING ENVIRONMENT 

S. Kami Makki, Stefan Andrei, Yanwen Guan 
Department of Computer Science, Lamar University, Beaumont, Texas, U.S.A. 

Mattie Sue Judd 
Department of Mathematics and Computer Science, Oral Roberts University, Tulsa, Oklahoma, U.S.A. 

Keywords: Boolean logic, Query Optimization, Query Containment, Semantic caching. 

Abstract: The Semantic caching is an efficient caching strategy for client-side processing of queries. This strategy 
involves comparing user queries with previously cached queries and finding the similarities between these 
queries. These similarities constitute the partial answer to the user query and therefore they would be 
extracted from the user query. Then only the remainder of the user query would be sent to the server. 
Therefore, this can reduce significantly not only the communication between client and server and as a 
result free network bandwidth, but also improves the speed of query processing in a distributed 
environment. This paper presents simulations for manipulation of multi-table queries and provides extensive 
simulations for single-table queries in comparison with previous methods. 

1 INTRODUCTION 

The semantic model for client side caching was first 
proposed by Dar et al. (Dar et al., 1996). Their study 
demonstrated the significant improvements in 
efficiency of semantic caching over traditional page 
and tuple caching methods. They also explored 
several of the most important benefits of semantic 
caching, including a reduction in network traffic and 
the ability to partially or fully answer some queries 
without contacting the server.  

Ren et al. (Ren et al., 2003) presented a query 
splitting method which has direct application of 
Boolean logic. However, their method is very 
computationally complex and ineffective for queries 
with medium to large numbers of predicate clauses 
in the queries. This inefficiency is due to the use of 
satisfiability concepts which are necessary to 
generate the probe and remainder queries. 

Guo et al. (Guo et al., 1996) analyzed the 
question of satisfiability-based methods for database 
query processing. They demonstrated that a method 
based on restricted satisfiability concepts is 
potentially solvable in linear time. Also, the authors 
in (Hao, et al., 2005) and (Li, et al., 2008) used 
extensive logical rules to restrict the satisfiability 

problem to a more manageable size. Although these 
methods make the actual comparison simpler, the 
introduction of other logical computations largely 
obviate the improvements in efficiency that they 
offer. 

Makki et al. (Makki, and Rockey, 2010) 
presented a novel method for semantic caching 
which sidestepped the complexity of the 
satisfiability problem by visualizing the data in the 
user query and cache data as materialized “layers.” 
This visualization method allows for a direct 
comparison of the upper and lower bounds of the 
respective semantic segments and should be much 
more efficient for query processing. However, they 
did a very limited experiment to compare their 
visualization method with the Ren et al.’s method. 

2 GENERAL TERMS 
AND DEFINITIONS 

The following terms and definitions are derived 
from those used by previous works Ren et al. (Ren et 
al., 2003) and Guo et al. (Guo et al., 1996). 

A database D, consists of a set of relations Ri,…, 
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Rn, so that D = {Ri, 1≤ i ≤n}. Each relation Ri is 
associated with an attribute set, denoted ARi, and we 
may represent the attribute set of the entire database 
by A, where A = ∪ARi, 1≤ i ≤n. A compare 
predicate, P, is defined by P = a op c, where a ϵ A, 
op ϵ {≤, <, ≥, >, =}, and c is a real constant bound. 
The authors in (Rosenkrantz and Hunt, 1980) and 
Guo et al., 1996) have demonstrated that 
introduction of the comparison operator ≠ makes this 
problem NP-hard over the integer domain. Since we 
are primarily interested in comparing the efficiency 
of two query processing methods, we follow both 
(Ren et al., 2003) and (Makki and Rockey, 2010) in 
ignoring ≠ comparison in this simulation. 

The primary unit with which semantic caching is 
concerned is the semantic segment or region. A 
semantic segment is an earlier (either original or 
decomposed) query, which is stored together with its 
result in the cache. Formally, a semantic segment is 
defined as a tuple <SR, SA, SP, SC>, where SR ϵ D, SA 
⊆ A, SC =πSaσSpSR, and SP = T1∨T2∨...∨Tn, where 
each Tj is a disjunctive of predicates, such that Tj= 
P1∧P2∧...∧Pk. Each a in Pk, or each predicate term, is 
such that a ϵ A of SR.  

A user query Q is a semantic segment <QR, QA, 
QP, QC> which is introduced into the cache for 
comparison. Semantic caching methods split Q into 
two new, discrete queries: the probe query QPQ, and 
the remainder query QRQ, such that QPQ ∪ QRQ = QC 
and QPQ ∩ QRQ = Ø. Here, QC is equivalent to 
directly querying the server without consulting the 
cache; while QPQ retrieves the data which is 
available in the semantic regions of the cache, since 
it is the intersection of the data sets of S and Q. And 
we may define the probe query formally as QPQ = QP 

∧ SP. The remainder query requests the data not 
available in the cache, and can thus be considered 
QRQ = QP ∧ ¬SP. 

3 RELATED WORK 

Query trimming, the mechanism of splitting the user 
query into the probe and remainder queries, is one of 
the most computationally intensive sections of any 
semantic caching method. As mentioned above, the 
method proposed by (Ren, et al., 2003) uses 
satisfiability concepts. The visualization method of 
(Makki and Rockey, 2010)  on the other hand, seems 
to adopt a much simpler approach to the issue of 
query trimming. In this Section, we will outline first 
the method used by (Ren, et al., 2003) and then the 
visualization method of (Makki and Rockey, 2010) 

for query processing, concluding with complexity 
analysis of the two methods. 

3.1 Ren et al.’s Method 

The method proposed by (Ren, et al., 2003) for 
query trimming follows directly from the formal 
definitions, explained in Section 2, for the probe and 
remainder query. This method uses Boolean logic to 
compare the predicate clauses of the user query with 
those of the semantic regions in order to generate 
equations of similar form for sending to the cache 
and server. Recall that we define the probe query as 
QPQ = QP ∧ SP and the remainder query as QRQ = QP 

∧ ¬SP. By solving these two satisfiability problems, 
the Ren et al.’s method locates the intersections 
between the user query (QP) and the semantic 
sections in the cache (SP). This method is intuitively 
straightforward and consistently generates an 
accurate description of QPQ and QRQ.  

Though the details of implementation differ 
among the previous proposed algorithms, the general 
model is consistent in its use of two separate 
subroutines to compute QPQ and QRQ. Further, 
though different methods of solving the satisfiability 
problem have been proposed, all of them seek to 
solve the same definitions of the probe and 
remainder queries. These overriding similarities 
enable general analysis of the Ren et al.’s method to 
proceed without detailed implementation of each 
individual algorithm. 

Let us consider below an example of calculating 
QPQ and QRQ based on SP and QP (Notice the 
complexity introduced by the negation of SP in the 
QRQ term.) 

SP = (x ≥ 10 ∧ x ≤ 15 ∧ y ≥ 5 ∧ y ≤ 20) ∨ (x ≥ 5 ∧ x ≤ 20 ∧ y ≥ 2 
∧ y ≤ 10) 

QP = (x ≥ 8 ∧ x ≤ 17 ∧ y ≥ 3 ∧ y ≤ 8) 
Probe Query: 
QPQ  = QP ∧ SP = (x ≥ 8 ∧ x ≤17 ∧ y ≥ 3 ∧ y ≤ 8) ∧ ( (x ≥10 ∧ x ≤ 

15 ∧ y ≥ 5 ∧ y ≤ 20) ∨ (x ≥ 5 ∧ x ≤ 20 ∧ y ≥ 2 ∧ y ≤ 10) ) 
Remainder Query: 
QRQ = QP ∧ ¬SP =  
(x ≥ 8 ∧ x ≤ 17 ∧ y ≥ 3 ∧ y ≤ 8) ∧ ¬ ((x ≥ 10 ∧ x ≤ 15 ∧ y ≥ 5 ∧ y 
≤ 20) ∨ (x ≥ 5 ∧ x ≤ 20 ∧ y ≥ 2 ∧ y >10) ) ≡  (x ≥ 8 ∧ x ≤ 17 ∧ y ≥ 
3 ∧ y ≤ 8)  ∧ (¬ (x ≥ 10) ∨ ¬ (x  ≤ 15) ∨ ¬ (y ≥ 5) ∨ ¬ (y ≤ 20)) ∧ 
(¬ (x ≥ 5) ∨ ¬(x ≤ 20)  ∨ ¬ (y ≥ 2) ∨ ¬ (y > 10)) ≡ (x ≥ 8 ∧ x ≤ 17 
∧ y ≥ 3 ∧ y ≤ 8) ∧ (x < 10 ∨ x >15 ∨ y < 5 ∨ y > 20) ∧ (x < 5 ∨  x  
> 20 ∨ y < 2 ∨ y ≤ 10) ≡  (x ≥ 8 ∧ x ≤ 17 ∧ y ≥ 3 ∧ y ≤ 8) ∧ (x < 5 
∨ (x < 10 ∧ y < 2) ∨ (x < 10 ∧ y < 10) ∨ x > 20 ∨ (x > 15 ∧ y < 2) 
∨ (x > 15 ∧ y > 10) ∨ (x < 5 ∧ y < 5) ∨ (x < 20 ∧ y < 5) ∨ y < 2 ∨ 
(x < 5 ∧ y > 20)  ∨  (x > 20 ∧ y > 20) ∨ y > 20) 

Figure 1: A sample query processed using the Ren et al.’s 
method. 
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Despite its accuracy, a significant disadvantage 
is posed by the logical derivation of the Ren et al.’s 
method from the formal definitions of QPQ and QRQ. 
Because of the negation of SP involved in generating 
the remainder query, the calculations that this 
method requires often become very intense quickly. 
Since the Boolean negation operations exponentially 
increase the number of clauses in the problems to 
which they are applied, the Ren et al.’s method often 
spends most of its execution time calculating QRQ. 
This is particularly the case when there is a large 
number of compare predicates to begin with in the 
user query or a large number of semantic sections in 
the cache. The efficiency of the Ren et al.’s method 
is thus unfortunately dependent on the complexity 
involved in solving QPQ = QP ∧ SP and QRQ = QP ∧ 
¬SP. In addition, previous algorithms’ consideration 
of the attributes x and y as coordinates of the 
semantic regions in a two-dimensional plane is not 
compatible with the reality of database tables.  

3.2 Visualization Method 

The visualization method for query trimming 
proposed by (Makki and Rockey, 2010) was 
intended to avoid the complexity of the satisfiability 
problem involved in the Ren et al.’s method. The 
method’s most important difference from previous 
algorithms rests in its use of relation pointers to 
represent each compare predicate. In other words, 
each segment S will be presented by k relation 
pointers, where k is the number of compare 
predicates in S. We can call the set of all the relation 
pointers in the user query QRP and the set of those in 
the cache CRP = kS1∨ kS2∨...∨ kSm, where S1,..., Sm are 
the semantic segments stored in the cache.  

By sorting the compare predicates of both QRP 
and CRP by means of these relation pointers, the 
method is able to process the predicates as 
individual units and thus directly find areas of 
intersection between them. The visualization 
algorithm details a method of comparison of upper 
and lower bounds to do this comparison; 
importantly, this operation is identical to the bounds’ 
comparison employed in the final stage of many 
satisfiability based methods.  

Given the formal definitions of QPQ and QRQ, we 
recognize that the visualization method must have a 
description in the language of satisfiability. In fact, 
this method essentially reframes the satisfiability 
problem of the Ren et al.’s method into a much 
simpler form. By directly comparing the relation 
pointers, the method implicitly finds the area of 
intersection between the user query and the cached 
  

segments, or QPQ ≈ QRP ∩ CRP ≈ QP ∧ SP. 
Rather than comparing some negation of the 

pointers to find QRQ, the visualization method 
removes this set of relation pointers from the whole 
set of compare predicates in the original user query: 
QRQ = QRP - QPQ. The real advantage of the use of 
relation pointers in the visualization method 
becomes obvious at this point, as this removal 
operation in linear time would be impossible without 
the use of relation pointers. With them, the 
calculation of the remainder query becomes a matter 
of simple subtraction, and eliminates the need for the 
complex negations of the Ren et al.’s method. This 
difference represents a significant improvement in 
efficiency in visualization method. Finally, this 
reduced set of pointers remaining in QRP and the set 
of overlapping pointers earlier identified between 
QRP and CRP can be easily translated back into query 
form as QRQ and QPQ, respectively. 

3.3 Complexity Analysis 

Analysis of the algorithm presented by Ren et al. 
suggests that their method should be of order O(nk), 
where 2≥k , since the computation of QRQ is alone 
of order O(n2) in many cases. Simulations of Ren et 
al.’s method by (Ren, et al., 2003), (Guo, et al., 
1996), (Hao, et al., 2005) have all produced results 
that can be best matched to exponential curves. 

Analysis of the algorithm presented by (Makki 
and Rockey, 2010) suggests that the visualization 
method should be of order O(n), since the 
comparisons involved occur individually to each set 
of relation pointers. Previous simulations have not 
included a large enough sample set to allow curve 
matching. 

4 SIMULATION 

The previous simulations of the methods of (Ren, 
Dunham, et al., 2003) and (Makki and Rockey, 
2010) have been limited to queries requesting data 
from only one table (Ren, et al., 2003), (Guo, et al., 
1996), (Makki and Rockey, 2010). We extended our 
simulation to model join queries, where users may 
request data from two or more tables joined by the 
specification of a join condition. This section 
provides the simulation result not only for join 
queries but also for single table selection query. 
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4.1 Join Queries  

This section provides an overview of the setup, test 
cases, and results of our join queries simulation. 

In order to make the comparison between the 
two methods as clear and fair as possible, we began 
our simulation setup by identifying points of 
similarity in the Ren et al. and visualization 
algorithms. We developed an efficient method for 
modelling a small cache and reading in user queries 
and implemented the two query processing 
algorithms with two programs based on this 
modelling method. By using the same data structure 
in both programs to contain our simulated cache, 
user queries, temporary remainder query (after 
processing each individual semantic region), and so 
on. We were able to produce two streamlined 
programs that worked in much the same way, except 
for the specific methods of query trimming. This 
approach allowed us to test the efficiency of the 
query processing trimming methods directly. Both 
programs were based on the use of an original object 
class, RelationPredicate(), which contained the 
table name, primary keys, attributes, and compare 
predicates for each query. Each program was written 
in Java and ran on a Pentium processor running 
Windows Vista with 2 GB of RAM. 

4.1.1 Test Cases 

Following similar simulations conducted in (Ren, et 
al., 2003), (Guo, et al., 1996), (Hao, et al., 2005) and 
(Li, et al., 2008), we chose to compare the two 
programs on the basis of execution time. We 
modelled growing query complexity by gradually 
increasing the number of semantic regions to be 
processed. Since this method of measuring time 
sometimes produces wildly varying results because 
of other operations running on the system, we ran 
each simulation 15 times and computed the mean of 
the middle 10 results, allowing us to discard 
obviously exotic times. We selected a variety of test 
cases (Table 1 lists the test queries), ranging from 
full containment (no remainder query generated) to 
no intersection between the user query and the 
semantic region (no probe query generated). 

4.1.2 Results for Join Queries 

Over the 10 cases that we tested, a consistent pattern 
of differing efficiencies between the Ren et al. and 
visualization methods clearly emerged. The 
visualization method’s execution time increases 
linearly, as we predicted, while the Ren et al. 
method’s execution time increases exponentially in 
some cases. 

Table 1: Test queries for Case 1 through 5. 

Q1
Select t1.x, t1.y, t2.x, t2.y from t1, t2  where t1.x>=3& 
t1.x<=8& t1.y>=8&t1.y<=12&t2.x>=4&t2.x<=11&t2.y>=4
& t2.y<=10; 

Q2
Select t1.x, t1.y, t2.x, t2.y from t1, t2  where t1.id=t2.id&
t1.x>=0&t1.x<=2&t1.y>=0&t1.y<=2&t2.x>=0&t2.x<=2& 
t2.y>=0& t2.y<=2; 

Q3
Select t1.x, t1.y, t2.x, t2.y from t1, t2  where t1.id>=t2.id&
t1.x>=5&t1.x<=8&t1.y>=6&t1.y<=8&t2.x>=6&t2.x<=7& 
t2.y>=5&t2.y<=7; 

Q4
Select t1.x, t1.y, t2.x, t2.y from t1, t2 where t1.id>=t2.id&
t1.x>=1&t1.x<=2&t1.y>=6&t1.y<=8&t2.x>=2&t2.x<=15& 
t2.y>=2&t2.y<=7; 

Q5
Select t1.x, t1.y, t2.x, t2.y from t1, t2 where t1.id=t2.id&
t1.x>=0&t1.x<=10&t1.y>=0&t1.y<=20&t2.x>=5&t2.x<=10 
&t2.y>=2&t2.y<=7; 

Q6
Select t1.x, t1.y, t2.x, t2.y from t1, t2 where t1.id=t2.id&
1.x>=3& t1.x<=11&t1.y>=9&t1.y<=14&t2.x>=8&t2.x<=13
& t2.y>=9 & t2.y<=13 

Q7
Select t1.x, t1.y, t2.x, t2.y from t1, t2  where t1=t2.id&
t1.x>=3&t1.x<=8&t1.y>=8&t1.y<=12&t2.x>=4&t2.x<=11
& t2.y>=4&t2.y<=10; 

Q8
Select t1.x,t1.y,t2.x,t2.y from t1,t2 where t1.id=t2.id&
t1.x>=0& t1.x <=2&t1.y>=0&t1.y<=2& t2.x>=0&t2.x<=2&
t2.y>=0&t2.y<=2; 

Q9
Select t1.x,t1.y,t2.x,t2.y from t1,t2  where t1.id>=t2.id&
t1.x>=5 &t1.x<=8&t1.y>=6&t1.y<=8&t2.x>=6&t2.x<=7&
t2.y>=5&t2.y<=7; 

Case 1: No Intersection 

Figure 2 models the performance of the two methods 
for two test queries that represent the case where 
there is no probe query generated (QPQ = Ø). For 
both examples (Query2 and Query4), the 
visualization method is clearly more efficient than 
the Ren et al.’s method as the number of semantic 
regions increases (Note: Query 2 and Query 4 of 
visualization have completely overlapped in the 
Figure 2). 

 

Figure 2: No Containment. 

Case 2: Full Containment 

Figure 3 models performance for our other base 
case, where there is no remainder query because the 
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user query is fully contained within a semantic 
region in cache (QRQ = ∅). Because both algorithms 
exit the query trimming process as soon as a null 
remainder query is returned, which happens after 
semantic region 5, both methods remain consistent 
as further new semantic regions are added. 

 

Figure 3: Full Containement. 

Case 3: Hybrid Query Trimming I  

Figure 4 models performance for two relatively 
small user queries that require hybrid query 
trimming over both tables.  

 

Figure 4: Hybrid Trimming I. 

Hybrid trimming means that a semantic region 
shares some columns and rows of those columns 
with the query (see Figure 5). For both examples 
(Query6 and Query7), the visualization method is 
more efficient than the Ren et al.’s method as the 
number of semantic regions increases. 

 
Figure 5: This box models a user query (red box) that 
requires hybrid trimming of the semantic regions (blue 
boxes), since it needs both “vertical” and “horizontal” 
trimming. 

Case 4: Hybrid Query Trimming II  

Figure 6 models performance for a user query that 
requires the hybrid query trimming over a larger 
area of the cache. It places upper and lower bounds 
on every attribute selected. This increase in the 
complexity of the probe and remainder query has 
noticeable effects in the efficiency of the Ren et al.’s 
method, which grows in execution time sharply, 
while the visualization method grows consistently.  

 

Figure 6: Hybrid Trimming II. 

Case 5: Hybrid Query Trimming III 

Figure 7 models performance for two user queries 
that require more complex hybrid query trimming 
over a larger area of cache.  

 

Figure 7: Hybrid Trimming III. 

These queries were specifically written to model 
a situation in which a query intersects with many 
different semantic regions. The differences in 
efficiency between the Ren et al. and visualization 
methods are extremely pronounced in these cases, as 
the graph of the Ren et al.’s method begins to 
assume an exponential shape. To offer perspective 
on this figure, the Ren et al.’s method took (on 
average) 17 times as long as the visualization 
method to generate the probe and remainder queries 
over 15 regions for Query9, and 47 times as long for 
Query5, demonstrating the increased efficiency of 
the visualization method for multiple-table joins. 
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4.2 Simple Select Queries 

In this section we extended (Makki and Rockey, 
2010)’s simulation of single-table queries by 
enlarging the number of semantic regions used, 
which allowed us to obtain a better comparison of 
the Ren et al. and Makki et al.’s methods. We again 
made use of the RelationPredicate() object 
class for both programs. This object contains the 
attributes, compare predicates, table names, and 
primary keys for each query submitted by the user or 
stored in cache, making comparisons on the basis of 
the attributes or primary keys simple. Each program 
was written in Java and ran on a Pentium processor 
running Windows Vista with 2 GB of RAM. 

4.2.1 Test Cases 

As in our multiple-table query simulation, we 
modelled an increase in query complexity by 
gradually increasing the number of semantic regions 
to be processed, beginning with 2 and progressing 
up to 30 regions stored in the model cache. We again 
chose a variety of test cases, from full containment 
of the user query to no intersection between the 
query and the semantic regions stored in cache 
(Table 2 lists the five test queries). Since we were 
interested in observing the change in efficiency of 
the respective methods as the complexity of the 
query increased, several of these cases represented 
overlaps and expansions of each other. Again, this 
large sample set allowed us to create graphs to 
evaluate our complexity analysis. 

Table 2: Test queries for Case1 through 5. 

Q1 Select x, y from t where x>60&x<70& y>87&y<97; 

Q2 Select x, y from t where x>70&x<78&y>8&y<18; 

Q3 Select x, y from t where x>2&x<27&y>35&y<65; 

Q4 Select x, y from t where x>22&x<52&y>2&y<77; 

Q5 Select x, y from t where x>25&x<70&y>3&y<100; 

4.2.2 Results for Simple Select Queries 

Over the 10 cases that we tested, a consistent pattern 
of differing efficiencies between the two methods of 
Ren et al. and Makki et al. quickly emerged. The 
following is a sample of five specific cases that 
illustrate in detail the differences between the two 
methods, and serves as a fair representation of the 
whole test set in general. These queries can be 
modelled in the cache as shown in Figures 8a, 8b. 

 
 

Figure 8a: Models Query4. Figure 8b: Models Query5.

Case 1: No Intersection 

Figure 9 models the performance of the two methods 
for one of our two base cases (Query1), where there 
is no probe query. Visualization is clearly more 
efficient than Ren et al. as the number of semantic 
region increases. 

 

Figure 9: No Intersection. 

Case 2: Full Containment 

Figure 10 models the performance for our other base 
case, where there is no remainder query because the 
user query is fully contained within a semantic 
region in cache (Query2). Again, visualization 
remains consistent as the Ren et al.’s method 
execution time continues to rapidly grow. 

 

Figure 10: Full Containment. 

Case 3: Hybrid Query Trimming I  

Figure 11 models performance for a user query that 
requires hybrid query trimming over a relatively 
small area in a single table (Query3). 
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Figure 11: Hybrid Trimming I. 

Case 4: Hybrid Query Trimming II 

Figure 12 models the performance for a user query 
that requires hybrid query trimming over a larger 
area of cache (Query4; see Figure 8a). This increase 
of complexity has noticeable effects in the efficiency 
of the Ren et al.’s method, which grows in execution 
time sharply.  

 

Figure 12: Hybrid Trimming II. 

Case 5: Hybrid Query Trimming III 
Figure 13 models performance for a user query that 
requires hybrid query trimming over a still larger 
area of cache (Query5; see Figure 8b).  

The differences in efficiency between the Ren et 
al. and visualization methods are even more 
pronounced in this case, as the graph for Ren et al.’s 
method assumes a definitively exponential shape 
while the visualization grows very slowly. 

Figure 13: Hybrid Trimming III. 

Figure 14 overlays the graphs of the five 
previous cases over each other in order that a scalar 
comparison can be made. 

Figure 14: Overlay of 5 Cases. 

It is immediately obvious from this figure that 
the efficiency of the Ren et al.’s method varies 
drastically depending on the particular query being 
processed, while the visualization method is of 
nearly identical efficiency and grows linearly no 
matter what query is being processed. While this 
variation means that in some cases (such as full 
containment) Ren et al.’s method may be only 
slightly less efficient than the visualization method, 
visualization is consistently a much more efficient 
algorithm than Ren et al. Further, it is clear that the 
more complex the user query is, the more closely the 
Ren et al.’s method follows an exponential growth 
pattern, while visualization remains linear, 
confirming our previous analysis. 

5 CONCLUSIONS 

This paper compared a new technique for semantic 
caching, visualization, with the previous Ren et al.’s 
method with regards to complexity and efficiency. 
Both methods were explained and their relationships 
to the problem of satisfiability were explored. Our 
initial complexity analysis of the Ren et al. and 
visualization algorithms was supported by our two 
simulation studies of the two methods, where the 
visualization method proved consistently more 
efficient--O(n)--than the Ren et al.’s method as the 
complexity of the query increased for both single 
and multiple table queries. This finding 
demonstrates that the visualization method is a faster 
and simpler method for query optimization and 
processing and it represents a significant 
improvement over previous methods. 
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