
A CASE STUDY: INTEGRATING A GAME
APPLICATION-DRIVEN APPROACH AND SOCIAL

COLLABORATIONS INTO SOFTWARE ENGINEERING
EDUCATION

Weifeng Xu and Stephen Frezza
Department of Computer and Information Science, Gannon University, 109 University Square, Erie, PA, U.S.A.

Keywords: e-Learning, Software Engineering, Undergraduate Education, Game Development, Social Collaboration,
Curriculum Design, Case Study.

Abstract: Teaching software engineering to undergraduate students is a challenge task. Students are expected to
understand both technical and social aspects of software engineering. This paper presents a complete case
study of a hybrid approach that systematically combines a game application-driven approach and social
collaborations into the software engineering curriculum at the undergraduate level. The case study consists
of 1) proposing a new curriculum design process, 2) identifying a set of software engineering principles,
practices, and online collaborative learning tools by following the design process, 3) proposing a semester-
long game project, 4) integrating the principles, practices, and the collaborative learning tools into the game
development process and 5) delivering the principles, practices, and tools to students during the game
devolvement. The results of the case study, including analysis of the related project documentation and
students’ feedback indicate that adopting the games app-driven approach motivate students to learn in
teams, help transferring knowledge effectively between instructors and students and facilitate achieving the
student learning objectives.

1 INTRODUCTION

Teaching software engineering through game
application (app) development has become more
popular in recent years. The key benefit of
introducing game development into software
engineering curricula is to motivate students.

Claypool (2005, p. 123) presents initial work
towards the goal of more effective software
engineering education, describing the implementation
of a game-centric software engineering course. The
focus was on modules that allow for a hands-on
practice of software engineering theory, where the
sum of the modules culminates in a working
computer game that clearly illustrates successful
software engineering practices and provides students
with particular satisfaction of a complete and useful
development effort. An alternative to Claypool’s
approach is one that divides the software engineering
into learning modules, Cagiltay (2007, p. 405)
emphasizes the outcomes of the courses, e.g., focuses
on improving students’ abilities in four areas:
problem solving, the application of previously

learned knowledge, the use of independent learning
and learning by doing.

Some educational researchers focus on teaching
specific topics within software engineering. For
example, Paul and Fu-Shing (2008, p. 1) (2007, p.
237) present an approach for teaching design patterns
that emphasizes object-orientation and pattern
integration. They present a case study centered on
EEClone, an arcade-style computer game
implemented in Java. Students analyzed various
design patterns within EEClone and learned how to
apply design patterns in their own game software.
Other researchers use games to teach languages and
project management through game development (Joe
and Amber, 2008, p. 250) (Yan, 2009, p. 969) (Wolz
and Carey, 2007, p. 322).

Although a game-based approach for teaching
software engineering is appealing, several main
problems pertain to designing and delivering a course
inclusive of app-driven development (Ragan, Frezza,
& Cannell, 2009, pp. T1A-3):

 Social Aspects: Developing software systems
is a complex socio-technical activity. The

23
Xu W. and Frezza S..
A CASE STUDY: INTEGRATING A GAME APPLICATION-DRIVEN APPROACH AND SOCIAL COLLABORATIONS INTO SOFTWARE ENGINEERING
EDUCATION.
DOI: 10.5220/0003445300230032
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 23-32
ISBN: 978-989-8425-56-0
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

social interactions and collaborations among
each team member can enrich a learning
process. More specifically, we need to
understand whether we are able to integrate
online collaboration tools in software
engineering education, and how these tools
help students understand software engineering
process.

 Pedagogical Aspects: Need for a systematical
way to help faculty members to design a
game-based software engineering curriculum.
i.e., How to assure that the appropriate
computing and engineering learning
objectives are covered and achieved in the
game development? How to derive and
implement the course content based on
software engineering disciplines? How to
evaluate students’ performance in terms of
these disciplines?

 Case Study: The educational research to date
lacks a complete case study, including an
executable game and online documentations,
for illustrating a game-based approach, how it
addressed desired software engineering
principles, good practices, as well as how
collaboration tools were integrated into the
course(s) and curriculum.

The objectives of the research are to: 1)

systematically propose a hybrid approach which
combines a game app-driven process and social
collaborations for designing a software engineering
course curriculum for undergraduate students; 2)
explain each element of design process in details via
a case study, particularly how the course content is
derived from student learning objectives; 3)
demonstrate how the key concepts, principles, the
best practices of software engineering, and
collaborative tools are covered and applied during the
game development, and 4) publish the key artifacts of
the case study online as references for other faculty
members.

The rest of the paper is organized as follows:
Section 2 describes the game app-driven curriculum
design process; Section 3 demonstrates a complete
case study using game app-driven process and these
collaborative tools and Section 4 concludes the paper
and discusses some possible future work.

2 HYBIRD CURRICULUM
DESIGN PROCESS

The curriculum design is an important quality aspect
of the course content delivery. For comparison

purpose, this section describes the difference
between the traditional and the hybrid curriculum
design processes. The hybrid approach is the
integration of a game-app driven and the social
collaborative approach.

2.1 Traditional Curriculum Design

Traditionally curriculum design has focused on the
transferring of discrete pieces of information, i.e.,
facts, disciplines, and formulas, from instructors to
students (Dick and Carey, 2000). Because the
information is considered important in its own right,
the traditional curriculum designers often build the
outcomes-based curriculum based on these
knowledge segments. More specifically, in a
traditional design process, instructors outline the
objectives of the course, derive the expected
program outcomes through the student learning
objectives of the course and check if these objectives
are achieved by comparing the actual outcomes to
the expected outcomes. Figure 1 shows the overall
traditional course design process.

Figure 1: Traditional curriculum design process.

For example, the process for designing software
engineering curriculum is comprised of the following
five elements:

 Course analysis: Studying course materials,
analyzing and understanding the
characteristics of software engineering, and
identifying potential audiences.

 Student learning objectives: Identifying key
concept of software engineering and
outlining the learning objectives of the
course, i.e., defining the accomplishment
students are able to achieve by the end of the
course.

 Course content: Developing the course
materials that will be delivered to students
and assemble the course. It requires
determining the course content suitable for

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

24

undergraduate students, implementing and
assembling the content.

 Instructional strategy: Determining the best
approach that an instructor may take to
achieve learning objectives. Instructors can
create learning environments and specify the
nature of the activity in which some key
concepts can be implemented.

 Course assessment: Evaluating if these
learning objectives, i.e., the outcomes of the
teaching and learning, have been met and
providing feedback to students. The course
assessment results also help the course
analysis.

2.2 Game App-Driven Course Design

The game app-driven approach for designing
software engineering curriculum is a different way of
organizing the elements in the traditional course
design approach.

Figure 2: Game app-driven approach curriculum design
process.

As shown in Figure 2, the instructional strategy is
located in the center of the design cycle, i.e., the
game is a platform and driving force for knowledge
transmitting. The rest of four elements are driven by
the game development and also have impacts on how
game should be designed.

The game app-driven approach is not a passive
knowledge transmission. The outcomes of the course
are reflected in the results of the interactions between
instructional strategy and these elements, whereas the
adapting of games is the key realization of the
instructional design. For example, one of the
objectives of the course is to let students demonstrate
the understanding of the iterative development
process. The objective requires: 1) the game should
be feasible to be designed, implemented, and
delivered in multiple iterations; 2) instructors should
design several project milestones and deliveries so

that students can experience incremental
development.

Designing a game story that fits the educational
context of software engineering is the main concern
for game app-driven approach. Instructors need to
answer questions similar to those listed in Table 1 in
terms of course analysis, student learning objectives,
course content, and course assessment. For instance,
before adopting the game-based approach, both
instructors and students should be technically ready
for the approach. The questions arise as: 1) Are
instructors confident in teaching game development
in software engineering? 2) What are the
backgrounds of the students who take the course? 3)
Are those students ready for developing games?
Failure to answer these questions may fail adopting
the approach.

2.3 Social Collaborations

Developing software systems is a complex socio-
technical activity. The game app-driven approach
covers the technical aspect of software engineering.
However, successfully developing a software system
needs the collaborative work, e.g., idea discussion
and knowledge sharing, in a development team.
Building social collaborations into software
engineering complements the game app-driven
approach as the social collaboration plays a vital role
in predicting the success of software system
(Meneely, Williams, Snipes, and Osbourne, 2008, p.
13).

In current undergraduate education, faculty
members propose team-based projects mainly for
helping students to comprehend software
engineering principles and experience good software
engineering practice. The social aspect of software
engineering is often overlooked.

Social collaboration crosscuts all elements of
curriculum design process. For example, in course
analysis, the social aspect of the software
engineering needs to be identified, and thus
understanding the social factors has impacts on
software projects is considered as one of the student
learning objectives. Naturally, project managements
and collaboration tools will be part of the course
content due to the team-based project. Finally, the
team-based collaboration and performance should be
evaluated as a part of the course assessment.

In the new proposed hybrid approach, we focus
on the team-based learning process rather than the
projects itself. We assume students will achieve the
desirable learning objectives and build quality
software system if they follow the well-designed
learning process. The team-based learning approach
has become an increasing valuable methodology as

A CASE STUDY: INTEGRATING A GAME APPLICATION-DRIVEN APPROACH AND SOCIAL
COLLABORATIONS INTO SOFTWARE ENGINEERING EDUCATION

25

social interactions of the team can enrich a learning
process. In team-based learning, students work in
groups on problem-based projects. More
specifically, a group of students take a problem from
instructors, apply it to a real life situation with these
projects, and present the solutions. These students
will be collaboratively engaged in analysis, design,
problem solving, decision making, and investigative
activities to accomplish the project

We are interested in identifying and adopting
some free online collaboration methods and tools for
the software engineering course. One of the
approaches is to use existing online social networks,
such as email, texting, discussion boards, Wiki,
Facebook, etc. These existing social services can be
integrated into the game development activities to
facilitate the development processes. In addition, we
try to find some online management tools to manage
software development processes, intermediate
products, and documentations.

3 GANNONOPOLY: A CASE
STUDY

In this section, a game story, named Gannonopoly, is
proposed to serve as the core of the hybrid approach.
The social aspect of software engineering, mainly
includes project management and team
collaboration, crosscuts the whole game
development process. Each question listed in Table
1 and issue mentioned in section 2.3 will be

addressed in the case study. Those answers are
organized in the corresponding subsections.

3.1 Game Story

For the game app-driven approach, the game story
serves as the platform and the driving force to
achieve the desirable learning objectives. Thus it is
essential that a suitable game story is developed so
that instructors can create learning environments and
specify the nature of the development activities in
which the key concepts and learning objectives of
the course can be implemented. (Ragan, Frezza, &
Cannell, 2009, pp. T1A-2)

A suitable story can be found by combining the
landmarks of the University with the very successful
Monopoly™ game story. This has the advantage of
familiarizing players with the landmarks located on
and surrounding our campus. Anyone that is
interested in or associated with Gannon University,
including prospective, current, and former students,
faculty, and staff will enjoy playing our game. Thus
Gannonopoly became the Gannon University
electronic version of the classic board game of
Monopoly™. The objective of Gannonopoly is to
become the wealthiest player through the buying,
renting, and selling of various properties. The game
can be played on any computer with two to eight
human players.

The Gannonopoly has a game ‘board’ in which
Gannon properties and other spaces are depicted.
These spaces include jail, go to jail, student parking,
tuition raise, etc. For example, players begin on the
space marked "Go" and are awarded a $200 salary

Table 1: Questions for designing games.

Elements Questions

Course
Analysis

What is the nature of software engineering?
Does the game development approach reflect the concept of the computer science and engineering?
Are instructors confident in teaching game development in software engineering?
What are the backgrounds of the students who take the course? Are those students ready for
developing games?
What are the constraints to use game app-driven approach?

Student
learning

objectives

Any principles and concepts can be covered in the game development, such as software process,
software development lifecycles, the phases and activities of a lifecycle, and the artifacts (documents
and code) created in each phase of a lifecycle?
Any management issues can be covered in the game development, including issues of project
planning tools and diagram, team organization, human factor, and risk analysis?

Course Content

How to map student learning objectives to the course content? i.e., How to implement the student
learning objectives in the game?
Are course content consistent in the game development process?
Any constraints we have to meet in the game development process? For instance, time constraints,
resource constraints, and technology constraints.

Course
Assessment

How to assess the objectives of the course?
What are the outcomes of the course?
How to evaluate students’ performance? If students work in the team, how to evaluate each
individual?

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

26

each time that they pass over this space. Chance and
community chest cards present a random movement
or monetary action for the current player. The "Go to
Jail" space sends a player directly to a jail. A player
can get out of the jail by rolling doubles on any of
their next three turns or by paying a fine of $50.

The game also contains two animated dice that
determine the distance to advance the current
player’s token. When a given token lands on a
property that is able to be purchased, a screen
appears asking the player if he or she wants to
purchase the property. If the property cannot be
purchased, it must be rented from the player that
owns it.

The game ends when one player becomes
bankrupt, or runs completely out of money. You are
declared bankrupt if you owe more than you can pay
either to another player or to the bank on your current
turn. At the end of the game, each player's
accumulated money and property (valued at 50% of
their purchase price). These two amounts are then
summed for each player to determine the winner.
The richest player wins!

3.2 Course Analysis

The nature of software engineering is twofold:
software engineering as a computing discipline and
software engineering as an engineering discipline.
The nature means and aims of software engineering
are summarized in Table 2 (Wang, and Patel, 2000,
p. 10). Table 2 indicates 1) As both an engineering
and as a computing discipline, students need to
understand life cycle methods, such as specification,
design, implementation, and evolution; and 2) As an
engineering discipline, students additionally need to
understand standards (e.g., designing and coding
standards), engineering tools, etc. The nature of
software engineering requires students master
necessary documenting and programming skill for
developing large-scale software. In the proposed
game-app driven approach, these principles, life
cycle methods, and engineering approaches need to
incorporate into the development of Gannonopoly.

There are other issues need to be addressed to
apply the game-app driven approach to the course
curriculum design. For example, what is the
experience of both instructors and students with
game development technology? Some issues need to
be addressed before implementing the course:
 Are instructors ready to learn designing games?

Some preliminary studies show the compelling
results of teaching game in software engineering
(Baker, Navarro, and Hoek, 2005, p. 3), we eager
to learn game developing skills and to know
how to systematically incorporate the game

Table 2: Nature of software engineering.

Nature Means Aims

A computing
discipline

Life cycle methods:
- specification
- design
- implementation
- evolution

Document and
Programming

An
engineering
discipline

Engineering approaches:
- standards
- methodologies
- tools
- processes
- organizational methods
- management methods
- quality assurance systems

Large-scale
software

systematically incorporate the game developing into
software engineering course.

 Do instructors plan to use a game engine to
develop the Gannonopoly? Students do not have
to use a game engine to develop the game. They
may choose to develop the game using other
objective-oriented languages, such as Java, and
C++. However, developing the game from scratch
is not an ideal approach to introduce the
computing and engineering principles to students
as software engineering is not only about
programming. Some game engines are available,
including PyGame™ for Python, XNA™ for
.NET, JGame™ for Java, Gamemaker™ for C++,
etc. These game engines can provide instant
results for demonstration purpose.

 Which game engine fits to the course and the
Gannonopoly game? As junior undergraduate
students don’t have much real-world
programming experience and almost never
systematically done any semester-long project
before, we choose Gamemaker™ as the game
engine for developing the Gannonopoly. The key
features of using Gamemaker™ include easy to
learn drag-and-drop actions, built-in C++ style
programming language for advanced developers,
good tutorial, large community supports, etc.

 Is the scope deliverable in one semester? We
expect that the game, or partial game, will be
developed by the end of the semester. It is mainly
determined by the problem domain and scope of
the Gannonopoly. As the game is a Gannon
university version of monopoly game, the
problem domain of the project is relatively easy
to understand. Once the problem domain is
understood, the scope of the game can be easily
determined during the requirements.

 How are existing online social networks able to
enrich students learning process? For choosing
appropriate collaborative tools for students, the
anticipated results need to be defined or
estimated.

A CASE STUDY: INTEGRATING A GAME APPLICATION-DRIVEN APPROACH AND SOCIAL
COLLABORATIONS INTO SOFTWARE ENGINEERING EDUCATION

27

Table 3: Software Engineering Student learning objectives.

Levels Student learning objectives

Knowledge

List software engineering life cycle methods and engineering approaches for software
engineering.
Identify basic steps and good practice for specifying requirements, designing systems, and
implementing systems.
Outline software engineering methodologies, processes, management methods, and methods
for system quality assurance.

Comprehension

Illustrate the activities involved in software requirement engineering, software development,
testing and evolution.
Differentiate different software process models, software engineering methodologies,
management methods, and propose of quality assurance plan.

Application
Demonstrate choosing appropriate develop methodologies, tools, process models, and other
engineering disciplines for developing different type of projects.
Apply UML to specify software requirements and design for small problems.

Analysis and Synthesis

Propose a game project plan with other team members, including a game story, a team
organization, and a project schedule.
Research the feasibility of developing the game.
Develop software requirement, design documents, and other related artifacts for the proposed
game using software engineering approaches mentioned above.
Create and demonstrate the game in the class.

Evaluation Evaluate the quality of the game.
Recommend future improvements.

Social interactions and
collaborations

Understand the social factors have impacts on software engineering.
Understand the social interactions and collaborations tools can be used for facilitating the
software engineering process and improving the productivities.
Be able to choose appropriate online collaboration tools for each activity in the development
process.
Be able to demonstrate how to use the online collaboration tools.

3.3 Student Learning Objectives

Student learning objectives can be derived from the
software engineering means and aims listed in Table
2 and the social aspect of software engineering. We
use Bloom's Taxonomy (Bloom, Engehart, Furst,
and Krathwohl, 1956) to write student learning
objectives.

Bloom's Taxonomy is a classification of learning
objectives within education. There are six levels in
the taxonomy, moving through the lowest order
processes to the highest: knowledge, comprehension,
application, analysis, synthesis, and evaluation. By
applying verb wheel based on Bloom’s taxonomy,
we derive the student learning objectives and list in
Table 3.

The software engineering student learning
objectives indicate that intellectual tasks at the
knowledge, comprehension, and application level are
generally considered less cognitively demanding than
tasks at the levels of analysis, synthesis, and
evaluation. The latter three are considered as the
higher levels of Bloom’s taxonomy, and the first
three are the foundation of higher level learning. To
reach these levels, students need to be equipped with
high level critical thinking, creative thinking, and
problem solving skills. In the case study, only the

higher levels of Bloom’s taxonomy are involved the
game development.

3.4 Course Content

The course content is organized to support the
achievement of the student learning objectives. We
use Gannonopoly as the running case to demonstrate
the course implementation. Due to time and resource
constraints, only main disciplines will be covered
during the development of the game. These
disciplines include requirements specification,
design, implementation, software quality assurance,
collaboration tools, software processes, and
management methods.

3.4.1 Requirements

Requirements elicitation and requirements
specification are two critical tasks in the
requirements engineering. While developing
Gannonopoly, students should be able to practice the
techniques to capture and document requirements.
More specifically, during the requirement phase,
students are instructed to write a game story, define
problems, organize a development team, estimate
the resource, make up a reasonable schedule, adopt a

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

28

use case approach to derive functional features, and
document the results in IEEE format. As the results,
the functions of the system are described in Table 4.
The complete artifacts of Gannonopoly can be
accessed at http://code.google.com/p/gannonopoly/.

Table 4: Functional features of Gannonopoly.

 Functional Features
1 An interactive game board triggering different

movements shall be the main basis for the entire
game.

2 The system shall simulate the rolling of two dice
through animation.

3 Multiple players shall be able to play the game.
4 A "scoring" mechanism shall be used for keeping

track of the money held by each player.
5 A deed management mechanism should be used for

keeping track of properties owned by each player.
6 The system shall save, exit, and reload the game

from its current position.

It is worth mentioning that although the use case
approach is an effective requirement elicitation
technique for many types of projects, students may
experience difficulties to specify the behaviors of
games that heavily reply on detecting and response to
the external events of the system. Event-response
tables are a convenient way to collect these event and
response information (Wang and Patel, 2000, p. 1).
The event-response tables can be organized based on
use cases. For example, the following event-response
table describes all of the possible events that are
associated with the player setup screen (i.e.,
functional feature 3). The screen allows players to
choose the number of players and their desired player
tokens. The definition of tokens is defined in the
glossary as different markers that players can choose
from to represent them during the game. Note that
due to the space limit, only partial of the events is
shown in the table.

Table 5: Event-response table for player setup.

Event System State Response
User clicks
"New
Game"
button

Welcome screen is
displayed

1.Player setup
screen is
displayed

User clicks
"+" button

Player setup screen is
displayed and number of
players is currently less
than 8

1. Number of
players is
increased by 1
2. Number of
tokens is
increased by 1

User clicks
"+" button

Player setup screen is
displayed and number of
players is currently at 8

1. Nothing
happens

… … …
User clicks
on token

Player setup screen is
displayed and the icon is
unlocked

1. Nothing
happens

3.4.2 Design and Implementatioin

During the game design, students are expected to
answer following questions:

 Is there a generic application architecture
that can be used as a template for
Gannonopoly?

 How to decompose the system into to sub-
systems or components?

 How to organize these sub-systems or
components?

 What architectural style or model is
appropriate for Gannonopoly?

 How should the architecture design be
documented?

After searching for the solutions, students figure
out an event-process system architecture design is a
good fit for designing the game. The system
architecture diagram of the Gannonopoly is shown in
Figure 3. It describes the main components of the
game system and how they interact with one another.
The figure shows that Gannonopoly consists of three
major system components. The property management
system that allows the user to choose to buy, rent,
and view their properties, the banking money system
keeps tracking of the amount of money possessed by
each player, and the player positioning system allows
the player token to move, land, pass over, and view
the information for the current space.

Figure 3: Gannonopoly system architecture.

Note that other components are also shown in the
system architecture diagram, such as the triggered
event, user command, file system, and screen display.
However, these are not exactly implemented
distinctly in the code since they are supported by the
Gamemaker™ engine. As part of the design process,
students should be able to identify and use those
reusable modules.

During the implementation, some software
engineering principles should be covered as well,
including:

A CASE STUDY: INTEGRATING A GAME APPLICATION-DRIVEN APPROACH AND SOCIAL
COLLABORATIONS INTO SOFTWARE ENGINEERING EDUCATION

29

 Object-orientation: Gamemaker™ requires
creating instances before defining any events
and action. The events and action are
corresponding to the events and response in
event-response tables. Students are expected
to understand the traceability between the
tables and implementation in Gamemaker™.

 Standards: Coding standard needs to be
applied for consistent coding style.

 Reusability: Code reusability is an important
issue during implementation. Students learn
how to find reusable library online and
realize reusable code save their time and
improve the system quality.

3.4.3 Iterative Development, Management
and Colloration Tools

Iterative development is so fundamental that we
intend to adopt the interactive approach to develop
Gannonopoly. The game specification, design, and
implementation are broken down into a series of
increments that are each developed in turn. The main
benefit of using iterative development is to avoid
project failure by monitoring the project progress
constantly. At least three iterations need to be
delivered, e.g., before the midterm, after the spring
break, and the final version. We label these iterations
as iteration 1, 2, and 3, respectively. For the
demonstration purpose, only three iterations of the
main menu and the game board are listed from
Figure 4 to Figure 9.

Figure 4: Iteration 1 main
menu.

Figure 5: Iteration 1game
board.

Figure 6: Iteration 2 main
menu.

Figure 7: Iteration 2 game
board.

Figure 8: Iteration 3 main
menu.

Figure 9: Iteration 3 game
board.

The iterative development relies on good project
managements and online collaboration tools. One of
the teaching goals of software engineering is to allow
students to be aware of and experience various
project management issues, including team
management, process management, product
management, configuration management, etc.
Furthermore, we expect students to know how to
utilize management and collaboration tools to smooth
the development process, increase the productivity,
and improve the software quality. These tools used in
the development of Gannonopoly are described in
Table 6.

Table 6: Management tools used in Gannonopoly.

Name Management Purpose
Google
Calendar

Team Scheduling meetings,
iteration deadlines,
other project-related
events

Google
Wave and
Google Talk

Team Real-time
communication and
collaboration between
participating team
members

Google Code Product Hosting project,
including file
downloads

Issue
tracking

Process,
product

Tracking issues, such
as requirements
gathering, designing,
implementation, bugs,
etc.

Wiki Product,
process

Wiki documentation,
including
requirements, design,
testing documentation,
and source

TortoiseSVN Configuration Version and iteration
management

During the development, students are advised to
use Google Project Hosting (http://code.google.com/
hosting/) to manage their projects. Project Hosting on
Google Code provides a free collaborative
development environment for open source projects,
which is an integrated tool of member management,

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

30

version control, wiki, code repository, and issue
management. Note that although other professional
management tools are available in the department,
such as JIRA (http://www.atlassian.com/software/
jira/), we use Google Project Hosting mainly because
it is a free and light-weighted tool.

3.4.4 Course Assessment

Course assessment for the game app-driven
approach is threefold: 1) evaluating the team
performance by examining if all the course content
has been experienced by the team; 2) evaluating
individual’s performance by peer-evaluation; and 3)
studying students’ feedback.

Software engineering is a social engineering, thus
we expect students to work as a team interactively
and collaboratively. In the game app-driven
approach, Gannonopoly is a platform for students
experimenting all software engineering principles
and good practices. Therefore, only one grade will be
assigned to the each artifact of Gannonopoly
developed by the team. These artifacts include all
documentations and iterations developed based on
computational and engineering disciplines.

The individual’s performance is determined by
each student’s personal report. The items need to be
included in the report are listed in Table 7.

The essential of the project report is a
reinforcement of the computing and engineering
principles in the course content. The case study
shows that the quality of the personal reports well
reflects each individual’s performance in the team.
The list of sample personal reports can be found
http://perceval.gannon.edu/xu001/teaching/2010sprin
g/cis315/project/stu_report/. The peer evaluation
mainly reflects each team member’s contribution and
collaboration in the semester-long project.

Table 7: Student personal report items.

Items Descriptions
Introduction The background of the game,

including motivation and the game
story

Requirement The features of the games
Design The architecture of the game
Project
management

The issues related to project
management, including tools
students have used

Results Screenshots
Discussion What you have learned? What would

you like to change if you restart the
project

Peer evaluation Team member/self evaluation

The study of students’ feedback is another way to
assess if the objectives of the software engineering

have been archived. Our online evaluation system
(Mak & Frezza, 2006, pp. M5G-14) supports
anonymous collection of faculty and student
feedback based on the student learning objectives.
The collected information from this iteration of the
course will be used for analysis and improvement of
the next course offering.

4 CONCLUSIONS AND FUTURE
WORK

This paper presents a case study to systematically
demonstrate a hybrid approach combining game
app-driven approach and social collaborations into
undergraduate software engineering education. In
the approach, a new curriculum design process is
proposed, in which a game is the center element of
the process. The social interactions and
collaborations crosscut all activities of the software
development processes.

In the case study, the Gannonopoly game project
is identified as a platform and driven force to help
students understand the key software engineering
principles and good practices. The key principles are
derived from both computing and engineering
disciplines, and will be implemented in course
content based on the new curriculum design process.
The goal of the game app-driven approach is to
deliver the course content through the game
development in a systematic way.

Essentially, the game app-driven approach for
software engineering curriculum design is
comprised of three components: 1) a component for
systematically identifying key software engineering
concept by instructors, 2) a project-based learning
method for students, and 3) a “fun factor” component
to motivate students. The social concern
complements the game app-driven approach as social
interactions and collaborations are the important
factors to predicate the success of software projects.
Several online collaborations tools are chosen to
enforce the concept of the social interactions and to
facilitate the development process.

We compare the new approach (implemented in
Spring 2010) to the traditional way of teaching
software engineering (Spring 2009). Two teams were
formed in each semester. Each team consisted of 3-4
students. The results of the case study are
encouraging. We list some observations here:

 Student involvements. Due to the “fun
factor” of the game, students have spent
average 50% more time on the project. On
the other hand, peer pressures motivate other

A CASE STUDY: INTEGRATING A GAME APPLICATION-DRIVEN APPROACH AND SOCIAL
COLLABORATIONS INTO SOFTWARE ENGINEERING EDUCATION

31

students to work hard to achieve the final
goal.

 Software process. All the development
processes are documented online. It is good
indication that student follows software
development process.

 Product qualities. The final product,
including an executable game, all online
documentations, and user manual, indicates
students understand the key principles of
computing and engineering and are capable
of adopting these principles and practices to
develop large-scale software products. These
are the ultimate goals of the software
engineering course.

 Faculty interactions. Although we focus on
the interactions and collaborations between
students, the online collaboration tools also
facilitate faculty members to provide
consistent feedbacks during the development.
For example, faculty members can make
comments on each wiki page.

The future work is related to our observations in
the class. Some interesting questions have arisen
during the teaching: 1) how students pick up their
team numbers? i.e., are grades or performance the
factors when students pick up their team number? As
we allow students to form their own team, it seems
students more comfortable work with someone they
already known, regardless performance in other
classes. Does it have any impacts on leaning
objectives? 2) How to measure the results of
collaborative leaning? Students heavily rely on Wiki
for documenting requirements, design, and testing
plan. It can be seen as a collaborative leaning process
for undergraduate students. Is there any way to
measure the effectiveness of collaborative leaning
and improve the collaborative leaning process? 3)
How Google wave can be used in software
engineering education? Students have tried to use
Google wave to communicate and collaboratively
develop documents. More study can be done to
evaluate the impact of use the new technology.

REFERENCES

Baker, A., Navarro, E, and Hoek, A., 2005, ‘An
Experimental Card Game for Teaching Software
Engineering Processes’, Journal of Systems and
Software special issue, 75:1-2, pp. 3–16, 2005.

Beane, J., 1991, ‘The Middle School: The Natural Home
of the Integrated Curriculum’, Educational Leadership
49(2), pp. 9-13.

Bloom, B, Englehart, M., Furst, E, Hill, W, and
Krathwohl, D., 1956, ‘The Taxonomy of Educational
Objectives, the Classification of Educational Goals’,
Handbook I: Cognitive Domain.

Cagilta, E, Nergiz, 2007, ‘Teaching Software Engineering
by Means of Computer-Game Development:
Challenges and Opportunities’, British Journal of
Educational Technology, Vol.38, Issue 3, pp, 405-415.

Claypool, L., and Claypool, M., 2005, ‘Teaching software,
engineering through game design’, In Proceedings of
the 10th Annual SIGCSE Conference on Innovation
and Technology, in Computer Science Education,
Monte de Caparica, Portugal, pp. 123-127.

Dick, W., and Carey, J., 2000, ‘The Systematic Design of
Instruction’, New York: Addison-Wesley.

Halla, K, and Moirao, D., 2000, ‘A Guide to Writing
Better Objectives for the Cognitive Domain’,
http://cstep.csumb.edu/Obj_tutorial/ Accessed May 20,
2010.

Joe, L., Amber, S., 2008, ‘Teaching game programming
using XNA’, In Proceedings of the 13th annual
conference on Innovation and technology in computer
science education, Madrid, Spain, pp. 250-254.

Mak, F. and Frezza, S., 2006, ‘Collection, Maintenance,
and Validation of a Set of Effective Objective
Evidence,’ in Proceedings of the International
Conference on Engineering Education 2006 (ICEE),
San Juan, PR, pp. M5G-12 – M5G-17.

Meneely, A., Williams, L., Snipes, W., and Osbourne, J.,
2008, ‘Predicting Failures with Developer Networks
and Social Network Analysis’, In proceeding of the
16th ACM SIGSOFT Foundations of Software
Engineering (FSE), Atlanta, GA, pp. 13-23.

Paul, G., 2007, ‘Computer games as motivation for design
patterns’, In Proceedings of the 38th SIGCSE technical
symposium on Computer science education,
Covington, Kentucky, USA, pp. 223 - 237 .

Paul, G., and Fu-Shing, S., 2008, ‘Teaching Design
Patterns through Computer Game Development’,
Journal on Educational Resources in Computing
(JERIC), vol. 8 n.1, p.1-22, 2008.

Ragan, E., Frezza, S., and, Cannell, J., 2009, ‘Product-
Based Learning in Software Engineering Education’,
40th ASEE/IEEE Frontiers in Education Conference,
San Antonio, Texas, USA, pp. T1A-1-T1A-6.

Wang, Y. and Patel, D, 2000, ‘Comparative Software
Engineering: Review and Perspectives’, Annals of
Software Engineering, Springer, vol.10, pp. 1-10.

Wiegers, K., 2003, ‘See You in Court’, Software
Development 11(1), pp. 36-40.

Wolz, U., Pulimood, S., 2007, ‘An integrated approach to
project management through classic CS III and video
game development’, In Proceedings of the 38th
SIGCSE technical symposium on Computer science
education, Kentucky, USA, pp. 322-326.

Yan, L., 2009, ‘Teaching Object-Oriented Programming
with Games’, In Processings of the sixth International
Conference on Information Technology: New
Generations, Las Vegas, NV, pp. 969-974.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

32

