
1 http://www.prisma-itea.org/

GLOBAL SOFTWARE DEVELOPMENT: CURRENT
CHALLENGES AND SOLUTIONS

Juho Eskeli1 and Jon Maurolagoitia2
1 Flexible Software Development Team – VTT, Oulu, Finland

2 Product & Solutions Team, CBT Communication Engineering, Getxo, Spain

Keywords: Global Software Development, Collaboration, Tools, Tool Integration, Challenges, Solutions.

Abstract: Global, collaborative and distributed development is increasingly common in software development. This
way of working, widely adopted by big corporations has been also included lately in smaller organisations
including SMEs. The traditional product and software development technologies do not correctly support
this way of working, e.g., time and cultural differences add new requirements for these technologies. The
Prisma project1 aims to provide the tools, experiences and guidelines to help companies that face these
issues in their everyday project management. One of its main outcomes is the PSW (Prisma Workbench).
PSW is a platform and a set of tools that addresses the issues that need to be overcome in adoption of a
collaborative and distributed development in organisations. This paper will present the results of the study
performed during the Prisma Project and highlight the features of the PSW that will facilitate global
collaborative software development teams to work more effectively in this kind of environments.

1 INTRODUCTION

In the perspective of growing size and complexity of
embedded systems, price competition and demand to
bring out new products to the market faster, many
companies realise that they are not able to develop
all the required functionality in one location only, or
by themselves. As a result, companies establish new
development units, e.g. to low cost countries, and
suppliers specialize in specific functionality or
specific skills (so called core competencies) which
they can sell to others. This distributed approach has
been adopted in the last years also by SMEs which
want to profit from the same benefits. This is clearly
visible in the growing numbers of the outsourcing
constructions. Companies have to outsource large
parts of their developments to specialized suppliers,
often globally distributed. Related skills are no
longer available in their own organizations and they
need to manage a complex situation of many
partners, sub-contractors, suppliers, software
platforms beginning the etc.

The trend is that the amount of collaboration
continues to increase assuming new forms. At the
main outsourcing used to be to achieve cost savings

(Forbath, Brooks and Dass, 2008). In contrast, the
strategy of some leading firms lately is to disperse
R&D throughout the world and to truly collaborate
with global partners on product innovation
(Chesbrough, 2003) (Bass, Herbsleb and Lescher,
2007) (Booz, 2006). However, industry suffers from
a rapidly decreasing productivity as a consequence.
Once people start working together, they face other
problems. Such problems are e.g. integration of
different software development processes or
asynchronous collaboration because of time
difference among partners. Global and distributed
projects require new processes, tools and solutions
to solve their particular problems.

Merlin and TWINS projects have done
substantial research in the area of finding out
solutions for collaborative product development.

Challenges encountered during collaborative
development by companies were collected in the
areas of Collaboration management, change
management, requirements engineering,
architectural design, integration and testing,
configuration management, co-operative work etc.
As a result, a web-based handbook was published
and a Merlin Toolchain was developed. Merlin
Handbook (Parviainen, Eskeli, Kynkäänniemi and
Tihinen, 2008) was developed by collecting these

29Eskeli J. and Maurolagoitia J..
GLOBAL SOFTWARE DEVELOPMENT: CURRENT CHALLENGES AND SOLUTIONS.
DOI: 10.5220/0003444200290034
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 29-34
ISBN: 978-989-8425-76-8
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

challenges, and it also has a large number of
solutions that help in tracking them.

In Prisma project, we are focusing on more
problem areas of Global software product
development while also increasing the level of
coverage for problems that were identified in Merlin
project. In this paper an inventory of the most
common problems and solutions present in literature
are described.

2 PROBLEMS RELATED WITH
GLOBAL SOFTWARE
DEVELOPMENT

In this section we present some problems present in
global software development. These were identified
from literature, and from industrial partners
experiences in Prisma project.

2.1 Problems Presented in Literature

Collaborative development cannot only be found in
the case of offshoring. Nonetheless it can be
considered as a borderline for this way of managing
development projects. Here is the summary of
offshoring challenges, which could be an interesting
starting point (Carmel and Tija, 2005):

 Communication Breakdown: Human beings
communicate best when they are interacting
face-to-face. Communication over distance
frequently leads to misinterpretation. In multi-
site project, people face communication
problems due to e.g. language barriers and
unavailability of resources. In such cases they
prefer to communicate over e-mails or over chat
servers. In these communication patterns if
something is misinterpreted or not clarified
properly it can lead development to wrong
direction.

 Coordination Breakdown: Software
development is a complex task that requires
many small and large adjustments. People need
to co-ordinate well when they are working on a
common task. It is easier to co-ordinate
spontaneously in face-to-face conversation. In
geographically distributed projects, these small
adjustments do not take place or it is not easy to
make these adjustments. Thus, problem solving
gets delayed again and again, or the project goes
down on the wrong track until it becomes very
expensive to fix.

 Control Breakdown: Successful management
control takes place when managers can roam
around to see, observe, and dialogue with their
staff. This type of management by walking
around (MBWA) is not feasible when software
developers are located many kilometres away.
Managers have to rely on telephones, E-mail
and other communication means (e.g. chat
servers) and this can provide a less clear picture
of the development status.

 Cohesion Barriers: Working groups are
composed of dispersed individuals. Such groups
are unlikely to form tight social bonds, which
are a key to a project success.

 Culture Clash: Each culture has different
communication norms. The result of these
differences is that in any cross-cultural
communication, the receiver is more likely to
misinterpret messages or cues. Hence, the
familiar complaint of miscommunication across
cultures is always present.

In taking a step further towards a more technical
point of view several references have been found to
problems connected with the requirements gathering
and management (Sinha, Sengupta and Chandra,
2006)(Damian and Zowghi, 2003). Requirements
gathering and management is one of the most
collaboration-intensive activities in software
development. Geographic separation makes it much
more difficult to hold effective discussions around
requirements, to manage requirement changes across
several sites, and to preserve and harness project
knowledge.

Desouza, Awazu and Baloj (Desouza, Awazu
and Baloj 2006) point out the highly knowledge
intensive efforts required in global software
initiatives and the management challenges it poses
for organizations. The use of different tools and data
formats, for instance, makes it difficult to easily
exchange information and development artefacts
(work products) (Gao, Itaru and Toyoshima, 2002).

Similar issues can be found in other business
areas such as manufacturing were are looking to IT
to provide the techniques and tools for constructing
virtual organizations that will support electronic
collaboration (Fecondo, 2006).

2.2 Problems Identified for Prisma
Industrial Partners

One of the main activities in Prisma Project has been
to identify the problems that have been found by all
industrial partners while managing distributed
collaborative software development projects.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

30

2 http://trac.edgewall.org/
3 http://sqs.es/en/solutions/agilereq/
4 http://www-01.ibm.com/software/awdtools/focalpoint/
5 http://sharepoint.microsoft.com/
6 http://www-01.ibm.com/software/awdtools/doors/
7 http://subversion.apache.org/
8 http://tortoisesvn.tigris.org/
9 http://sqs.es/en/solutions/testworkflow/

 Learning Curve: People do not like to change
the technology or tool on which they are
developing a product. They are not familiar
with new tools and technology and they tend to
resist when they have to change their working
platform. Thus learning curve is very low.

 Poor interoperability between tools: For
example, when data is moved from
requirements management tool to a test tool,
defects are easily introduced. Different partners
may use different tools and when the data is
integrated it can result into many errors and
defects.

 Responsibilities and roles are not properly
defined: People do not know to whom they
should report and who is responsible for what
task. In such cases the problem is that the
escalation mechanisms are not clearly defined.

 Lack of knowledge of standard solutions:
Sometimes developers start creating the same
solution which has already been implemented
as a standard solution. This leads to total waste
of resources. Before starting the development, a
proper background check for the product is not
provided. Developers don’t know why are they
creating some product and what is the purpose
behind creating it.

 Resource management: It is very difficult to
manage resources in multisite project
environment. People with right skills and real
competence are always busy with loads of
work. Thus it is very difficult to start up work,
when proper resources are not available or the
information about them is unavailable..

 Cost of currently available tools: Nowadays the
market has a number of tool providers that
supply solutions for managing collaborative
projects. Most of these solutions will only
communicate with tools from the same provider
limiting the organizations options. The cost of
this investment is sometimes higher than
companies can afford.

2.3 Current needs of Prisma Partners

The current development processes for the project
partners have been reviewed along with the tools
and methodologies that are being used. This review
has allowed extracting the set of requirements and
needs that should later be implemented by the tools
and methodologies that are the result of the Prisma
Project. A highlight of these requirements is the
following:

 Requirement capture process: the Requirements
are captured by the partners during meetings
with their customers. Finally these requirements
are collected in documents. The tools used in
this process are: Trac2, SQS AgileREQ3, Focal
Point4, MS Sharepoint5, MS Excel sheets and
DOORS6. The needs for a requirement capture
tool include having a common and unique
requirement repository that implements
traceability mechanisms with other information
items (e.g. other requirements, bug reports,
related test cases and requirement information
sources).

 Requirements review process: the requirement
review is an iterative process throughout the
project, in meetings between the stakeholders.
If the requirements have to be modified, these
changes are documented. The tools used in this
process are: Trac, custom made self developed
tools (Formal Peer review process) and MS
Sharepoint. The needs for a tool that helps
during this vital activity are the possibility to
keep track of a full history of review comments
and access to metrics (e.g. review effort or
defects found).

 Traceability process: the tools used by the
partners only manage traceability between error
tickets and test cases. The tools used in this
process are: Subversion7 and TortoiseSVN8,
DOORS, SVC, SQS TestWORKFLOW9, and
Excel sheets. Because traceability is a key task
in collaborative software development, the
main need of the partners was to have the
possibility to assign and review the traceability
among all the information items in the project
(e.g. requirements, test cases and reports, bug
reports and others).

 Testing process: the partners test models and
prototypes, developed modules, the integration
of the developed modules, and the final product
(functional testing). In some cases the partners
simulate the behaviour of the desired product
by using emulators. The tool used in this
process is mainly SQS Test WorkFlow. The
needs for testing tools include a way to
determine which tests are required to validate a

GLOBAL SOFTWARE DEVELOPMENT: CURRENT CHALLENGES AND SOLUTIONS

31

10 http://www.teamst.org/
11 http://cruisecontrol.sourceforge.net/
12 http://code.google.com/p/openmeetings/
13 http://sqs.es/en/solutions/agilereq/

release, specification of various test
configurations, being able to repeat standard set
of tests quickly, and create automatically test
reports, easy definition of test scripts, continue
regression if an unexpected problem or defect is
encountered, and automatic defect reporting
with attached information of test case, error
condition, and test data.

 Metric capture and analysis process: the metrics
defined by the partners monitor e.g. test
coverage and test results, efforts spent, number
of errors revealed, requirement changes count,
and time rates. The tools used in this process
are: a custom self developed tool, Excel sheets
and MS Sharepoint. Metric capture and analysis
tools should improve the reliability of the
releases, and also decrease the validation times,
collect automatically metrics and generate
reporting graphs and include overview and
detailed views.

3 PRISMA WORKBENCH

Prisma Workbench (PSW) is one of the main results
of the PRISMA project. PSW is an integrated
environment that aims to support collaborative,
Global Software Development (GSD). PSW builds
on top of experiences achieved in Merlin and
TWINS project (Eskeli and Parviainen, 2010), but
has been completely redesigned. One of the major
design goals has been to make PSW flexible and
extendible by allowing for a configurable set of
development tools tailored to individual partner or
project needs. This is done so that the legacy tools
already in use in the companies can be easily
integrated to PSW. Continued use of familiar legacy
tools is important for effective way of working that
could be easily disturbed by a sudden change of
tools. The initial set of tools integrated into PSW
will originate from the Prisma project partners and
open source.

PSW is an integration solution that does not aim
to replace the existing tools, but rather to provide its
services in parallel to the legacy tools. Due to this
decision PSW does not support modifying of tools’
data; it is still done in the tools themselves. What
PSW can do however, is to provide various (near)
real time views into data. The views have been
designed to alleviate issues (communication
breakdown, control breakdown, etc.) encountered in
collaborative, distributed development settings. The
views provide visibility into project’s progress by
gathering and formatting data from the tools,

managing connections between the data, and
concentrating this information into easy to read
dashboards (see Figure 2).

The connections between data (i.e. work
products such as requirements) can be managed in
PSW via traceability relations. Traceability relations
indicate dependency between work products. For
example, a relation between a requirement and a test
case can indicate that the given requirement is
validated by the related test cases. PSW provides
means to specify these relations and views to
visualize them. The relations can also be used in
reports, e.g. to show requirements test coverage,
requirements test status, etc. This kind of feature is
especially useful in maintaining control of the
project when the work products that should be
logically dependant are managed in separate tools
(and/or sites).

The views in PSW enable inspection of data
stored in tools’, but also provide notifications of
important changes happening in the project. PSW
contains a detection mechanism for integrated tools
that provides information of additions, deletions, and
modifications in work products that are stored in the
tools. The notification mechanism also provides
information of actions done in the PSW
environment, such as tracing of work products. In
the future this mechanism can be extended so that
when a user logs into PSW environment the user is
provided information of important issues that have
happened since the user was last online.

The initial set of tools for PSW has been selected
based on the Prisma project partners’ preferences,
but also on our previous experiences of these tools.
The tool set consists mainly of open source tools:
Trac for bug tracking, Testlink10 for test case
management, Subversion for version control,
CruiseControl11 as build tool, and OpenMeetings12

for communications. A commercial AgileReq13 tool
from SQS is used for requirements management. All
of these tools are connected to PSW using the tools’
own APIs.

4 IMPLEMENTATION

In design of PSW implementation main
considerations have been that the software
components could be relatively easily changed and
that the system can operate in distributed fashion.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

32

14 http://tuscany.apache.org/

15 http://www.mysql.com/
16 http://memcached.org/
17 http://www.jcp.org/en/jsr/detail?id=286
18 http://java.sun.com/products/jsp/
19 http://www.liferay.com/

PSW consists of two main components, the server
and the client. The server component integrates tools
and provides its services to the client(s). The client
component is the visual interface in to the tool
integration.

The server is built on top of Apache Tuscany14,
which is a framework for building Service Oriented
Architecture (SOA) solutions. SOA based
architecture was selected because it promotes loose-
coupling between software components, which in
turn provides us the freedom to add / remove /
change the components as we best see fit. Another
reason was because the integrated tools can be
distributed and the SOA based approach provides us
easy access to the tools. As was previously
mentioned, the server component does the actual
tool integration by interfacing with the various tools.

The first step in integrating a new tool in to PSW
is identifying the information elements (i.e.
requirements in a requirements management tool) to
integrate from the tool. In this step the integrator is
creating a (usually) partial structure of the data
maintained in the tool, based on the needs of the
integration.

The second step is to establish a connection from
the tool into PSW for interfacing. This is usually
done using the tool’s API; however PSW does not
care how the integration is implemented.

In the third step a Java class is created which
inherits the PSW tool interface definition. As
defined by the interface, the class must implement
several basic functions:

 A function which lists types of work products
supported by the tool.

 A function which returns the name of the tool.
 A function which returns the work products with
relations to each other as defined in the tool (e.g.
requirements hierarchy).

For representing work products in PSW a
separate class has been defined that maintains source
tool, type of work product, unique id (anything that
can be used as unique id in the tool), attributes, and
relation to other work products.

In the current implementation the classes that
implement the tool integrations are included at
compile time. In the future the implementation could
be easily modified so that third parties could place
their implementations in e.g. .JAR-archives. The
archives could then be loaded on the server start-up
or even during operation.

Preliminary integration experiences gathered
show that a tool can be added rather quickly; most of
the effort will be spent in studying the tool’s

integration mechanisms (e.g. API). Based on the
feedback received we have produced a step by step
guidance, and a thorough description of the
integration mechanism. In this case the guidance
was given verbally by one of the developers.

The server also provides single-sign-on type of
access in the tools for the users. Single-sign-on in
this context means that the user’s accounts in the
tools are tied to the user’s PSW account.
Furthermore, it implements the traceability service
which can be queried for work product relations and
for creating new ones. The traceability mechanism is
implemented in essentially the same fashion as in
our previous work (Eskeli and Parviainen, 2010); no
data is replicated but unique identifiers are used to
identify the work products in the tools. The relations
are stored in a relational database, MySQL15.

To improve the performance, the data from tools
is temporarily cached using Memcached16. This is
necessary because some of the tool specific queries
can take a long time to complete (e.g. due to amount
of data, tool location), which would result in a poor
user experience. When the cache is updated at
specific intervals, the changes in the work products
are detected and stored. The changes in the work
products can then be queried using the notification
service.

The client component consists of several JSR
28617 portlets. The portlets implement the before
mentioned views. The portlets produce their content
from the services provided by the server component.
The portlets have been designed so that minimal or
no changes need to be done to them if the integrated
tools are changed. Most of the implementation is in
Java, but the portlets also use JavaServerPages18
(JSP), and JQuery for asynchronous updates. The
portlets are currently hosted in open source Liferay19
portal software. One benefit of the JSR 286
specification is that it is possible to change the portal
software to another portal that supports the same
specification with relative ease.

5 FUTURE WORK

In our future work we plan to implement things we
already mentioned (integration guidance, improved
notifications), make existing functionality more
robust, but also work on things we think could

GLOBAL SOFTWARE DEVELOPMENT: CURRENT CHALLENGES AND SOLUTIONS

33

benefit people working in collaborative, globally
distributed software development. We plan on using
communication software (OpenMeetings or some
other) in PSW so that the communication portlet can
be placed in any context (e.g. requirements review),
and then anyone who enters that context is
automatically part of the discussion. Discussions are
stored and rationale for decisions made can be traced
later asynchronously by anyone who needs this
information, without resorting to e-mails and phone
calls. We are also planning on improved reporting &
metrics facilities in the PSW to help project
managers can gain better control of the project.

To make integration of tools into PSW easier we
are inspecting existence of standardized or de-facto
tool interfaces that we could implement in PSW. In
this case a tool implementing such an interface could
be connected to PSW with minimum effort. We are
also considering adding distributed version control
software (e.g. GIT, Mercurial) to the initial tool set
to complement centralized version control
(Subversion).

6 CONCLUSIONS

In this paper the concept of Global Software
Development was introduced and described as a
growing organisation paradigm for software
development companies. The main issues that this
paradigm includes have been highlighted based on
the research in literature and on the results of the
Prisma project. The goals of Prisma are to provide
the tools, experiences and guidelines to help
companies that face these issues in their everyday
collaborative project management.

Prisma Workbench PSW is one of the main
results of this project and it has been presented as a
flexible and adaptable platform the will allow
companies to integrate their own existing tools in
order to improve project management in a globally
distributed organisation by raising awareness of
project happenings and through improved co-
ordination of activities. In Prisma project, the
integrated set of tools was selected based on the
partners’ preferences. During the remainder of the
project PSW will be extended as mentioned in the
future work section. PSW will also be tried out in
industrial setting where experiences of its usage will
be gathered.

ACKNOWLEDGEMENTS

The authors would like to thank the partners
involved in the ITEA2 Prisma project for their
contribution and inspiration.

REFERENCES

Forbath, T., Brooks, P., Dass, A., 2008. Beyond Cost
Reduction: Using Collaboration to Increase Innovation
in Global Software Development Projects. In IEEE
International Conference on Global Software
Engineering.

Chesbrough, H., 2003. Open Innovation. Boston, MA.,
HBS Press

Bass, M., Herbsleb, J., Lescher, C., 2007. Collaboration in
Global Software Development Projects at Siemens:
An Experience Report, In ICGSE '07 Proceedings of
the International Conference on Global Software
Engineering.

Booz A. H., 2006. Globalization of Engineering Services”,
NASSCOM

Parviainen, P., Eskeli, J., Kynkäänniemi, T., Tihinen, M.
2008. Merlin Collaboration Handbook - Challenges
and Solutions in Global Collaborative Product
Development. In Proceedings of ICSOFT
(SE/MUSE/GSDCA)'2008. pp.339~346

Carmel, E., Tija, P., 2005. Offshoring information
technology. s.l. Cambridge University Press

Sinha, V., Sengupta, B., Chandra, S., 2006. Enabling
collaboration Distributed Requirements Management,
September/October 2006, IEEE Software, pp. 52-61.

Damian, D., Zowghi, D., 2003. Requirements Engineering
Challenges in Multi-Site Software Development
Organizations, Requirements Engineering Journal,
Vol. 8, pp. 149-160.

Desouza, K. C., Awazu, Y. and Baloj, P., 2006. Managing
Knowledge in Global Software Development Efforts:
Issues and Practices, IEEE Software, pp. 30-37.

Gao, Jerry Z., Itaru, F., Toyoshima Y., 2002. Managing
Problems for Global Software Production –
Experience and Lessons., In Information Technology
and Management, Vol. 3 (1-2), pp. 85-112.

Fecondo, G., et al., 2006. A Platform for Collaborative
Engineering IEEE Software, pp. 25-32.

Eskeli, J., Parviainen, P., 2010. Supporting Hardware-
Related Software Development with Integration of
Development Tools. In 2010 Fifth International
Conference on Software Engineering Advances.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

34

