
TELMA
An Evolutive Distributed Application for In-Orbit Satellites Support

Patrick Pleczon, Eva Bonnin and Laurent Desplas
Astrium, 31 rue des Cosmonautes, Toulouse, France

Keywords: Satellites In-Orbit Support, Distributed software, Scalable application, Evolutive application.

Abstract: Satellites In-Orbit Support is a complex activity requiring the daily thorough analysis of thousands of
parameters. Performing this activity for the growing fleet of satellites delivered by Astrium, the space
EADS subsidiary and leading European Satellite company, featured the development of a new generation
processing environment: TELMA (standing for TELeMetry Access).
This paper describes TELMA and provides a detailed view of the technical choices that structured this
system. First, it describes the notion of satellite telemetry and the needs of the In-Orbit Support (IOS) team.
Then TELMA software architecture is detailed as well as system deployment aspects. This paper also
provides lessons learnt about the development and deployment of the software. Finally, a status of the
current version of TELMA is presented and perspectives are drawn.

1 INTRODUCTION

Satellites In-Orbit Support is a complex activity
requiring the day-to-day thorough analysis of
thousands of parameters. Performing this activity for
the growing fleet of satellites delivered by Astrium,
the space EADS subsidiary and leading European
Satellite company, dictated the development of a
new generation processing environment: TELMA
(standing for TELemetry Access). This paper
describes TELMA and provides a detailed view of
the technical choices that structured this system.

2 SATELLITE TELEMETRY

Satellite telemetry allows monitoring satellite
components. Geostationary satellites continuously
send a telemetry flow that is received on ground
stations. Telemetry is generally emitted as a binary
stream encapsulated within a dedicated protocol. A
single telemetry consists in an on-board measure of
a satellite parameter (e.g. component pressure,
voltage, on board software memory dump, etc.). It
can be coded on any number of bits between 1 and
48 depending on the data type. Such a value
received on ground is called a raw value. The
activity of processing this telemetry flow to restore
time stamped engineer (i.e. physical) values is called

“telemetry decommutation”. It contains at least the
following steps:

 Extracting the raw value from the binary flow.
 Calculating the data time stamp.
 Applying an optional calibration function to

restore the physical value.
 Applying an optional scale factor.
 Computing a parameter-dedicated algorithm that

establishes the parameter validity according to
the values of other decommuted parameters.

3 IN-ORBIT SUPPORT NEEDS

In-Orbit Support team is in charge of the analysis of
the satellite state during its whole lifetime (around
15 years) in order to keep improving satellite quality
and support customers in managing satellite
configuration. Specialists of satellite sub-systems
(e.g. propulsion, power generation, etc.) have to
monitor their sub-systems daily by examining the
behaviour of a set of satellite parameters. In some
cases, they have to investigate the long term
behaviour of a sub-system by analysing the past
satellite telemetry, even from the beginning of the
satellite life.

The specialists’ first need is therefore to display
various graphical representations of parameters:

199Pleczon P., Bonnin E. and Desplas L..
TELMA - An Evolutive Distributed Application for In-Orbit Satellites Support.
DOI: 10.5220/0003445101990202
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 199-202
ISBN: 978-989-8425-76-8
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

 Plots tracing hourly or daily statistics about one
or several analogue parameters.

 Daily plots that can be used to focus on any
value of one or several related parameters.

 Statuses plots (related to telemetries with
discrete values such as On/Off, etc.) that shows
changes of parameters values.

 Comparisons of parameters evolution of
different satellites.

They also need to check daily the results of
conditions that can be expressed by a mathematical
expression using parameters values. In some cases,
they have to elaborate more complex processing that
cannot be managed with simple monitoring function
in order to produce data or specific plots.

Users have also to generate reports in different
formats (Microsoft doc, PDF, etc.). It is aimed to
give a clear status of satellites state, in terms of
performance, lifetime, irregular events, anomaly
predictions, etc. These documents contain data from
many sources (raw telemetry, statistics, processing
output, comments, etc.). Reports can cover various
periods of time and can address one sub-system or
all sub-systems of a satellite.

In addition to these basic functional needs, these
following requirements are also necessary:

 Configurability: possibility for users to define
several views including a set of related plots.

 Performance: the users need to be able to get
their data at the beginning of their working day.
This requires TELMA being able to process
satellite telemetry of the day before, for the
whole fleet, in less than 8 hours.

 Reliability: although this is not a critical real
time system, TELMA shall minimize the effects
of hardware or software problems.

 Reprocessing: TELMA shall allow the
reprocessing of past data on long periods.

 Hardware: the customer requirements are to be
able to use regular desktop PCs with standard
company configurations as processing units, and
to be able to access to TELMA from their office.

 Scalability: the initial configuration shall support
32 satellites and shall be scalable to add new
satellites regularly, up to 60 satellites. TELMA
shall also be scalable to add new satellite
parameters and new monitoring and processing.

4 TELMA MAIN FUNCTIONS

TELMA answer to fulfil users’ needs rely on the
daily production of user-defined set of plots starting

from telemetry decommutation. Users can define
groups of related plots they can consult at a glance.
Selecting a given plot displays an interactive plot
that can provide detailed values. Figure 1 shows a
sample of statistics and interactive plots.

Figure 1: Statistics and interactive plots.

Monitoring applications are computation
procedures executing rather simple expressions
using a set of telemetries or data produced by a
processing application. They are executed at regular
intervals by TELMA in order to assess a conditional
expression and to execute the associated actions if
the conditional expression is true (such as sending
an alarm to a group of users). Monitoring
applications are TELMA answer to users’ needs for
“simple” situation assessment.

For more complex analysis, processing
applications are used. They are more complex
procedures using a set of telemetries and/or results
of other processing to produce data or graphics.

Monitoring and processing applications can be
defined and integrated into TELMA by the users
themselves. They can be allocated to one or several
satellites.

5 TELMA ARCHITECTURE

5.1 Functional Overview

TELMA is composed of the following components:
 A scheduler facility used to distribute the work

to be performed to a set of Processing Units (PU)
at the right time.

 Processing Units are the “workers” entities.
 A web server provides the graphical user

interface to TELMA users.
 A database stores TELMA configuration data,

statistics and processing results.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

200

PUPU

SchedulerScheduler

Web server (Apache, Tomcat)
Master scheduler
Product database

PUPU

SchedulerScheduler

PUPU

Raw TM

Operators’
workstations

Gb Ethernet

Distributes schedulesDistributes schedules

TM decommutation

Monitoring

Processing

TM decommutation

Monitoring

Processing

Consult web pageConsult web page

Scalability

Sc
al

ab
ili

ty

Perform work

Executes schedules

Figure 2: TELMA overview.

TELMA requires a raw telemetry repository
where satellite telemetries generated by the Satellite
Control Centre are stored. Physical telemetry is
stored in a physical telemetry cache.

5.2 Major Technical Choices

5.2.1 Languages and Technologies

The non-web parts of the system are developed in
Java. The user interface relies on Java Servlets
deployed on a Tomcat server, JSP and JavaScript.
Flex is used for implementing the interactive plots.

We tried to limit as much as possible the use of
third party software to reduce long term maintenance
issues.

5.2.2 Decommutation

During satellite design and until its end of life, a
system database is maintained by satellite
specialists. Among many data, this database contains
the extensive definition of satellite telemetry
(organisation of parameters in the downlink frames,
calibration curves, etc.). There is at least one
different database per satellite and generally many
versions are produced during the satellite lifetime.

TELMA integrates a satellite database to Java
code compiler that generates the decommutation
code for each satellite. The code is optimized to
avoid table lookup. For instance, algorithms
evaluating parameters validity are generated
functions using direct Java references on Java
objects that implement other parameters.

Individual JARs are generated for each [satellite,
database version] pair. JARs are dynamically loaded
from a central repository by the PUs when an
activity requests a specific satellite decommutation.

Decommutation requests are sent to the
scheduler that can possibly split them according to
various criteria. Split requests are sent to several

PUs and results are merged by the scheduler on PUs
answers.

5.2.3 Management of User-defined
Applications

Monitoring and processing applications are defined
within TELMA user interface using a sub-set of Java
and a set of predefined user-oriented functions (such
as telemetry access functions, dedicated database
access functions). They are compiled and packaged
into individual JARs. As for decommutation JARs,
the monitoring and processing JARs are dynamically
loaded by PUs when they are required.

5.2.4 Processing Units

PUs are simple Java server applications offering an
activity control interface (start/end activity,
status/load request). A new thread is created for each
activity and JARs implementing decommutations,
monitoring or processing applications are loaded
when needed.

PUs are deployed as a launch script that invokes
a JNLP (Java Network Launching Protocol) file.
Thanks to JNLP the last version of the code is
loaded and run on the PU host each time the PU is
restarted.

5.2.5 Scheduler Facility

An initial trade-off has been made between using an
existing component or product or designing a
dedicated scheduler. We finally chose this later
solution to be independent of third party software
and to optimize the solution to our specific needs.

The master scheduler is quite simple and its role
is only to split the initial schedule (addressing the
full fleet) in sub-schedules using configurable
criteria, and to distribute the schedules to the
schedulers.

Schedulers are able to split incoming requests
and request activities to PUs. Currently the
scheduler is only time-based. A future evolution
could be to add task dependencies.

The main difficulty is to handle the various
possible anomalies to ensure that the requested work
is actually performed within an acceptable time.
This is enforced by several mechanisms such as the
use of start and end time-outs for managing PUs
errors and a scheduler persistent history to be able to
resume the scheduler state in case of scheduler
crash.

TELMA - An Evolutive Distributed Application for In-Orbit Satellites Support

201

5.2.6 Inter-processes Communication

Inter-processes communication relies on RMI (Java
Remote Method Invocation). RMI interfaces remain
quite simple and are basically commands and control
functions and notifications.

The most complex interface is the one dedicated
to the telemetry decommutation. A distributed
callback pattern is used to avoid blocking on the
decommutation request. Data are returned to the
caller at the end of the decommutation as a
structured collection of proxies on the actual
telemetry data that are stored in the physical
telemetry cache by the PU.

Statistics and processing data are directly stored
in the database as there is no need to put a middle
tier for this that would just have added additional
delay to store data.

The PUs regularly send load information to the
schedulers so that they can select the best PU for
starting a new activity. As we have already
mentioned, time-out are used to detect PU
malfunctioning and to possibly restart the
applications started on such a PU on another one.

5.3 System Deployment

TELMA deployment is very versatile. Everything
can fit on one single server if a small system is
required for one satellite, or tens of PCs and several
servers can be used for an operator that has to
manage a large fleet of satellites. Scalability is
possible at different level. First of all for processing
units that form the active part of TELMA. Secondly,
Schedulers can be added to support very large
schedules. In addition to this, several Tomcat servers
can be used with load balancing.
The current platform is based on 4 servers connected
to a SAN, 15 PC and manages data produced by 32
satellites.

6 LESSONS LEARNT

One of the main issues in web-based graphical user
interfaces development for an application that has to
be maintained during years is the proliferation of
tools, technologies, libraries and languages,
questionable maturity and severe long-term
maintenance issues. Developing everything with
basic components can be expensive, especially
building advanced interactive components. Using a
third party library or toolkit can be a good solution
but the durability of the solution shall be questioned.

Some technologies or toolkits analysed at the very
beginning of the project have already disappeared!

In addition, we encountered several robustness
issues due to third party software. Especially we ran
into some crashes of the Java Virtual Machine with
weird “out of swap space” errors although we had a
lot of free memory. Most of the issues were solved
by upgrading the faulty software with more recent
versions.

7 CURRENT STATUS AND
PERSPECTIVES

The current version of TELMA is used every day on
Astrium fleet. Performance is correct as well as
robustness.

Several improvements are already planned from
details adjustments to major evolutions. Among
these major evolutions, we can quote:

 The implementation of a graphical user interface
for monitoring and processing definition based
on a graphical representation of algorithms.

 Near real time monitoring in order to perform
monitoring and processing activities on the last x
minutes of telemetry.

 The split of other types of requests that would
speed-up reprocessing on long periods.

ACKNOWLEDGEMENTS

The authors would like to thank Astrium IOS team
for its fruitful collaboration in the definition of
TELMA and its involvement for improving this
product.

REFERENCES

Adobe Flex, accessed 2010, adobe.com/products/flex/.
Apache Software Foundation, accessed 2010, The

Apache Tomcat 5.5 Servlet/JSP Container,
tomcat.apache.org/tomcat-5.5-doc/index.html.

Berstis, V., 2002. Fundamentals of Grid Computing,
IBM Red Books.

Dojo Toolkit Community, accessed 2010, Dojo Toolkit
Reference Guide, dojotoolkit.org/reference-guide/.

Eadline, D., The State of Oracle/Sun Grid Engine, Sept.
2010, Linux Magazine.

Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.,
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, 2000, Wiley &
Sons.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

202

