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Abstract: In the paper we consider the problem of the evaluation and comparison of different classification 
algorithms. For this purpose we apply the methodology of statistical tests for the multinomial distribution. 
We propose to use two-sample tests for the comparison of different classification algorithms, and one-
sample goodness-of-fit tests for the evaluation of the quality of classification. We restrict our attention to the 
case of the supervised classification when an external ‘expert’ evaluates the correctness of classification.  
The results of the proposed statistical tests are interpreted using possibilistic indices of dominance 
introduced by Dubois and Prade. 

1 INTRODUCTION 

Algorithms used for the purpose of classification of 
observations (data points, data records) constitute an 
important part of machine learning. They are divided 
in two general groups: classification algorithms used 
in processes of supervised learning, and data 
clustering algorithms used in processes of 
unsupervised learning. In this paper we will discuss 
the problem of the evaluation of the quality of the 
algorithms used for classification, usually 
understood as the accuracy of classification. A 
natural measure of such quality is the percentage of 
correctly classified objects, usually called 
classification accuracy. This measure is used by all 
authors of papers devoted to classification problems, 
both developers of new algorithms, and users of 
existing algorithms who apply them for solving 
practical problems. 

The evaluation of the quality of classification 
using the accuracy index may not be sufficient. In a 
rather simple case of only two possible classes the 
observations have to be classified to, statisticians 
advise to use two additional indices whose 
background can be found in medical sciences, 
namely the indices of sensitivity and specificity. Let 
us assume that considered objects can be assigned to 
two disjoint classes called ‘positive’, and ‘negative’. 
By sensitivity (also known in machine learning as 
recall) we understand the conditional probability 

that the object which should be classified to the 
‘positive’ class has been correctly assigned to this 
class. By specificity  (also known in machine 
learning as recall of negatives) we understand the 
conditional probability that the object which should 
be classified to the ‘negative’ class has been 
correctly assigned to this class. For good 
classification rules the values of these indices should 
be both close to one. In machine learning some 
functions of these indices (e.g. F-measures or ROC 
diagrams) are used. For more information see e.g. 
Chapter 7 in (Berthold and Hand, 2007).  

The problem of the evaluation of the quality of 
classification becomes more difficult when the 
number of possible classes is larger than two. In 
such cases many different criteria have been 
proposed. Some of them, like the error correlation 
EC, have probabilistic interpretation, but the 
majority of them are based on some heuristics. For 
more information on this subject see e.g Chapter 11 
in (Nisbet et al., 2009). The major disadvantage of 
all these measures stems from the fact that they 
usually do not have any statistical interpretation. 
Without such interpretation we are not able to 
present statistically sound comparison of different 
algorithms.  

In this paper we propose to use the methodology 
of statistical tests to evaluate and compare the 
quality of classification algorithms. The 
mathematical background for these evaluations and 
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comparisons is presented in second and third 
sections of the paper. In these sections we consider 
two cases. In the first one, considered in the second 
section, we compare the performance of different 
classification algorithms using two-sample tests for 
the multinomial distribution. In the second case, 
considered in the third section, we use the 
multinomial goodness-of-fit tests for the evaluation 
of the accuracy of classification algorithms. In the 
fourth section of the paper we propose new 
possibilistic measures for the comparison of 
classification algorithms. This measures are based 
on the possibilistic interpretation of statistical tests 
proposed in (Hryniewicz, 2006). The paper is 
concluded in the fifth section where problems for 
future considerations are also formulated.  

2 STATISTICAL COMPARISON 
OF THE PERFORMANCE  
OF CLASSIFICATION 
ALGORITHMS 

Let us assume that we have to classify n objects into 
K disjoint classes. In this paper we restrict ourselves 
to the case when the classification algorithm 
classifies each object to only one of possible classes. 
We do not impose any restriction on the type of the 
algorithm used for this purpose. This can be artificial 
neural network classifier, set of classification rules, 
vector supporting machine classifier, Bayes naïve 
classifier or any other algorithm that can be 
proposed for this purpose. Moreover, we assume that 
there exists a method for the evaluation of the 
correctness of the classification of each considered 
object. This can be an expert, as in the case of 
classical supervised learning, or the algorithm that 
assigns the object to a class formed by a certain 
clustering algorithm, as in the case of unsupervised 
learning. 

Let ( )121 +KK n,n,,n,n …  be the vector 
describing the evaluation of the accuracy of the 
considered classification algorithm. First K 
components of this vector represent the numbers of 
cases of the correct classification to K considered 
classes. The last component gives the total number 
of incorrectly classified objects. Thus, in this model 
we do not distinguish possibly different types of 
misclassification. If we do need to distinguish them 
we could expand this vector by adding additional 
components.  

Let us assume now that observed values of 
( )121 +KK n,n,,n,n …    represent  a  sample  from   an 

unknown multinomial distribution, defined by the 
probability mass function 

 

( ) ∏
+

=+
+ =

1

111
11

K

i

n
i

K
KK

ip
nn
np,p,,pMB

!!
!

"
… , (1)

 

where∑ +
= =1

1
K
i i nn , and∑ +

= =1
1 1K

i ip , that describes 
a hypothetical population of objects classified in a 
similar way to that used for the classification of the 
considered sample. 

 Now, let us suppose that we have to compare 
two classification algorithms, whose results of 
application are given in the form of two vectors 
( )121 +KK n,n,,n,n … , and ( )121 +KK m,m,,m,m … , 
respectively. First, let us consider the case that both 
algorithms are compared using the same set of 
observations. Thus, n=m, and both observed vectors 
are statistically dependent. In such case in order to 
compare the considered algorithms we have to know 
the results of the classification of each object, and 
then to use statistical methods devised for the 
analysis of pair-wise matched data. Unfortunately, 
this can be easily done only in the case when we 
have data that can be summarized in the following 
table 

Table 1: Dependent test data. 

 Alg.1 -correct Alg.1 - incorrect 

Alg. 2-correct k11 k12 

Alg. 2 - incorrect k21 k22 

In this table k11 is the number of objects classified 
correctly by both algorithms, k12 is the number of 
objects classified correctly by Algorithm 1 but 
incorrectly by Algorithm 2, k21 is the number of 
objects classified correctly by Algorithm 2 but 
incorrectly by Algorithm 1, and k22 is the number of 
objects classified incorrectly by both algorithms.    

Using statistical terminology we can verify two 
hypotheses. First hypothesis is that the probabilities 
of incorrect classification for both compared 
algorithms are the same, and is tested against the 
alternative that they are simply different. In this case 
we have to apply the so called two-sided statistical 
test. We may consider the statistical hypothesis that 
one algorithm is not worse (i.e. better or the same) 
than the other one, and test it against the hypothesis 
that it is worse. In this case we have to apply the so-
called one-sided statistical test. 

When both compared probabilities are equal it  is 
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known, see e.g. (Agresti, 2006) for more 
information, that the number of incorrect 
classifications k21  is described by the Binomial 
probability distribution with the parameters 
k=k12+k21 and p=0,5. Let us assume now that we 
observe ݇ଵଶ∗  and ݇ଶଵ∗  incorrectly classified (only by 
one algorithm!) objects. The probability of 
observing these data can be calculated from the 
following formula 

 ܲሺ݇ଶଵ∗ |݇∗ = ݇ଵଶ∗ + ݇ଶଵ∗ ሻ =൬ ݇∗݇ଶଵ∗ ൰ ቀଵଶቁ௞మభ∗ ቀଵଶቁ௞∗ି௞మభ∗ . (2)

In order to verify the hypothesis of equal 
probabilities of misclassification we have to 
calculate, according to (1), probabilities of all 
possible pairs ሺ݇ଶଵ, ݇∗ሻ. In case of the two-sided test 
the sum of those probabilities that do not exceed the 
probability of the observed pair ሺ݇ଶଵ∗ , ݇∗ሻ give the 
value of the significance (known also as the p-value) 
of the tested hypothesis. When this value is greater 
than 0,05 it is usually assumed that the hypothesis of 
the equal probabilities should not be rejected. In case 
of the one-sided test we consider only these pairs ሺ݇ଶଵ, ݇∗ሻ who support the one-sided alternative. 
Thus, the p-value in case of the one-sided alternative 
is smaller than in the case of the two-sided 
alternative. Hence, it is easier to reject the 
hypothesis that one algorithm is not worse than the 
other one than to reject the hypothesis that they are 
statistically equivalent.  

When the number of incorrectly classified 
objects k* is sufficiently large (in practice it is 
required that the inequality  k*>10 must be fulfilled) 
the following statistic  ܶ = ሺ݇ଶଵ − ݇ଵଶሻଶ݇ଶଵ + ݇ଵଶ  (3)

is approximately distributed according to the chi-
square distribution with 1 degree of freedom. This 
statistic is used in the well known McNemar test of 
the homogeneity of proportions for pair-wise 
matched data. 

Let us consider the example of Fisher’s famous 
Iris data (available at the web-site of the University 
of California, Irvine). We use this benchmark set for 
the comparison of two algorithms: LDA (Linear 
Discrimination Analysis) and CRT (Classification 
Regression Tree) – both implemented in a popular 
statistical software such as e.g. STATISTICA. For 
more information about these algorithms see e.g. 
(Krzanowski, 1988). The results of the comparison 
are given in Table 2 

Table 2: Comparison – IRIS dataset. 

 LDA -correct LDA - incorrect 

CRT-correct 147 1 

CRT - incorrect 0 2 

The p-value in this case is easily computed, and 
is equal to 1. Therefore, the obtained statistical data 
do not let us to reject the hypothesis that the 
probabilities of incorrect classification are in case of 
these two algorithms the same. 

Iris data are well separable, so from a statistical 
point of view all classification algorithms tested on 
this benchmark set are indistinguishable. The 
situation is different in the case of data considered in 
(Charytanowicz et al., 2010). We will use these test 
data for the comparison of two algorithms: Bayesian 
algorithm proposed in (Kulczycki and Kowalski, 
2011) and classical QDA algorithm described in 
(Krzanowski, 1988). The results of the comparison 
are presented in Table 3. 

Table 3: Comparison – Wheat kernels. 

 Bayes -corr. Bayes - incorrect

QDA-correct 85 9 

QDA - 
incorrect 5 6 

 
The p-value in this case is equal to 0,42. 

Therefore, the obtained statistical data do not let us 
to reject the hypothesis that the probabilities of 
incorrect classification are in the case of these two 
algorithms the same despite the fact that one of the 
compared algorithms (QDA) seems to be 
significantly better (nearly 30% lower probability of 
incorrect classification). 

When we do not have an access to individual 
results of classification we can compare algorithms 
using independent samples described by the 
multinomial distributions. Let the data be described 
by (1), and ∑ +

= =1
1

K
i i nn  and ∑ +

= =1
1

K
i i mm  be the 

sample sizes which in general do not have to be 
equal. Moreover, note that in case when one of these 
algorithms is a perfect classifier (e.g. a domain 
expert) we have 01 =+Kn  (or 01 =+Km ). If the 
results of the application of the first algorithm are 
described by the multinomial distribution 

( )11 +KK p,p,,pMB … , and the results of the 
application of the second algorithm are described by 
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the multinomial distribution ( )11 +KK q,q,,qMB …  
their performance can be compared by testing the 
statistical hypothesis 

 

11110 ++ === KKKK qp,qp,,qp:H … . (4)
 

To test this hypothesis we may apply 
methodology of two-way contingency tables. Test 
data are now presented as the following table 

Table 4: Independent test data. 

Alg./Class 1 … j … K K+1 Total 

Alg. 1 n11 … n1j … n1K n1K+1 N 

Alg. 2 n21 … n2j … n2K n2K+1 M 

Total c1 … cj … cK cK+1 N+M 

 
When the hypothesis H0 given by (4) is true, the 

conditional distribution of observed random vectors 
( )121 +KK n,n,,n,n … , and ( )121 +KK m,m,,m,m … , 
given the vector of their sum ( )121 +KK c,c,,c,c … , is 
given by the multivariate hypergeometric 
distribution (Desu and Raghavarao, 2004) 
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This probability function is used for the construction 
of the multivariate generalization of Fisher’s exact 
test that is used for the verification of (4). Let n*, m*, 
and c* be the observed data vectors. The p-value 
(significance) of the test is computed from the 
formula (Desu and Raghavarao, 2004) 
 

( ) ( )∑ ∗=−
Γ

0H,|,Pvaluep cmn , (6)
 

where 
 

( ) ( ) ( ){ }00 H,|,PH,|,P, ∗∗∗∗ ≤= cmncmnmn :Γ
 

(7)
 
The p-values of this test can be computed by the 
tools of statistical packages such as SPSS or SAS. 

It can be shown that the test of the equality of 
two sets of multinomial probabilities is formally 
equivalent to the test of independence of categorical 
data. Hence, for testing (4) it is also possible to use a 
popular test of independence – Pearson’s chi-square 
test of independence. This test can be use only in 
case when the total number of observations is large 

(greater than 100), and in each cell of the 
contingency table it is more than 5 observations. 
These assumptions are usually fulfilled in testing 
classification algorithms, except for situations were 
tested data allows building perfect or nearly perfect 
classifiers. However, in such cases the problem of 
choice of the best classifiers does not exist. 

The 2χ  statistic in the considered case can be 
written as 
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The p-value for this test is obtained by solving, with 
respect to p, the equation 
 

2
1

2
p,K −= χχ , (11)

 

where 2
1 p,K −χ  is the quantile of order 1-p in the chi-

square distribution with K degrees of freedom. Also 
in this case the p-values of Pearson’s chi-square test 
of independence can be computed using the tools 
available in statistical packages such as SPSS or 
SAS. 

In order to illustrate the application of the 
proposed tests in the evaluation of classification 
algorithms let us first consider a hypothetical 
example of the classification of N=100 objects into 
K=3 classes. Suppose that we want to compare three 
algorithms A, B, and C, together with a “perfect” 
algorithm represented by an expert E. All compared 
“imperfect” algorithms have their ‘normal’ and 
‘improved’ versions indexed by subscripts 1 and 2, 
respectively. All incorrect (false) classifications are 
assigned to the additional fourth class. Suppose that 
the results of this hypothetical experiment are 
presented in Table 5. 

Algorithms A, B and C in their both versions are 
characterised by the same total percentages of 
incorrect classification equal to 10% and 5%, 
respectively. However, the distribution of incorrectly 
classified objects depends upon the used algorithm. 

In   case  of  algorithm   A  incorrectly  classified 
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Table 5: Results of a hypothetical experiment. 

Alg.\Class 1 2 3 4 
Expert 20 30 50 0 

A1 18 27 45 10 
A2 19 29 47 5 
B1 10 30 50 10 
B2 15 30 50 5 
C1 20 30 40 10 
C2 20 30 45 5 

 
objects are distributed proportionally to the actual 
sizes of classes. For algorithm B all incorrectly 
classified objects are assigned to the class with the 
lowest number of actual observations. Finally, in 
case of algorithm C all incorrectly classified objects 
are assigned to the class with the highest number of 
actual observations. 

In Table 6 we present the p-values of both 
considered tests when the performance of each 
classification algorithm is compared to the 
classification given by the expert. 

Table 6: Comparison with the expert. 

 Fisher’s Chi-square 
A1 vs. E 0,008 0,015 
B1 vs. E 0,002 0,004 
C1 vs. E 0,006 0,011 
A2 vs. E 0,177 0,162 
B2 vs. E 0,132 0,126 
C2 vs. E 0,165 0,154 

In case of ‘normal’ versions of all algorithms the 
results of classification are statistically significantly 
different than the classification provided by the 
expert. The closest classification is provided by 
algorithm A with misclassified objects evenly 
distributed over all classes.  The worse performance 
is observed in case of algorithm B characterised by 
the largest percentage-wise differences between 
accuracies of classification in different classes. In 
case of ‘improved’ versions of considered 
algorithms their performance is statistically 
indifferent to the performance of the expert 
considered as a ‘random’ decision-maker. It means 
that for the sample of N=100 elements percentage of 
misclassification of the order of 5% does not allow 
us to decide which algorithm is statistically 
significantly better than the other one. However 
when we compare the respective p-values in this 
case we will see the same pattern of behaviour as in 
the case of the ‘normal’ versions of the considered 
algorithms. 

Now, let us apply the proposed methodology for 
the comparison of ‘normal’ and ‘improved’ versions 
of our hypothetical algorithms. The results of this 
comparison are presented in Table 7. 

Table 7: Comparison of different versions of algorithms. 

 Fisher’s Chi-square 
A1 vs. A2 0,640 0,613 
B1 vs. B2 0,470 0,446 
C1 vs. C2 0,599 0,581 

 
The results of this comparison are somewhat 
unexpected for a non-statistician. Despite seemingly 
large improvement (reduction of the percentage of 
incorrect classifications from 10% to 5%) the 
compared results statistically do not differ. The 
reason for this behaviour is, of course, a small 
sample size. What is also interesting that the 
difference is the least significant (the highest p-value 
in the test of equality) in the case of evenly 
distributed misclassifications. The lowest p-value 
(but still very high using statistical standards) is for 
the case of algorithm B which assigns all incorrectly 
classified objects to the class with the smallest 
number of observations. 

Finally, let us compare pair-wise ‘normal’ and 
‘improved’ versions of our algorithms. The results 
are presented in Table 8. 

Table 8: Comparison of different algorithms. 

 Fisher’s Chi-square 
A1 vs. B1 0,454 0,439 
A1 vs. C1 0,918 0,906 
B1 vs. C1 0,214 0,217 
A2 vs. B2 0,908 0,901 
A2 vs. C2 0,991 0,993 
B2 vs. C2 0,801 0,807 

 
Similarly to previously considered cases the 

differences between performances of compared 
algorithms are not statistically significant. This is 
hardly unexpected as their accuracies are the same. 
However, the type of the distribution of incorrectly 
classified objects plays a visible role, especially in 
the case of ‘normal’ (rather inaccurate) versions of 
our algorithms. 

Now, let us consider an example of the 
application of this methodology to real data.  
Suppose, that we have been provided with two 
algorithms for the classification of vehicle 
silhouettes data (data provided by Turing Institute, 
Glasgow, and available at the UCI web-site). One of 
these algorithms implements the Bayesian algorithm 
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proposed in (Kulczycki and Kowalski, 2011), and 
the second one implements a classical CRT 
algorithm described in (Breiman et al., 1984). The 
algorithms have been tested on two independent 
samples, and the results of this comparison are 
presented in Table 9.  

Table 9: Comparison - Vehicle Silhouettes. 

Alg.\Class 1 2 3 4 5 
Bayes 55 48 112 90 141 
CRT 46 55 86 84 175 
 
The p-value obtained as the solution of (11) for 

these data is equal to 0,079. According to the 
classical statistical approach this result does not let 
us claim that the Bayes algorithm is better than the 
CRT. Note however, that similar results obtained on 
the same sample would probably indicate the 
superiority of the Bayes algorithm. 

3 STATISTICAL EVALUATION 
OF CLASSIFICATION 
ALGORITHMS 

In the previous section we proposed a simple 
methodology for the statistical comparison of the 
performance of different classification algorithms. 
The results of classification obtained using 
compared algorithms have been treated as random 
samples. This assumption seems to be reasonable in 
the case of evaluated algorithms but is somewhat 
doubtful in case of the classification provided by an 
expert. The other possible approach is to treat the 
classification given by the expert as representing the 
hypothetical ‘true’ distribution of observations

( )00
1

00
1 == +KK p,p,,p …0p , and to verify the 

hypothesis 
 

0
11

00
110 ++ === KKKK pp,pp,,pp:H … , (12)

 
using the set of observed classification results 

( )121 += KK n,n,,n,n …n . To test this hypothesis we 
may apply methodology of one-way contingency 
tables. 

Under the null hypothesis given by (12) the 
observations are ruled by the multinomial 
distribution 
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Unfortunately, when we set 00
1 =+Kp  we will 

always reject the null hypothesis (12) when we will 
observe even one misclassified object. Therefore we 
have to set 00

1 >+Kp , and to modify the remaining 

probabilities 00
1 Kp,,p …  in order to have their sum 

equal to one. This operation can be interpreted as 
allowing a certain (usually small) percentage of 
incorrectly classified objects 0

1+Kp , and setting 
allowable redistribution of this percentage among 
considered classes. 

The p-value for the exact test of the null 
hypothesis (12) is equal to the sum of probabilities 
of all possible observations 

( )∗
+

∗∗∗∗ = 121 KK n,n,,n,n …n  that are less probable than 
observed vector 
 

( ) ( )∑ ∗=−
Δ

0pn ,Pvaluep , (14)
 

where 
 

( ) ( ){ }00 pnpnn ,P,P ≤= ∗∗ :Δ . (15)
 

This test is computationally very demanding, and 
can be used only in case of a few classes and rather 
small number of observations. However, when the 
total number of classified objects is sufficiently large 
(>100), and there is more than five objects in each 
class we can use asymptotic tests such as Pearson’s 
chi-square goodness-of-fit test or Wald’s likelihood-
ratio LR test. 

The test statistic for the Pearson’s chi-square 
goodness-of-fit test is given by the formula 
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The p-value for this test is obtained by solving, with 
respect to p, the equation 
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where 2
1 p,K −χ  is the quantile of order 1-p in the chi-

square distribution with K degrees of freedom. 
The test statistic for the likelihood-ratio test is 

given by the following formula 
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where Nnp ii = . The p-value for this test is 
obtained by solving, with respect to p, the equation 
 

2
1 p,KRL −= χ , (19)

 

where 2
1 p,K −χ  is the quantile of order 1-p in the chi-

square distribution with K degrees of freedom. 
Asymptotically both these tests are equivalent. 
However, for finite samples the p-values of the 
likelihood-ratio test are greater than the p-values of 
the Pearson’s goodness-of-fit test. 

Let us apply the tests proposed in this section for 
the evaluation of the algorithm B2. In this example 
we will test two null hypotheses based on the results 
of the classification given by the expert. In both 
hypotheses we set the probabilities of first two 
classes as equal to the probabilities estimated from 
expert’s classification, i.e. 3020 0

2
0
1 ,p,,p == . In the 

first of the considered hypotheses we allow 1% of 
incorrectly classified objects in the third class, i.e. 

010490 0
4

0
3 ,p,,p == , and in the second hypothesis 

we allow greater, equal to 2%, percentage of 
incorrectly classified objects in the third class, i.e. 

020480 0
4

0
3 ,p,,p == . The results of the tests are 

given in Table 10. 

Table 10: Evaluation of algorithm B2. 

Hypothesis Exact Chi-
square 

Likelihood 
- ratio 

0100
4 ,p =  0,0011 0,0006 0,023 

0200
4 ,p =  0,132 0,120 0,202 

We see that the performance of algorithm B2 is 
statistically different from the performance 
represented by the first tested hypothesis. However, 
if we relax the requirement on the percentage of 
incorrectly classified objects, as it is in the case of 
the second hypothesis, the differences are 
statistically insignificant (using traditional statistical 
criteria of significance). One has to note the 
difference between these results and the results of 
comparison presented in the previous section. When 
we treated expert’s classification as a random 
sample, the differences were statistically 
insignificant. However, when we use expert’s results 
as representing somewhat relaxed, but true, class 
probabilities, the first test shows statistically 
significant difference (lack of fit). Thus, the tests 
proposed in this section are more demanding when 

we evaluate the performance of classification 
algorithms. 

4 POSSIBILISTIC EVALUATION 
OF TEST RESULTS 

In the previous sections we have proposed statistical 
tests for the evaluation of classification procedures. 
The results of the proposed test procedures have 
been expressed in terms of significance, known also 
as the test volume or the p-value. Examples given in 
these sections show that in many cases it is difficult 
to obtain statistically significant results supporting 
the hypothesis that e.g. one classification algorithm 
is better than the other one. Therefore, there is a 
need to present an additional indicator that can be 
used to show to what extent one algorithm is better 
than the other one despite the fact that they are 
statistically equivalent. This goal can be achieved 
using the methodology proposed in the theory of 
possibility. In order to do so we need to have an 
interpretation of the p-value in terms of the 
possibility theory, as it was proposed in 
(Hryniewicz, 2000) and (Hryniewicz, 2006). This 
interpretation gives a decision maker the evaluation 
of test’s result using notions of possibility or 
necessity of making certain decisions.  

In the previous sections the statistical decision 
problem is described by setting the null hypothesis 
H0. In order to make correct decisions we have to set 
an alternative hypothesis K. In the context of 
decision-making we usually choose this hypothesis 
which is better supported by statistical evidence. 
Now, let us consider these two hypotheses, 
separately. First, let us analyze the null hypothesis 
H0 whose significance is given by the p-value equal 
to pH. The value of pH shows to what extent the 
statistical evidence supports the null hypothesis. 
When this value is relatively large we may say that 
H0 is strongly supported by the observed data. 
Otherwise, we should say that the data do not 
sufficiently support H0. It is worthwhile to note that 
in the latter case we do not claim that the data 
support the alternative hypothesis K. The same can 
be done for the alternative hypothesis K. The 
statistical test of this hypothesis may be described by 
another p-value denoted by pK.  When K= not H0 we 
have pK=1-pH. However, in a general setting this 
equality usually does not hold. 

In (Hryniewicz, 2006) it was proposed to evaluate 
the null hypothesis H0 by a fuzzy set H~  with the 
following membership function 
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x
H

H
Hμ . (20)

 
This membership function may be interpreted as a 
possibility distribution of H0. If ( ) 11 =Hμ  holds it 
means that it is quite plausible that the considered 
hypothesis is not true. On the other hand, when 

( ) 10 =Hμ , we would not be surprised if H0 were 
true. One has to note, that the values ( )xHμ  do not 
have interpretation in terms of probabilities, but 
represent the possibilities of the correctness of the 
considered decisions. These possibilities can be 
interpreted, however, as upper probabilities in the 
theory of imprecise probability. 

The same can be done for the alternative 
hypothesis K. The alternative hypothesis K is now 
represented by a fuzzy set K~  with the following 
membership function 

( ) [ ]
( )[ ]⎩

⎨
⎧

=−
=

=
1121
021

xp,min
xp,min

x
K

K
Kμ . (21)

 
In order to choose an appropriate decision, i.e. to 

choose either H0 or K  it has been proposed in 
(Hryniewicz, 2006) to use three measures of 
possibility defined by (Dubois and Prade, 1983).  

First measure proposed by these authors is 
named the Possibility of Dominance (PD). For two 
fuzzy sets A~  and B~ , described by their membership 
functions ( )xAμ  and ( )yBμ , respectively, this 
index is defined in (Dubois and Prade, 1983) in the 
following way 

 

( ) ( ) ( )[ ]y,xminsupB~A~PD BA
yxy,x

μμ
≥

=≥
:

. (22)

 
The value of PD represents the possibility that the 
fuzzy set A~  is not dominated by the fuzzy set B~ . 

The second index is called the Possibility of 
Strict Dominance (PSD), and for two fuzzy sets A~  
and B~  is given by the expression 

 

( ) ( ) ( )( )[ ]
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=>
≤

y,xmininfsupB~A~PSD BA
yxyx

μμ 1
:

(23)

Positive, but smaller than 1, values of this index 
indicate certain weak evidence that A~ strictly 
dominates B~ . 

Third measure is named the Necessity of Strict 
Dominance, and for two fuzzy sets A~  and B~  has 
been defined in (Dubois and Prade, 1983) as  

( ) ( ) ( )( )[ ]y,xminsupB~A~NSD BA
yxy,x

μμ
≤

−=>
:

1 . (24)

The NSD index represents a necessity that the fuzzy 
set A~  strictly dominates the set B~ .  

In the considered statistical problem of testing a 
hypothesis H0 against an alternative K these indices 
have been calculated in (Hryniewicz, 2006), and are 
given by the following formulae 

 

( ) ( ) ( )[ ]10 KH ,maxK~H~PD μμ=≥ , (25)
 

( ) ( ) ( )[ ]010 KH ,minK~H~PSD μμ −=> , (26)

( ) ( ) ( )[ ]011 KH ,maxK~H~NSD μμ−=> . (27)

The value of PD represents the possibility that 
according to the observed statistical data the choice 
of the null hypothesis is not a worse decision than 
choosing its alternative. The value of PSD gives the 
measure of possibility that the data support rather the 
null hypothesis than its alternative. Finally, the value 
of NSD gives the measure of necessity that the data 
support the null hypothesis rather than its 
alternative. 

Close examinations of the proposed measures 
reveals that  

NSDPSDPD ≥≥ . (28)

Therefore, it means that according to the practical 
situation we can choose the appropriate measure of 
the correctness of our decision. If the choice 
between H0 and K leads to serious consequences we 
should choose the NSD measure. In such a case 
pH>0,5 is required to have NSD>0. When these 
consequences are not so serious we may choose the 
PSD measure. In that case PSD>0 when pK<0,5, i.e. 
when there is no strong evidence that the alternative 
hypothesis is true. Finally, the PD measure, which is 
always positive, gives us the information of the 
possibility that choosing H0 over K is not a 
completely wrong decision. 

In the cases considered in this paper the 
alternative hypothesis has been usually formulated 
as the complement of the null hypothesis, Thus, we 
have the equality pK=1-pH. It is easy to show that in 
such a case we have 

( ) ( ) ( )HH p,minK~H~PD 210 ==≥ μ , (29)

( ) ( ) ( )[ ]Hp,minK~H~NSDK~H~PSD −−=>=> 1211 . (30)
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Let us apply these results for the comparison of 
different algorithms using the test results presented 
in Table 7 for Fisher’s exact test. The results of the 
comparison are presented in Table 11. 

From the analysis of this table we see that the 
statistical evidence is not strong enough to claim that 
algorithm A1 is necessarily equivalent to algorithm 
B1. This evidence is even weaker if we claim the 
equivalence of algorithms B1 and C1. In all other 
cases the evidence is very strong that the considered 
algorithms are equivalent. It is worthy to note, that 
by using classical statistical interpretation in all 
considered cases we would not reject the hypothesis 
of the equivalence of compared algorithms. 

The possiblilistic comparisons are not necessary 
when null and alternative hypotheses are, as in the 
particular cases considered in this paper, 
complementary. In such case strong evidence in 
favour of the null hypothesis means automatically 
weak support of its complementary alternative. 

Table 11: Possibilistic comparison of different algorithms. 

 PD PSD,NSD 
A1 vs. B1 0,908 0 
A1 vs. C1 1 0,836 
B1 vs. C1 0,428 0 
A2 vs. B2 1 0,816 
A2 vs. C2 1 0,982 
B2 vs. C2 1 0,602 

 
In general, it must not be the case. Consider, for 

example, a test of the equivalence of a new 
classification algorithm against two alternatives 
representing known results of the usage of other 
algorithms. We want to know which of those 
algorithms our new algorithm is similar to with 
respect to its efficiency. Consider, for example, the 
problem of the classification of wheat kernels 
described in (Charytanowicz et al., 2010). Two 
algorithms, namely QDA and CRT, have been used 
on large samples of data. The results of those 
experiments have been used for the estimation of 
class probabilities. They are presented in Table 12. 

Table 12: Wheat kernels - probabilities of classes. 

Alg.\Class 1 2 3 4 
QDA 0,319 0,310 0,314 0,057 
CRT 0,300 0,324 0,310 0,066 

Test results for a new algorithm are described by 
the following vector (29, 29, 32, 15). The 
comparison of this result with probabilities obtained 
by the QDA algorithm, performed according to the 

methodology presented in the third section, gives a 
very small p-value equal to 0,002. Similar 
comparison with the probabilities obtained by the 
CRT algorithm yield also a very small p-value equal 
to 0,018. Using (25) - (27) we can calculate 
possibilistic indices showing that our algorithm is 
more closer to the CRT algorithm than to the QDA 
algorithm. The results are the following: PD=1, 
PSD=0,036, NSD=0. The necessity measure that the 
new algorithm is more similar to the CRT than to 
QDA is equal to zero. Thus, the obtained statistical 
data do not let us to exclude that our algorithm is 
more similar to the QDA than to the CRT. However, 
the possibility indices show that it fully possible 
(PD=1) that the efficiency of the new algorithm is 
similar to the efficiency of both other algorithms, but 
it is only slightly possible (PSD=0,036) that the new 
algorithm is more similar to the CRT than to the 
QDA.  

The applicability of the proposed possibilistic 
measures is even much stronger when we omit the 
assumption that the ‘expert’ indicates only one ‘true’ 
class. This is always the case when the role of ‘an 
expert’ is played by a fuzzy clustering algorithm. In 
all such cases we have to use the methodology of 
fuzzy statistics, whose overview can be found e.g. in 
(Gil and Hryniewicz, 2009).  

5 CONCLUSIONS 

In the paper we have considered the problem of the 
evaluation and comparison of different classification 
algorithms. For this purpose we have applied the 
methodology of statistical tests for the multinomial 
distribution. We restricted our attention to the case 
of the supervised classification when an external 
‘expert’ evaluates the correctness of classification. 
The results of the proposed statistical tests are 
interpreted using the possibilistic approach 
introduced in (Hryniewicz, 2006). This approach 
will be more useful or even indispensable when we 
assume more complicated statistical tests and 
imprecise statistical data. We will face such 
problems when we will adapt the methodology 
presented in this paper for the case of fuzzy 
classifiers.  

The future development of the proposed 
methodology should be concentrated on two general 
problems. First, we should compare the results of 
classification with ‘better’ alternatives. The meaning 
of the word ‘better’ in the considered context 
requires further investigations. The same can be said 
in case fuzzy classifiers built using supervised  and 
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unsupervised learning procedures.  
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