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1 INTRODUCTION 

The diagnostic systems are one of the most actively 
used systems in technical areas: electronics 
engineering, motor industry, robotics, space 
vehicles, thermal and atomic power stations and 
many others. Many diagnostics problems require 
building the behaviour prognoses, the work with 
contradictions and defaults, effective treatment of 
new facts and assumptions. The typical problem of 
diagnostics is to find a fault (faults) of a diagnosed 
device on the basis of some set of observations.  

At first model-based diagnostics on the basis of 
Assumption-based Truth Maintenance Systems 
(ATMS) and heuristic methods of choosing a 
measurement point in a diagnosed device are 
viewed. Modeling results of the best measurement 
point choosing for the 9-bit parity checker are given. 
Then we consider case-based reasoning by analogy 
method for diagnostics of complex object states. 

2 MODEL-BASED DIAGNOSIS 

The generalized problem of diagnostics can be 
formulated as follows. There is a device exhibiting 
an incorrect behaviour. The device consists of 
components, one or several of which are not 
working properly what is the reason of incorrect 
behaviour. There is a structure of connections 
between components and a possibility to get 
measurements on their inputs and outputs. It is 

necessary to determine what of components are 
faulty with minimal resource expenses. 

There are several approaches to a solution of the 
given problem one of which is model-based 
diagnosis (Clansey, 1985; de Kleer et al., 1987; 
Forbus et al., 1993).  This approach is based on the 
knowledge of device component functionality. The 
model of a device is a description of its physical 
structure, plus the models for each of its 
components. A compound component is a 
generalized notion including simple components, 
processes and even logical inference stages. 

Model-based diagnosis process is the comparison 
of predicted device behavior with its observed 
behaviour. It is supposed, that the model is correct, 
and all differences between device behaviour and a 
device model indicate availability of broken 
components. 

Main advantages of the model-based approach: 
 Diagnosing the multiple faults; 
 Unexpected fault recognition; 
 A precision of a component model 

description does not depend on the 
expert experience; 

 A possibility of new device diagnosing; 
 Multiple using the models; 
 Detailed explanations. 

3 ASSUMPTION-BASED TRUTH 
MAINTENANCE SYSTEMS 

For   building  a  prognosis  network,  a  component 
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behaviour model, finding minimal conflicts 
characterizing uncorrespondence of observations 
with prognoses and minimal candidates for a faulty, 
it is profitable to use possibilities given by ATMS 
(de Kleer et al., 1987; Forbus,1993). 

The truth maintenance systems (TMS) are the 
systems dealing with the support of a coherence in 
databases. They save the assertions transmitted to 
them by a problem solver and are responsible for 
maintaining their consistency. Each assertion has the 
justification describing what kind of premises and 
assumptions this justification was obtained. The 
environment is a set of assumption. 

The inference of an inconsistency characterizes 
assumption incompatibility within the 
presuppositions of which this conclusion was made. 
Also there is introduced the environment set which 
contains some inconsistency (de Kleer et al., 1986). 
The sets of inconsistency environments E1, E2 ,…, 
Em are Nogood={E1, E2 , … Em}. A consistent 
ATMS environment is not Nogood. 

There are the following correspondences 
between ATMS and the model-based diagnosis 
approach: 

· ATMS premises – an observed device 
behaviour; 

· ATMS assumptions – components of a device; 
· inferred ATMS nodes – predictions of an 

diagnostic system; 
· Nogood - the difference between predicted and 

observed device behaviour. 

4 THE CURRENT 
MEASUREMENT POINT 
DETERMINATION 

One of the key aspects of the model-based fault 
search algorithm is to determine the optimal current 
measurement in a diagnosed device (de Kleer, 
1987). Efficiency of the current measurement 
choosing allows essentially reducing a decision 
search space while the inefficiency of choice will 
increase an operating time, the space of a searching 
algorithm, and also require additional resource 
spends to implement a measurement. 

The best measurement point in a diagnosed 
device is a place (point) of measuring a value giving 
the largest information promoting the detection of a 
set of fault components at minimal resource 
spending. 

One of the best procedures for reducing resource 
expenses is to produce the measuring giving the 

maximal information concerning predictions made 
on the basis of the current information on a system. 

Heuristic Methods of Choosing a Measurement 
Point 

The purpose of the best choosing a measurement 
point is to derive the maximal component state 
information. After each measuring there is a 
confirmation or refutation of prediction values in a 
point of measurement. So, it is possible to use the 
following aspects (Vagin et al., 2006 a,b,c): 

 knowledge   about   environments   that   
support   predicted   values   in   the 
measurement points which can be confirmed 
or refuted; 

 knowledge about inconsistent environments; 
 knowledge about coincided assumptions of the 

inconsistent environments. 

Knowledge About Supporting Environments 
The diagnostic procedure constructs predictions of 
values for each device point with the list of 
environments in which the given prediction is held. 
The list of environments represents assumption sets 
about correctness of corresponding device 
components. 

The mismatch between observations and 
predictions speaks about a fault in a device. Based 
on measured observations additional predictions of 
values are formed. In general, it is obtained  some 
set of predictions with appropriate environments. 

As we are interested with a measurement point 
with the greatest information on failure the point is 
selected from a quantity of assumptions. 

Designate an environment set as Envs(x). Let’s 
introduce the function Quan(x), by which we will 
designate the information quantity obtained at 
measuring values in the point x. 

If the environment J represents a unique 
assumption, then obviously the set cardinality will 
be equal 1: |J| = 1. The information quantity 
obtained from such environment is equal to 1. If the 
environment consists more than one component the 
information quantity obtained at confirming or 
refuting a value is less because we have knowledge 
not about a concrete valid / fault components but 
about a component set among of which are faulty. 
Therefore the information quantity obtained from a 
environment consisting of more than one 
assumption, we heuristically accept equal to half of 
set cardinality. Thus the function Quan(x) is: 

∑ ∑
( ) ( )

| | 1 | | 1

| |
( ) | |

2
i j

i j

j
i

J Envs x J Envs x
J J

J
Quan x J
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Summing is produced on all possible values in 
the point x. 

Points with the greatest value of the function 
Quan(x) have the greatest priority of a choice. We 
will call the given method of choosing a 
measurement point as SEH (Supporting 
Environment Heuristics). 

Knowledge about the Sets of Inconsistent 
Environment 
As a result of each measurement there is a 
confirmation or refutation of some prediction. The 
environments E1,E2,...,Em of refuted prediction form 
the set Nogood = {E1, E2,...,Em}. It can be used for 
directional searching for more precise definition 
what kind of components from Nogood is broken.  

Obviously the more of the components from 
Nogood are specified by measuring a value in some 
device point the more the information about which 
components of Nogood are broken will be obtained. 
For using this possibility, it is necessary to take the 
intersection of each environment from Envs(x) with 
each set from Nogood: 

Envs(x)  Nogood  = {A  B : A  Envs(x), B  
Nogood}. 

For this approach the equation (1) can be 
changed as follows: 

∑ ∑
( ) ( )

| | 1 | | 1

| |
( ) | |

2
i j

i j

j
i

J Envs x Nogood J Envs x Nogood
J J

J
QuanN x J

 
Points with the greatest value of function 

QuanN(x) have the greatest priority of a choice. We 
will call the given method of choosing a measuring 
point as SIEH (Supporting and Inconsistent 
Environment Heuristics). 

Knowledge about Coincided Assumptions of the 
Inconsistent Environments 
During diagnostics of faulty devices as a result of 
confirmations and refutations of some predictions 
there is a modification of a set of inconsistent 
environments Nogood. 

In each component set from Nogood one or more 
components are broken what was a reason of 
including a supporting set into the inconsistent 
environments Nogood. Taking the intersection of all 
sets of the inconsistent environments, we receive a 
set of components which enter into each of them, so 
their fault can be a reason explaining an 
inconsistence of each set holding in Nogood. Thus, 
we obtain the list of components a state of which is 
recommended to test first of all, i.e. the most 
probable candidates on faultiness. 

The set intersection of inconsistent environments 
is expressed by the following equation: 

∩
i

i
E Nogood

SingleNogood E
 

If  SingleNogood = , it means that there are 
some disconnected faults. In this case the given 
approach is inapplicable and it is necessary to define 
more precisely the further information by any other 
methods. 

After obtaining a set SingleNogood ≠ , on the 
basis of environments of value predictions in device 
points it is necessary to select those measurement 
points that allow to effectively test components to be 
faulted from SingleNogood. 

For this purpose we will work with the sets 
obtained as a result of an intersection of each 
environment from Envs(x) with SingleNogood: 

Envs(x)  SingleNogood = {J  SingleNogood : 
J  Envs{x)} 

 The following versions are possible:  
a)    J  Envs(x): J  SingleNogood. One of 

environments of the value prediction in the point x 
coincides with the set SingleNogood. The given 
version allows to test faulty   components   from  the   
set   SingleNogood  most   effectively   so   this 
measurement point x is selected with the most 
priority. 

b)    J  Envs(x): J  SingleNogood  < 
SingleNogood . The cardinality of SingleNogood  is 
more than the cardinality of a set obtaining as result 
of an intersection  SingleNogood   with   a   set   
from   Envs(x).   We   evaluate   this   version as 

( )
max | |
J Envs x

J SingleNogood
 i.e. the more of 

components from SingleNogood are intersected with 
any environment from Envs(x), the more priority of 
a choice of the given measurement point for the 
observation. 

c)   J  Envs(x): SingleNogood  J. The 
SingleNogood includes in a set from Envs(x). We 

evaluate this version as ( )
min (| | | |)
J Envs x

J SingleNogood
 i.e. 

the less a difference between SingleNogood and 
Envs(x), the more priority of a choice of the given 
measurement point for the current observation. 

d)  J  Envs(x): J  SingleNogood = , i.e. no-
one of the most probable faulty candidates includes 
in environments Envs(x) supporting predictions at 
the point x. We evaluate this version as the least 
priority choice, i.e. 0 in the numerical equivalent. 

Also to the version (d)  there are referred other 
methods of definition of current measurement point 
priorities which happen when SingleNogood = . 
Thus in the estimations of a choice priority a 
numerical value returned as a result of call of other 
method is accepted. We call it by ResultD(x). 
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Figure 1: The quantity of stages required to each method for fault localization. 

At appearance of the greater priority choosing 
between versions (b) and (c), heuristically we accept 
the version (b) as at this choice the refinement of 
faulty candidates is produced better.  

Note for various supporting sets of the same 
Envs(x), the availability both the version (b) and the 
version (c) is also possible. In this case, as a 
resulting estimation for the given Envs(x) the version 
(b) is also accepted. 

Let's estimate the obtained results. 
Designate by maxd the maximal numerical value 

among versions (d) for all assessed measurement 
points, and by CompCount a quantity of device 
components. 

Accept in reviewing the following assessments: 

1. ( )
max | |
J Envs x

J SingleNogood
< CompCount.The quantity 

of components which are the intersection result is 
always less than the quantity of whole device 
components; 

2. ( )
min (| | | |)
J Envs x

J SingleNogood
< CompCount. The 

quantity of components in the prediction 
environment is always less than the quantity of the 
device components. 

Taking into account these assessments, one can 
introduce a numerical assessment  of the obtained 
results: 

ResultD(x), 
maxD

maxD

( )

0,  if ( ) :
if 

min (| | | |),  

( )      if ( ) :
max| |,  

     if 

J Envs x

J Envs x J SingleNogood
SingleNogood

CompCount J SingleNogood

QuanSNG x J Envs x SingleNogood J
CompCount J SingleNogood

maxD

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

( ) :| || |
2 * ,  if ( ) :
J Envs x J SingleNogood SingleNogood

CompCount J Envs x J SingleNogood

 
The points with the greatest value of function 
QuanSNG(x) have the greatest priority of choice. 

We will call the given method as SCAIEH 
(Supporting and Coinciding Assumptions of 
Inconsistent Environment Heuristics). 

The developed methods of heuristic choice of the 
best current measurement point are recommended to 
use for devices with a great quantity of components 
as quality of guidelines directly depends on the 
quantitative difference of environments. 

5 PRACTICAL RESULTS 

Let's test the developed methods of the best 
measurement point choosing for the 9-bit parity 
checker (Frohlich, 1998). 

For each experiment one of device components 
is supposed working incorrectly what is exhibited in 
a value on its output opposite predicted. A 
consequence of the incorrect component work is 
changing of outputs of those components which 
produce the results depending on values on the 
output of a faulty component. These changed results 
of component operations are transmitted to 
appropriate inquiries of a diagnostic system. 

In the beginning of each experiment to inputs of 
components (Invl, Inv2, Inv3, Inv7, Inv8, Inv9, 
Invl3, InvI4, Invl5) in a diagnostic complex the 
vector of values (1,0,1, 0,1,0, 1,0,1) enters. Then to 
the diagnostic system the value 0 retrieved from the 
output of the component Nor5 that depends on the 
work of a broken component and differs from 
predicted is transferred. It leads to the appearance of 
an inconsistency in the diagnostic system and starts 
the automatic process of testing. 

In fig. 1 the quantity of the stages required to 
each method for fault localization is shown. A 
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method stage is a measurement point choosing. The 
smaller the quantity of method stages, the faster a 
fault is localized. 

From the obtained results one can see that the 
method efficiency for different fault components is 
various and hardly depends on the device structure. 

Let's estimate the method efficiency. The device 
is consists of 46 components. The output values of 
45 components are unknown (a value on the output 
of Nor5 is transmitted to the diagnostic system with 
input data together). So, the maximal stage quantity 
necessary for a fault definition is equal 45. Let's 
accept 45 stages as 100 %. For each experiment it is 
computed on how many percents each of the 
developed methods is more effective than exhaustive 
search of all values. Then define the average value 
of results. The evaluated results are represented in 
table 1. 

Table 1: Results of experiments. 

The method SEH SIEH SCAIEH 

On how many percents the 
method is more effective, % 

30,79 63,17 68,65 

From table 1 one can see that the greatest 
efficiency of current measurement point choosing 
has the heuristic method based on the knowledge 
about coincided assumptions of the inconsistent 
environments SCAIEH. 

6 REASONING BY ANALOGY 

Nowdays there are a great number of various 
models, schemes, and methods that describe 
mechanisms of reasoning by analogy (Haraguchi et 
al., 1986; Long et al., 1994; Varshavskii et al., 2005; 
Eremeev et al., 2005, 2009). 

In Intelligent Systems, two types of analogies - 
an analogy for solving problems and an analogy for 
forecasting - are usually used: 

 The analogy for solving problems assumes the 
application of  reasoning by analogy for 
increasing the efficiency of the problem 
solution which, generally speaking, can be 
solved without analogy as well as e.g., in 
programming and proving theorems; 

 The analogy for prediction (forecasting) uses 
reasoning by analogy for obtaining new 
facts. Due to the transformation of 
knowledge based on the likeness of objects, 
one can make the conclusion that new facts 
probably hold.  

Depending on the nature of information 
transferred from an object of analogy to the other 
one, the analogy of properties and the analogy of 
relations can be distinguished: 

 The analogy of properties considers two single 
objects or a pair of sets (classes) of 
homogeneous objects, and the transferred 
attributes are the properties of these objects, 
for example, analogy between illness 
symptoms of two persons or analogy in the 
structure of the surfaces of Earth and Mars, 
etc.; 

 The analogy of relations considers pairs of 
objects where the objects can be absolutely 
different and the transferred attributes are 
properties of these relations. For example, 
using the analogy of relations, bionics 
studies processes in nature in order to use 
the obtained knowledge in a modern 
technology. 

We consider the methods of solution search on 
the basis of structural analogy which allows to take 
into account a context and based on the theory of 
structural mapping. We use semantic networks as a 
model of knowledge representation. 

Reasoning by structural analogy taking into 
account the context (Varshavskii et al., 2005). 

Consider an analogy as a quadruple  
A = <O, C, R, p>, where O and R are the source 
object and the receiver object and C is the 
intersection object, i.e., the object that structurally is 
intersected with the source object and receiver 
object, and has a larger cardinality of the set of 
properties in the comparison with these objects. In 
other words, the analogy between the source object  
and receiver object is considered in the context of 
the intersection C, and p is a property for the 
definition of an original context.  

We use semantic networks (SNs) as a model of 
the knowledge representation for reasoning by 
analogy. The choice of an SN for the knowledge 
representation possesses an important advantage, 
which distinguishes it from other models, such as 
natural representation of structural information and 
fairly simple updating in a relatively homogenous 
environment. The latter property is very important 
for real-time IDSS oriented towards open and 
dynamical problem domains.  

 A semantic network is a graph <V, E> with 
labeled nodes and arcs, where V and E are sets of 
nodes and arcs, respectively. The nodes can 
represent objects (concepts, events, actions, etc.) of a 
problem domain, and the arcs represent  relations 
between them. 
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By Pv , we denote the set of properties of an 
object v ∈ V. 

Objects v, v' ∈ V intersect each other on SN if 
and only if Pvv' = Pv ∩ Pv‘ ≠  , where Pvv' is a set 
of common properties of objects v and v'.  

By Vp , we denote a set of SN objects that have a 
property p. 

By Vv ,Vv  V, we denote an object set of 
objects that intersect v ∈ V. 

The object C is an intersection for A if and only 
if there is (C V) & (p PC) & (nR nC) & 

(nR<<nC) & (nRC<nR) & (nRC >1), where nR and 
nC are the numbers of properties of the receiver R 
and the intersection C, respectively; nRC is the 
number of their common properties, ￢(nR<<nC) 
denotes that receiver R should not be much smaller 
than intersection C (i.e., the possibility of absorbing 
the receiver R by the intersection C, since, here, the 
probability of receiving a false analogy increases). 

 The object O is the source for analogy A if and 
only if there is (O V) & (p PO) & (nO nC) & 

(nO<<nC) & (nOC<nO) & (nOC >1), where nO is 
the number of properties of the source O; nOC is the 
number of common properties of the source O and 
intersection C; and other notations are analogous to 
the previous definition. 

By VC, VC Vp, we denote the set of objects 
that are candidates for the role of intersection C for 
analogy A.  

By VO  Vp, we denote the set of objects that 
are candidates for the role of source O for analogy A.  

By VA, we denote the set of analogies A.  
 The set POCR = PO  PC  PR denotes the 

context, with respect to which analogy A is 
considered. 

We consider the structure of the SN in detail (for 
Metalevel and for Situation 1) using the example 
from power engineering - operation control of the 
nuclear power unit  (fig. 2) (Eremeev et al., 2006a). 

Let us give a semantic interpretation of the 
information given in the SN for Situation 1: 

 It is recommended to supply the pump 
TH11D01 with boric concentrate 40g/kg 
caused by switching off automatic cooling 
system ACS 1 due to closing the gates 
TH11S24 and TH11S25; 

 ACS 2 is switched off due to the closed gates 
TH12S24 and TH12S25; 

 The upper setting T517B01 is equal to 63; 
 The lower setting T517B01 is equal to 56; 
 The upper setting TH11T500 is equal to 60; 
 The lower setting TH11T500 is equal to 20. 

Analogously, the SNs for Situations 2,3 which 
are structurally close to Situation 1 are built.  

Algorithm of reasoning by structural analogy 
An SN with information about the problem 

domain, a receiver R, and the property for defining 
the original context p provide input data for this 
algorithm. 

The algorithm for the problem solution on the 
basis of analogy taking into account the context 
consists of the following steps: 

Step 1. VC = , VO = , VA = . Determine all 
objects of the SN, except for receiver R, that have 
property p (Vp' = Vp \ {R}). If there are no objects 
of this kind, then the search for a solution fails 
(without finding an analogy), otherwise, go to step 
2. 

Step 2. For the objects found in step 1, determine 
all possible intersections of C with R taking into 
account p (VC). If there are no intersections of C 
with R (VC= ), the first search for a solution fails, 
otherwise, go to step 3. 

Step 3. From the objects extracted in step 1, 
determine all possible sources O for analogies (VO). 
In the case of success (VO  ), go to step 4, 
otherwise, the search for a solution fails. 

Step 4. Construct possible analogies for R using 
the sets VC and VO. Add new analogy A=〈O,C,R,p〉 
to VA if and only if there exists an analogy 
A'=〈O',C,R,p〉, O  O'. In the case of success (VA  

), go to step 5; otherwise, the search for a solution 
fails. 

Step 5. The analogies obtained in step 4 (VA) 
(which could be previously compared with each 
other taking into account the context) are given to  
the decision making person (DMP), which means 
successful termination of the algorithm. 

Having obtained analogies, the DMP may then 
make the final choice of the best ones. On the basis 
of these facts, the facts (properties) that hold for the 
source O are transferred to the receiver R. 

Let us consider the steps of the functioning of the 
algorithm using the example from power 
engineering - operation control of the nuclear power 
unit. 

As a receiver R for the analogy, we take 
Situation 4 (see fig. 3) and as the property p, we take 
Close TH11S24. 

In the first step, VC = , VO = , VA =  and Vp' 
= {Situation 1, Situation 2, Situation 3}. Since Vp' ≠ 

, we go to the next step. 
Determine intersections of C with R taking into 

account p. Add in VC only Situation 1, because the 
number    of    common   properties   nRC = nR   for 
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Figure 2: A fragment of the SN that represents the Metalevel and the Situation 1 that was formed in the course of ACS 
functioning. 

 
Figure 3: A fragment of the SN that represents the Situation 4. 

Situation 2 and Situation 3. Since VC ≠ , we go to 
the step 3. 

 Determine all possible sources O and go to step 
4. In this case VO  = {Situation 2, Situation 3}, 
because the Situation 1 is unique intersection for 
analogy.  

 In the fourth step, we construct only two 
analogies for R - Situation 4: 

A1 = <Situation 2, Situation 1, Situation 4, Close 
TH11S24 >; 
A2 = <Situation 3, Situation 1, Situation 4, Close 
TH11S24 >. 

Add new analogies to VA and go to step 5.  
The analogies obtained in step 4 (A1, A2) are 

given to the DMP. 
As a result we obtain two analogies. Choosing 

one of them, the DMP can transfer facts that hold for 
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the source of the analogy to its receiver. In this 
example,   a  new  fact  about  the  recommendation  
“Supply the pump TH11D01 with boric 
concentrate 40g/kg caused by switching off ACS 1 
due to closing the gates TH11S24 and TH11S25” 
arises for Situation 4. 

The methods of reasoning by analogy is more 
general than on the bases of cases. Analogies are 
used when it is impossible to find a suitable case in a 
case library. The reasoning by analogy method can 
be used independently from a case- based reasoning 
method as well as for correction (adaptation) of the 
nearest to a problem situation case to form a new 
case for completing a case library. Further we  shall 
consider the case-based reasoning method and its 
application. 

7 CONCLUSIONS 

The heuristic methods of finding the best current 
measurement point based on environments of device 
components work predictions are presented. 

Practical experiments have confirmed the 
greatest efficiency of current measurement point 
choosing for the heuristic method based on the 
knowledge about coincided assumptions of the 
inconsistent environments SCAIEH. 

Advantages of heuristic methods of the best 
current measurement point choosing is the simplicity 
of evaluations and lack of necessity to take into 
consideration the internal structure interconnections 
between components of the device. 

The method of reasoning by analogy on the basis 
of structural analogy was considered from the aspect 
of its application in modern intelligent systems, in 
particular, for a solution of problems of real-time 
diagnostics and forecasting . The example of the  
algorithm for  solution search on the basis of 
analogy of properties that takes into account the 
context was proposed. This algorithm uses a 
modified structure of  analogy that is capable of 
taking into account not one property (as in the base 
algorithm), but a set of properties. These properties 
determine the original context of analogy and 
transfer from the source to the receiver only those 
facts that are relevant in the context of the 
constructed analogy.  

The presented methods and tools were applied at 
implementation of a prototype of Intelligent 
Diagnosis System on the basis of non-classical 
logics for monitoring and control of complex objects 
like power units and electronic circuits (Eremeev et 
al., 2007, 2009). 
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