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Abstract: The application of lean principles and agile project management techniques in the domain of large-scale soft-
ware product development has gained tremendous momentum over the last decade. However, a simple transfer
of good practices from the automotive industry combined with experiences from agile development on a team
level is not possible due to fundamental differences stemming from the particular domain specifics – i.e. differ-
ent types of products and components (material versus immaterial goods), knowledge work versus production
systems as well as established business models. Especially team empowerment and the absence of a a hier-
archical control on all levels impacts goal orientation and business optimization. In such settings, the design
of adequate incentive schemes in order to align local optimization and opportunistic behavior with the overall
strategy of the company is a crucial activity of central importance.
Following an agent-based simulation approach with reinforcement learning, we (i) address the question of how
information regarding backlog item dependencies is shared within and in between development teams on the
product level subject to different incentive schemes. We (ii) compare different incentive schemes ranging from
individual to team-based compensation. Based on our results, we are (iii) able to provide recommendations
on how to design such incentives, what their effect is, and how to chose an adequate development structure
to foster overall software product development flow by means of more economic decisions and thus resulting
in a shorter time to market. For calibrating our simulation, we rely on practical experience from a very large
software company piloting and implementing lean and agile for about three years.

1 INTRODUCTION

The application of lean and agile principles in large-
scale software product development turns out as non-
trivial transition and change management endeavor in
most companies (Cohn and Ford, 2003). This is partly
due to the fact that a simple transfer of known prac-
tices from lean manufacturing in other industries can-
not be achieved due to differences between produc-
tion versus product development processes and the
nature of knowledge work and immaterial goods—
such as software (Poppendieck, 2004; Reinertsen,
2009). Especially breaking down bigger products to
an organization requiring multiple teams and hierar-
chy levels, dealing with product dependencies, and re-
integrating features and functions while keeping the

overall market and economics of decisions in mind
is yet very challenging in the relatively young soft-
ware industry (Leffingwell, 2007; Larman and Vodde,
2008). As a consequence, phenomena like queued ar-
tifacts, delayed product deliveries, and long-tail risks
occur (Reinertsen, 2009).

This research aims at gaining a better understand-
ing of the information sharing and motivation me-
chanics of a complex socio-technical system, such
as a large-scale software product development orga-
nization. Based on this increased understanding, we
want to derive implications for designing the develop-
ment organization, and issue incentives for the teams
in order to foster overall software product develop-
ment flow by means of more informed and economic
decisions, resulting in a shorter time to market.
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Based on our research goal and the complex, large-
scale industrial setting (see section 5), we follow an
agent-based simulation approach with reinforcement
learning. Using this method we (i) investigate the in-
formation flow in lean large-scale software product
development systems in terms of dependency reso-
lution between requirements, user stories, and other
software artifacts (cp. (Hildenbrand, 2008; Som-
merville, 2010)). In this context, incentives for indi-
viduals to share such information are of central impor-
tance. Therefore, we (ii) furthermore tackle the ques-
tion of how different types of incentive schemes im-
pact information flow and the overall performance of
empowered teams. Based on our simulation results,
we (iii) provide recommendations on how to design
such incentives and how to chose an adequate devel-
opment structure within an organization. For calibrat-
ing our simulation, we rely on three years of experi-
ence from one of today’s largest lean and agile adop-
tion at SAP AG (Schnitter and Mackert, 2010).

The remainder of this paper is structured as fol-
lows: Section 2 outlines related research in the con-
text of agile and lean software development. The
agent-based simulation methodology and the corre-
sponding field of research is analyzed in Section 3.
The basic model underlaying the empirical evalua-
tion is described in Section 4. The simulation, its
parametrization and the research hypotheses are spec-
ified in detail in Section 5. Evaluation results and their
practical implications are discussed in Section 6. Sec-
tion 7 summarizes our contribution and outlines fu-
ture work.

2 RELATED WORK

In order to model and understand a complex socio-
technical system, such as a multi-level software prod-
uct development organization, the underlying design
principles and processes need to be investigated. In
this work, we specifically address the application of
lean and agile principles in large software develop-
ment companies (e.g. (Schnitter and Mackert, 2010)).
While there is mostly narrative literature on agile
principles and Scrum in large-scale enterprise envi-
ronments “driven by practitioners and consultants”
(Conboy, 2009, p. 329)—examples include (Leffin-
gwell, 2007; Schwaber, 2007; Larman and Vodde,
2008; Leffingwell, 2009; Larman and Vodde, 2010),
there is only little empirical evidence and rigorous re-
search in this field. For instance, there is only little
research on the effectiveness and efficiency gains ac-
tually achieved by introducing lean and agile princi-
ples, Scrum-based project management etc.—in this

small set less than 2% exhibit acceptable rigor, cred-
ibility, and relevance (Dyba and Dingsoyr, 2008, p.
851), while 75% of these studies only investigated ag-
ile projects specifically applying eXtreme Program-
ming (XP, (Beck, 1999; Dingsoyr et al., 2010)).

2.1 Agile Team Practices

The vast majority of research on agile methods and
practices focuses on XP (Beck, 1999; Beck, 2000)
as team practice and applies a single or multiple case
study methodology (Yin, 2007). Single practices cru-
cial to XP have been examined separately regarding
their impact on software quality, e.g. pair program-
ming is said to consume 30% more effort than solo
programming (Cao et al., 2010), resulting in 40-90%
fewer defects (Williams et al., 2000; Erdogmus and
Williams, 2003; Cao et al., 2010). However, with re-
spect to the broad range of agile methods and their
increasing prevalence in the software industry (West
and Grant, 2010), there is only very little scientific ev-
idence so far whether or not these models lead to more
effectiveness, efficiency, or productivity, respectively,
in real-world large-scale development environments
(Dyba and Dingsoyr, 2008).

Among the few evidence-based behavioral sci-
ence contributions (Hevner et al., 2004) on software
agility, Lee and Xia (Lee and Xia, 2010) investigated
the impact of two major agile characteristics (team
autonomy and team diversity) on three productivity
measures: (1) on-time and (2) on-budget completion
as well as (3) functionality provided to customers.
Among their findings, it turned out that there are con-
flicting goals even within the boundaries of one team.
Besides these findings, the model exhibits that the
dependent productivity variables could only be ex-
plained to a degree that leaves substantial room for
future behavioral studies.

2.2 Large-scale Lean and Agile

Lean management or lean thinking – as underlying
philosophy and common set of values – as well as lean
and agile principles are either already implemented or
piloted in many practical scenarios of different scales
today, e.g. at Salesforce (Fry and Greene, 2007) or
SAP (Schnitter and Mackert, 2010). Figure 1 visu-
alizes how specific agile software development prac-
tices, such as XP (Beck, 1999), test-driven develop-
ment (TDD, (Beck, 2003)) and agile project man-
agement methods like Scrum (Schwaber and Beedle,
2001) build upon agile principles and lean thinking
values. While the basic principles and philosophy ap-
ply to many industries, some address a specific one
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more concretely, e.g. Scrum and XP for the software
industry.

Based on general principles of lean manage-
ment (Poppendieck and Poppendieck, 2006) and lean
thinking as well as basic agile principles (Agile Al-
liance, 2001) and consulting experience, a set of
guiding principles and practices for scaling Scrum
to larger-scale scenarios evolved, see e.g. (Pop-
pendieck and Poppendieck, 2003; Poppendieck and
Poppendieck, 2006; Larman and Vodde, 2008; Lar-
man and Vodde, 2010). In the same vein, similar
large-scale Scrum models have been described by
Schwaber (Schwaber, 2007) and Leffingwell (Leff-
ingwell, 2007). These ideas on lean management
and lean software development have been further
elaborated and translated to some practical guide-
lines based on experience from multiple consulting
projects, see e.g. (Larman and Vodde, 2010). How-
ever, lean software development in large enterprise
environments requires scaling team-based approaches
such as Scrum (see section 2.1. Nevertheless, first
implementation concepts and pilot approaches can
be found even for very large-scale software vendors
(Schnitter and Mackert, 2010). Hence, empirical re-
search and evidence for complex socio-technical sys-
tem in the software industry is even more scarce than
for team practices (cp. section 2.2 and (Dyba and
Dingsoyr, 2008)).

Lean and agile software development is based on
lean enterprise characteristics comprising focus on
value, synchronization, transparency, and perfection
as well as Just-in-Time (JIT) principles such as (one-
piece) flow, takted development, customer pull, and
zero defects (Reinertsen, 2009).

Agile Lean
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Figure 1: Comparison and interrelation of lean and agile
principles.

Combining the lean enterprise perspective with an
agile perspective on development teams (Agile Al-
liance, 2001), leads to short iterative development cy-
cles, a uniquely prioritized backlog of requirements

and work items, direct customer involvement, as well
as tested and potentially shippable software incre-
ments.

As a common basis for further studies on ag-
ile practices, Conboy has developed a unified defi-
nition and formative taxonomy of agility in informa-
tions systems development or software engineering,
respectively (Conboy, 2009, pp. 340). Such a com-
mon definition and/or taxonomy is required to link
existing and future contributions in this very interdis-
ciplinary field of research, e.g. from information sys-
tems, computer science, organizational science, soci-
ology and psychology.

In context of lean and agile software development,
there are to-date only very few related simulation-
based contributions, e.g. using a system dynamics
approach (Cao et al., 2010). Moreover, (Petersen and
Wohlin, 2010) present potential performance indica-
tors and visualizations for flow simulations (cp. also
(Reinertsen, 2009)).

3 METHODOLOGY

3.1 Simulation-based Approaches

Complementary to mere behavioral and design sci-
ence studies (Hevner et al., 2004), a simulation-based
approach allows to analyze and better understand
complex development scenarios with hundreds or
even thousands of individuals and even more artifacts
and process dependencies. Besides deduction and
induction, experimenting with simulations is consid-
ered a “third way of doing science” (Axelrod, 1997).
To analyze and optimize complex development sce-
narios, different analytical and simulation-based ap-
proaches can be considered: discrete event simu-
lations, agent-based simulation (Blau et al., 2010a;
Blau et al., 2010b), system dynamics etc. Simulating
software development processes to answer fundamen-
tal questions about agile and lean practices is, though
still scarce, rising in number (Cao et al., 2010, see).

The complexity arising from individual actions
and interactions that arise in the real world can be
explicitly modeled in agent-based simulations in sit-
uations discrete-event simulations or system dynam-
ics cannot (Siebers et al., 2010). Although being rel-
atively new, agent-based simulations gain more and
more momentum in various application areas where
the behavior of single individual actors constitute the
fundamental issues (Macal and North, 2007). An
agent-based system consists of autonomous agents
following simple behavioral rules while being a direct
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abstraction from their real-world counterparts. Be-
ing autonomous and able to learn from their envi-
ronment, they behave proactively following their own
rule set (Siebers et al., 2010). Thus, the interaction
among the agents directly impacts the system proper-
ties (Bonabeau, 2002a).

(Siebers et al., 2010) and (North and Macal, 2007)
point out various issues where agent-based simula-
tions are well applicable. Among other reasons,
agent-based simulations can be used

• when agents are a natural representation of a sys-
tem’s participants,

• when the major factor is learning and adapting,

• when agents behave proactively, i.e. they make
strategic decisions based on past, current as well
as anticipated behavior of other agents, and

• when one important factor of a system is the rela-
tionship between the participants, i.e. agents form
and dissolve relationships with each other

Evaluating certain mechanism properties or be-
havior of participants in settings with a multitude of
variable factors, a theoretical analysis is not applica-
ble in most of the cases due to the high complexity of
the system. As a remedy, numerical simulations pro-
vide a useful tool to analyze particular properties of a
mechanism by means of randomly generated problem
sets, i.e. the variable factors are randomly generated
for multiple simulation runs. Numerical simulations
can provide insights into the general problem struc-
ture, performance aspects of the algorithm that solves
the winner determination problem, mechanism prop-
erties, and strategic behavior of participants.

Focusing on more complex settings with partici-
pants that face large strategy spaces precluding the-
oretical solutions, the methodology of agent-based
simulations has proven to be promising (Bonabeau,
2002b). In contrast to a traditional game theoretical
analysis, agent-based simulations provide means for
the evaluation of rare strategies which are more com-
plex and occur in special domains. Nevertheless, it is
crucial to design reasonable strategies as well as a rea-
sonable learning behavior and incorporate them into
software agents. Based on this notion, a lot of work
has been done in the area of agent-based simulations,
and a whole set of different strategies has been shown
to work well in many settings (Phelps, 2008).

This section has shown that following an agent-
based approach is an optimal choice to address the
research questions. The following section will intro-
duce, besides the system’s structure and further arti-
facts, the actual model taken for implementation.

4 ASSUMPTIONS & MODEL

This paper addresses large-scale business software
development organizations with several hundred or
thousands of developers. Moreover, we take a devel-
opment process based on lean management and agile
principles as a basis for our assumptions. In addition,
this section describes the basic model of our agent-
based simulation in a mathematical notation.

4.1 Work Items and Artifacts

Iteration Backlog. This backlogs contain all the
user stories (backlog items) one team has committed
to for one iteration, or sprint respectively, in Scrum.
The backlog items are permanently kept uniquely pri-
oritized by the team’s product owner (Schwaber and
Beedle, 2001).

Iteration Backlog Item. User stories are containers
for requirements and currently one of the most popu-
lar requirement modeling technique in agile methods.
”User stories are the primary currency that carries
the customer’s requirements through the value stream
into code and implementation.” (Leffingwell, 2009).
They briefly describe a feature from the perspective
of a certain user role, letting the team freedom in im-
plementational details. The effort of each user story
is estimated in ’story points’ instead of interpreted
as person day effort, which are oftentimes classified
into a Fibonacci-like sequence, i.e. 1,1,2,3,5,13, etc.
(Cohn, 2006).

Usable Software Increments each Iteration. At
the end of each iteration the team produces a new
software increment. This increment must be prop-
erly tested and fulfill other criteria in order to be
accepted by the responsible person with regard to
prior defined “done” (non-functional and/or meta-
requirements) and functional “acceptance criteria”.
Agile methods aim at completing potentially ship-
pable product increments, i.e. usable software in each
iteration.

4.2 Team Process and Structure

Agile methods, such as Scrum, try to attain a trade-
off between pragmatism and discipline, i.e. avoiding
chaos on the hand and extensive bureaucracy on the
other (see figure 2).

Team Size and Skills. The team must be ”fully ca-
pable of defining, developing, testing, and delivering
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Figure 2: Pragmatism vs. discipline.

working and tested software into the system’s base-
line” (Leffingwell, 2009). Usually, such a “cross-
functional” team consists of one product owner, a
scrum master, 5-10 team members focussing on de-
velopment, quality and testing as well as other func-
tions and skills (Larman and Vodde, 2010). Teams are
typically organized around particular software com-
ponents (architectural view) or certain features (from
a customer’s perspective, see (Larman and Vodde,
2008)). In general, features and components exhibit
inherently dependent requirements, i.e. inter-team de-
pendencies. In practice, companies have a mixture
of both, feature and component teams, organized in a
matrix (see e.g. (Schnitter and Mackert, 2010)).

Inter-team Collaboration in Large Development
Organizations. In order to be able to release com-
plex and comprehensive software products, develop-
ment organizations of several hundred or even thou-
sands of developers in cross-functional teams need to
be coordinated, for which hierarchy levels need to be
introduced. In our research, we follow the large-scale
lean and agile model by Larman and Vodde (Larman
and Vodde, 2008; Larman and Vodde, 2010). This
is also the basis for the implementation with which
we calibrate our model (Schnitter and Mackert, 2010).
The mix of feature and component teams (see above)
is one of the reasons for occurring inter-team depen-
dencies, which need to be resolved for product deliv-
ery. For instance, a certain set of master data requires
multiple functional components of an enterprise re-
source planning application.

4.3 Model Parameters & Behavior

Agents & Teams. Let Am represent the set of agents
(e.g. developers and other cross-functional team
members) in team m (m and n are arbitrary teams in
the remainder of this article) with agents am

1 , . . . ,a
m
q

such that Am = {am
1 , . . . ,a

m
q }. Let the agent am

1 be a
special agent (“team owner”) representing the Scrum
Master and the Product Owner of team m.1 A
team’s capacity cm is determined by the number of
its agents n minus the team owner, i.e. a team Am =
{am

1 , . . . ,a
m
q } has the capacity of cm = q−1.

Team Backlog. Let furthermore Bm denote the
backlog of team m with prioritized backlog items
bm

1 , . . . ,b
m
k such that Bm = {bm

1 , . . . ,b
m
l } (bx and by are

arbitrary backlog items in the remainder of this arti-
cle). The index l represents the priority or rank within
the backlog – i.e. the backlog item bm

l−1 is the unam-
biguous antecessor of the backlog item bm

l .

Backlog Processing. It is assumed that until all
done criteria are satisfied, the processing of a backlog
item consumes a well-defined2 period of time t. The
processing function λ : B → T maps backlog items to
a processing time t ∈ T .

Backlog Dependencies. It is further assumed that
dependencies between backlog items may exist such
that the possibility to start processing a specific back-
log item depends on the successful processing and fi-
nalizing of another item (all done criteria fulfilled).
The dependency function d : B×B → {0,1} maps a
pair of backlog items (bm

x ,b
m
y ) to elements 0,1 with 0

representing independent backlog items and 1 denot-
ing that backlog item bm

x is dependent on item bm
y .

d(bm
x ,b

n
y) =

{
1 , if bm

x is independent of bn
y

0 , if bm
x depends on bn

y
(1)

For the sake of simplicity, it is assumed that
dependencies are not directed, i.e. if backlog items
are dependent, neither of them can be processed as
long as the dependency persists. More precisely,
this implies that if d(bm

x ,b
n
y) = 1 ⇒ d(bm

y ,b
n
x) =

1∧d(bm
x ,b

n
y) = 0 ⇒ d(bm

y ,b
n
x) = 0 ∀ x ̸= y.

From a team’s perspective, it follows that there are
two designated types of dependencies, i.e. (i) intra-
team dependencies with d(bm

x ,b
n
y) = 1 ∧ m = n, i.e.

1Our model is simplified based on the assumption that
both, Scrum Master or Product Owner, can take over team
tasks with approximately 50% of their capacity—therefore,
one full-time equivalent is accounted per team. The team
owner parameter is also applied for Area Product Owners
and Chief Product Owner depending on the level of hierar-
chy and aggregation.

2As an extension of the model, the processing time
might be represented by a probability distribution.
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Figure 3: Mean fitness across all agents and teams with individual rewards for actions inter-team dependency resolution
(INTERRES), intra-team dependency resolution (INTRARES), and no dependency resolution (NORES) (including training
phase).

within the team’s own backlog and (ii) inter-team de-
pendencies with d(bm

x ,b
n
y) = 1 ∧ m ̸= n, i.e. with

other teams’ backlog items.

Dependency Resolution. It is further assumed that
dependencies between backlog items need to be re-
solved during the development process. Such a res-
olution is done by investing additional time and ef-
fort for analysis, communication, coordination, and
in some cases, idle time. This means that the cost
for dependency resolution depends on three factors:
(i) The point in time during the development process
the resolution is conducted and (ii) the complexity of
the dependent backlog items which is implicitly rep-
resented by their processing time as well as (iii) the
type of dependency (intra- or inter-team dependency).
Practically this means: The earlier a dependency is
detected and the lower the item complexity is, the less
additional time is required to resolve it. The amount
of effort, i.e. the additional time to be spent for re-
solving the dependency, also depends on the type of
dependency (inter-team or intra-team). Thus, the res-
olution function r : B×B×Θ → T (Equation 2) maps
pairs of backlog items and the point of time within the
development process to the period of time that is re-

quired for resolving their dependency (for a complete
mapping, the resolution functions returns t = 0 in case
backlog items are independent).

The resolution time at least equals the average
processing time of both items, i.e. their mean com-
plexity and is mainly determined by the constant t̄
representing the type of dependency (intra- or inter-
dependency) and the point of time θ the resolution is
conducted.

5 SIMULATION

Thus, the evaluation is conducted by means of an
agent-based simulation based on a simple form of a
Q-Learning model (Watkins and Dayan, 1992). In
contrast to more sophisticated variants of Q-learning
models, the simulation model at hand considers mul-
tiple actions but only a single state. This reduction of
parameter complexity is done without loss of validity
and therefore simplifies the calibration of the simu-
lation. Simplifying the simulation model reduces the
number of assumptions, allowing for a better general-
ization of results.
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r(bm
x ,b

n
y ,θ) =


0 , if d(bm

x ,b
n
y) = 0

t̄intraθ2 p(bx)+p(by)
2 , if d(bm

x ,b
n
y) = 1 ∧ m = n

t̄interθ2 p(bx)+p(by)
2 , if d(bm

x ,b
n
y) = 1 ∧ m ̸= n

(2)

5.1 Rounds

Reflecting the lean principles, simulation rounds Ω
are mapped onto development “takts” (or “sprints” in
Scrum (Schwaber and Beedle, 2001)). Each round
represents a development takt that is further dis-
cretized into a fixed number of takt units ω3.

5.2 Actions

At the beginning of each TAKT, each agent chooses
an action k out of the action space K as specified in
Section 5.3. The following actions are available to
each agent:

Preceding Intra-team Dependency Resolution.
The agent focuses on resolving dependencies
between backlog items within its team at the

3For the sake of simplicity, all time-related model values
are discretized accordingly.

beginning of the development takt (preceding). If
there is capacity left after this action, the agent
continues with processing backlog items.

Preceding Inter-team Dependency Resolution.
The agent targets the resolution of dependencies
between backlog items that are planned in dif-
ferent teams at the beginning of the development
takt (preceding). If there is capacity left after
this action, the agent continues with processing
backlog items.

Development without Early Dependency Resoluti-
on.

No resolution of dependencies at the beginning of
the development takt are addressed by the agent,
i.e. the agent directly starts with backlog item
processing. However, when processing a backlog
item that is constrained by a dependency, the
agent is forced to resolve this dependency at that
point in time which might be time consuming due
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to the elapsed time (cp. Section 4.3).

Having chosen, the agents execute the particular
action which binds their capacity according to the de-
fined time requirements. In case of dependency reso-
lution actions (k = 1,2) the capacity is bound exactly
as long as the resolution function specifies the number
of TAKT units required. If this period of time is less
than the total units within a TAKT, the agent’s capac-
ity is free for development activities. In case of the
development action (k = 3), the agent is processing
backlog items during the whole TAKT.

5.3 Feedback & Learning Behavior

At the end of each TAKT Ω, each agent a receives a
feedback πΩ

a,k as a response to the action k chosen at
the beginning of the TAKT.

To analyze the effect of different incentive
schemes on the exchange of information within and
between teams, we examine three feedback mecha-
nisms:

Individual incentives that reward value creation of
the individual developer, i.e. the number of suc-
cessfully processed backlog items by a single de-
veloper.

Team incentives that reward each individual based
on the value creation of the whole team the devel-
oper belongs to, i.e. the number of successfully
processed backlog items accumulated on team-
level.

At the end of each takt Ω, the feedback to a cho-
sen action k of an agent a is incorporated in the
agent’s private fitness function f Ω

a,k. Balancing past
and present experiences, the learning parameter β ∈
[0,1] determines to which degree past and present
feedback is incorporated into the fitness update. Thus,
the fitness update evolves as follows:

f Ω
a,k := β f Ω−1

a,k +(1−β)πΩ
a,k (3)

Thus, each agent maintains a fitness value for each
possible action that represents the historical “success”
of that particular action based on the cumulated feed-
back over time.

At the beginning of each TAKT Ω, each agent a
chooses an action k out of the action space K (cp. Sec-
tion 5.2) based on its particular probability pΩ

a,k that is
based on its fitness value and therefore on its histori-
cal “success”:

pΩ
a,k :=

f Ω
a,k

∑k
Ω
a,k

(4)

5.4 Parametrization & Hypothesis

The simulation model as described previously is pa-
rameterized as follows: According to lean develop-
ment best practices, the team size is set to 10 agents
per team. A learning rate β = 0.5 yields an optimal
trade-off between escaping local optima and achiev-
ing a quick convergence of strategies. The first 400
rounds of 500 rounds in total are the simulation’s
training phase in order to achieve a converged state
and are therefore not considered for the statistical
evaluation. As the number of variable parameters
and their interdependencies are high, heavy statisti-
cal noise is likely to be generated. To counteract the
high volatility of the simulation model, a large num-
ber of 500 problem sets is evaluated and the mean re-
sults across all agents and teams are reported. The
large size of analyzed problem sets for each observa-
tion assures robustness of the t-test to violations of the
normality assumption (Sawilowsky and Blair, 1992).

By means of this agent-based simulation approach
we intent to verify the hypotheses outlined in Table 1.

Table 1: Incentive schemes and corresponding hypothe-
ses. NORES denotes the mean fitness value of action k = 1
across all agents and teams. INTRARES denotes the mean
fitness value of action k = 2 across all agents and teams.
INTERRES denotes the mean fitness value of action k = 3
across all agents and teams.

Incentive Hypothesis
Scheme
Individual H1a: (NORES > INTRARES)
Incentives H1b: (NORES > INTERRES)

H1c: (INTERRES > INTRARES)
Team H2a: (NORES < INTERRES)
Incentives H2b: (INTERRES > INTRARES)

The set of hypotheses is derived from existing lit-
erature on the effect of incentives in lean development
(Poppendieck, 2004) and practical experiences from
lean projects in SAP. In settings with individual incen-
tives that reward agents solely on the number of back-
log items that are successfully processed on their own,
the agents are likely to follow an opportunistic strat-
egy, i.e. they focus on processing backlog items in-
stead of resolving dependencies (neither within their
team nor between teams) as stated in hypotheses H1a
and H1b. Resolving inter-team dependencies at a later
point in time is more time consuming than intra-team
dependencies which is likely to incentivize agents to
prefer the INTERRES strategy over the INTRARES
strategy at the beginning of each sprint. This argu-
mentation holds for either incentive scheme (cp. hy-
potheses H1c and H2b).
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On the other hand, team incentives that reward
agents based on the total number of successfully pro-
cessed backlog items of the whole team are likely
to implement incentives for agents to follow actions
which are beneficial for the team itself. As the effort
to resolve backlog item dependencies at a later point
in time is exponentially higher than at the beginning
of the sprint, agents are likely to follow an early de-
pendency resolution (cp. hypotheses H2a).

The statistical significance of the stated hypoth-
esis is tested using a one-tailed matched-pairs t-test
analyzing the alternative hypothesis, that is, the mean
difference of the actions’ fitness values is greater than
zero. For the statistical analysis, the first 400 simu-
lation rounds/sprints are skipped as they serve as the
initial learning phase of the agents until we observe a
convergence of strategies and achieve a stable state.

6 EVALUATION RESULTS &
IMPLICATIONS

This sections describes the main findings of the agent-
based simulation for the individual and team incentive
schemes. Having been analyzed by means of a sensi-
tivity analysis, the observations are robust against the
simulation parameters “number of agents per team“,
“number of teams“, and “learning rate“.

6.1 Individual Incentives

Simulation settings with the individual incentive
scheme yield the following results:
• The action no dependency resolution (NORES)

significantly (p << 0.01) yields the highest over-
all mean fitness across all agents and teams which
supports Hypothesis H1a and H1b.

• The action inter-team dependency resolution (IN-
TERRES) yields a significantly (p << 0.01)
higher mean fitness across all agents and teams
than the action intra-team dependency resolution
(INTRARES) which supports Hypothesis H1c.
In a setting with the individual incentive scheme,

Figure 3 depicts the mean fitness across all agents and
teams for each action. The convergence phase that
is relevant for the statistical analysis is depicts sepa-
rately in Figure 4.

6.2 Team Incentives

In settings where agents are rewarded based on the to-
tal number of successfully processed backlog items of
the whole team, the following results can be observed:

• The action inter-team dependency resolution (IN-
TERRES) is strictly dominating the action no de-
pendency resolution (p << 0.01) which supports
hypothesis H2a.

• The action intra-team dependency resolution (IN-
TRARES) is significantly (p << 0.01) outper-
formed by the action inter-team dependency res-
olution (INTERRES) which supports hypothesis
H2b.

Figure 5 illustrates the actions’ mean fitness
across all agents and teams based on the team incen-
tive scheme in a setting with 5 teams consisting of
10 team members. The figure shows all simulation
rounds including the training phase whereas Figure 6
depicts rounds 400-500 that are relevant for the statis-
tical analysis.

6.3 Practical Implications

In our work, we analyzed the effect of organiza-
tional settings and incentive schemes in large-scale
lean software development on the information flow
within and between teams as well as performance as-
pects.

Our analysis has shown that individual rewards
foster opportunistic behavior in teams, i.e. actions
that serve the team by resolving backlog item depen-
dencies and removing impediments are not conducted
by the agents. On the other hand, a team incentive
scheme that rewards agents based on the total number
of successfully processed backlog items of the whole
team promote behavior that is beneficial for the whole
team. As the effort to resolve backlog item dependen-
cies at a later point in time is exponentially higher
than at the beginning of the sprint, agents follow an
early dependency resolution. More precisely, resolv-
ing inter-team dependencies at a later point in time is
more time consuming than intra-team dependencies
which incentivizes agents to prefer a dependency res-
olution across team boundaries. In general, our results
underline the importance of dependency resolution—
and therefore, traceability and requirements manage-
ment, in large software organizations (Hildenbrand,
2008).

One of the basic principles of the lean method-
ology states the empowerment of the teams instead
of enforcing a strictly governed process corset (Lee
and Xia, 2010). As a trade-off, this implies that man-
agerial monitoring and steering of the development
process becomes cumbersome. Therefore, traditional
methodologies and tools stemming from well-known
project management techniques are partly not appli-
cable in agile environments, which requires new ap-
proaches to manage a successful execution of lean
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Figure 5: Mean fitness across all agents and teams with team rewards for actions inter-team dependency resolution (INTER-
RES), intra-team dependency resolution (INTRARES), and no dependency resolution (NORES) (including training phase).

projects.
Moreover, our work has shown that a sensible and

efficient design of incentive schemes in large-scale
lean software development is a promising tool to steer
individual behavior, diminish opportunism and local
optimization, foster efficient communication across
team boundaries, and break silos that clash with the
company’s overall objectives. Hence, our results in-
dicate that team-based rewarding can prevent oppor-
tunistic behavior and silo thinking which is in line
with recent literature (Poppendieck, 2004).

7 SUMMARY OF FINDINGS &
CONCLUSIONS

The contribution of our work comprehends the fol-
lowing findings:
• Incentive schemes play a central role for steer-

ing large-scale lean software development and to
align individual and company objectives.

• In such complex environments, agent-based simu-
lations are a promising method to evaluate differ-
ent incentive designs and derive practical implica-
tions.

• Rewards based on individual performance advo-
cate selfish behavior of team members, i.e. each
individual focuses on silo work instead of remov-
ing impediments and sharing information within
and between teams to resolve dependencies.

• Rewards directly tied to team-based value cre-
ation help to diminish opportunistic behavior and
implement incentives to foster backlog item de-
pendency resolution through intense communica-
tion across team boundaries.

Outlook. As future work, we will validate our sim-
ulation results more systematically with real-world
data from large-scale software enterprises implement-
ing lean and agile practices. More specifically, we
plan to analyze existing backlogs, log files, and other
documentation of work practices as well as conduct
qualitative interviews with a certain number of teams
from different product areas. In doing, so we intend to
(a) further elaborate the external validity of our simu-
lation results and (b) gain more insights regarding the
industrial context of our research questions.

Furthermore, we intend to investigate more so-
phisticated incentive schemes and their composition
into hybrid patterns. We also plan to extend our
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Figure 6: Mean fitness across all agents and teams with team rewards for actions inter-team dependency resolution (INTER-
RES)(mean=12.0, std=0.087), intra-team dependency resolution (INTRARES)(mean=11.098, std=0.068), and no dependency
resolution (NORES)(mean=11.894, std=0.090) (convergence phase).

model regarding hierarchical organizational settings
and implications of distributed teams with communi-
cation barriers. Questions like how different incentive
schemes can be grouped and assessed regarding their
applicability and suitability in different organizational
settings need to be further investigated. From an eco-
nomic perspective, we plan to extend the underlying
model to capture partly irrational behavior and to vary
the feedback quality in terms of timeliness and signal
noise.
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