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Abstract: Most of the issues of current supply chain management practices are related to the challenges of 
interoperability of relevant enterprise information systems (EIS). In this paper, we present the ontological 
framework for semantic interoperability of EISs in supply chain networks, based on Supply Chain 
Operations Reference (SCOR) model, its semantic enrichment and mappings with relevant enterprise 
conceptualizations. In order to introduce the realities of the enterprises into this framework, namely their 
models, we define and implement the approach to generation of local ontologies, based on the databases of 
their EISs. Also, we discuss on the translation between semantic and SQL queries, a process in which 
implicit semantics of the EIS’s databases and explicit semantics of the local ontologies become inter-related. 

1 INTRODUCTION 

Despite the advances in the relevant research areas 
and rapidly growing demand for flexible, 
customized production, manufacturing supply chains 
are still primarily focused on a cost reduction as a 
key aspect of collaboration. The fact that supplier 
relationship management contributes largely to the 
overall costs of the supply chains’ final products has 
great impact to their configuration-related decisions. 
For example, manufacturers tend to reduce the 
number of suppliers. Moreover, relationships are 
dyadic – rarely expanded to include vendors’ 
vendors and customers’ customers. Also, high level 
of integration is required in order to reduce costs – 
manufacturers tend to view their suppliers as 
extensions of themselves.  Traditional approach to 
supply chains’ configuration may have negative 
impact to their performance. First, high-speed, low-
cost supply chains are often unable to respond 
efficiently to unexpected structural changes in 
(customized) demand or supply. Second, high level 
of integration reduces flexibility of small and 
medium enterprises, main constituents of the lower 

levels of supply chains. Third, investments in 
technical framework for enterprise integration, 
which could maximize the efficiency and 
productivity, cannot be returned in a short term. 
Furthermore, starting collaboration in such 
traditional settings is reactive and not proactive 
decision. Namely, relationship establishment or 
development is motivated by the internal, rather than 
external factors: complexity and volume of supply 
relationships, potential for cost reduction (Lamber et 
al., 2006), high frequency of transactions between 
parties (Jespersen and Larse, 2006), degree of asset 
specificity (Williamson, 1985), etc. 

In a response to the issues of static and integrated 
architecture of the supply chain, a notion of virtual 
enterprise has been introduced and widely discussed 
in academic community. Virtual enterprise is a 
temporary network of independent enterprises, who 
join together quickly to exploit fast-changing 
opportunities and then dissolve (Browne and Zhang, 
1999). It is characterized by a short-living 
appearance of a supply chain, capable to produce 
low volume of high variety of products, by drawing 
from the loosely-coupled, heterogeneous 
environment of available competences, capabilities 
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and resources, sometimes referred to as Virtual 
Breeding Environment (Sánchez et al., 2005). 
Paradigms of virtual enterprises and their breeding 
environment are based on the capability of an 
enterprise to configure or reconfigure quickly, 
according to the circumstances of the market, often 
not known in advance, or even in the moment of 
configuration. Hence, efficiency and effectiveness of 
this joint endeavour depends on the interoperability 
of enterprises, rather than their integration. The main 
prerequisite for achievement of interoperability of 
the loosely coupled systems is to maximize the 
amount of semantics which can be utilized and make 
it increasingly explicit (Obrst, 2003), and 
consequently, to make the systems semantically 
interoperable. 

In this paper, we discuss on the notion of 
semantic interoperability in supply chain networks, 
namely the overall architecture of the enterprise 
information systems environment and corresponding 
ontological framework. One of the greatest 
challenges in building this framework is related to 
the implicitness of semantics of the enterprises’ 
realities. In our approach to face this challenge, we 
assume that: 1) these realities are represented by the 
corresponding enterprise information systems (EIS), 
and 2) enterprise message models (crucial for 
flexible economic integration) are based on EISs’ 
data models, represented implicitly in their 
databases. The proposed approach aims at making 
this representation - explicit. 

Our approach to semantic interoperability in 
supply networks assumes fragmentation of the 
problem into three inter-related areas: a) formal 
model of supply chain, b) enterprise semantics (body 
of knowledge), and c) local semantics. 

Formal model of supply chain (Zdravković et al., 
2010) builds upon a widely adopted supply chain 
process reference model – SCOR (Stewart, 1997).  It 
is represented on two layers of abstraction. First 
layer models implicit semantics of SCOR elements 
and stores actual knowledge on supply chain 
operations. Second layer represents SCOR’s 
semantic enrichment - it identifies common 
enterprise notions, maps those to SCOR entities and 
classifies them into more general inter-related 
concepts. Both layers are then represented by OWL 
models – SCOR-KOS and SCOR-FULL. This 
approach is shortly described in section 2. In this 
section, we also discuss on the semantic 
interoperability in supply networks and on how we 
can use its formal definition to evaluate it. Finally, 
we describe the role of local ontologies in 
semantically interoperable systems. 

SCOR-FULL ontology identifies and classifies 
common enterprise notions. However, their 
semantics is defined externally. We strongly believe 
that enterprise semantics is well described in many 
efforts of conceptualizing its architecture, functions 
and processes and that additional effort in this 
direction would be redundant. Thus, different 
enterprise formalizations, contexts and views of 
existing architectures and other conceptualizations 
need to be used as sources of specifications of 
enterprise semantics, and mapped accordingly to the 
enterprise notions in SCOR-FULL ontology. 
Currently, SCOR-FULL ontology is mapped to 
TOVE (Fox et al., 1996) organizational and 
foundational ontology (in fact, to its OWL 
representation). 

While formal model of supply chain and 
enterprise semantics provide a theoretical context for 
semantic interoperability in supply networks, local 
ontologies introduce actual enterprises contexts, 
namely, the language which they are going to use to 
communicate, in a collaboration environment. We 
believe that enterprises’ capability to efficiently 
collaborate between each other depends on the 
correspondence between their local semantics and 
the general context above. Main focus of the work, 
presented in this paper, is on the analysis of the 
source of this local semantics, namely relational 
database systems and, consequently, its 
explicitation. 

The research addresses some of the identified 
weaknesses of the existing approaches (see section 
3.1) to database to ontology mapping and aims at 
using the OWL expressivity to enrich the implicit 
semantics of ER (Entity-Relationship) models. It 
delivers a method and corresponding software tool 
which: 1) imports the database structure and 
classifies ER entities; 2) classifies (infers) OWL 
types and properties; 3) enables lexical refinement 
and 4) generates local ontology. The concepts of the 
local ontology are mapped backwards to the 
corresponding concepts of the intermediary models, 
in order to enable transformation of semantic to SQL 
queries. The method and the software tool are 
described in section 3.2, and are applied in the case 
of OpenERP database. Some of the experiences 
gained during implementation of this case are 
described in section 3.3. The method for execution 
of semantic queries on the local ontology, namely, 
instantiation of its concepts according to the content 
of the relevant database, is described in section 3.4. 

It is important to emphasize that the scope of the 
presented approach is limited only to selected ER 
patterns which are associated to semantics, 
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expressed by the OWL constructs. Although the 
process overcomes some of the gaps, identified in 
the current state-of-the-art in database to ontology 
mapping, its end result typically requires 
considerable amount of customization. Since direct 
mapping is unlikely to produce a useful ontology, 
the result of this analysis may be considered as 
intermediary. Thus, it is necessary to put additional 
work in enactment of this intermediary ontology, 
which aims at facilitating the final stage of semantic 
mapping of local ontology to relevant domain 
ontologies. 

2 SEMANTICS OF SCOR         
AND SEMANTIC 
INTEROPERABILITY 

The concepts and tools presented in this paper are 
using the formal framework of supply chain 
operations presented at Fig. 1. It is developed with 
goals to enable the semantic interoperability 
between SCOR-based systems and other relevant 
enterprise information systems, and to improve the 
expressivity of SCOR-based models.  

In the remainder of this sub-section, we briefly 
describe the elements of this framework. Their 
detailed elaboration can be found in Zdravković et 
al., 2010. 

SCOR-FULL ontology is developed by semantic 
analysis of SCOR Input/Output elements, 
identification of core terms and their generalization.  

It extends what we call the SCOR-SYSTEM 
ontology, which formalizes the SCOR System 
element.   

It is then extended by the SCOR-GOAL 
ontology, which semantically maps its concepts to 
SCOR Performance Metrics element. SCOR-FULL 
is exploited by different application models, which 
formalize specific design goals. For example, 
SCOR-CFG OWL model is used to develop a 
semantic web application for supply chain process 
configuration (Zdravković et al., 2010). 

The framework is based on a premise that 
domain knowledge evolves at highest rate at lower 
levels of abstraction, in domain community 
interaction. Consensus on the specific notions is 
more likely to be reached than agreement on the 
generalizations and abstractions. However, this level 
is often characterized by the implicit semantics of 
the standards, reference models, database structures, 
etc. Thus, we consider coherence between creation, 
evolution and use of specific, highly contextualized 
knowledge and development of formal expressive 
models as a very important factor for usability of the 
models. 

In the process of development of a formal 
framework for supply chain operations, we start with 
modelling the implicit semantics of SCOR model 
and representing it by using OWL language (SCOR-
KOS OWL). OWL (OWL 2 Web Ontology 
Language) is a family of knowledge representation 
languages, which provides the syntax for authoring 
and exchanging the ontologies among relevant tools 
and applications. 

 

Figure 1: Formal framework of supply chain operations.
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Thus, this common syntax (OWL) enables us to 
reuse the resulting model with existing tools such as 
ARIS EasySCOR by IDS or e-SCOR by Gensym. 
Next, the semantics of the SCOR elements is made 
explicit through its formalisation with ontology rules 
embedded into the SCOR-FULL ontology. These 
rules are used for mapping those concepts to SCOR-
KOS OWL concepts. We call this set of rules, 
SCOR-MAP. SCOR-FULL may then be considered 
as a micro theory which formalizes knowledge about 
supply chain operations, by identifying and 
aggregating common enterprise notions. It is using 
those concepts to define the semantics of chosen 
generalizations, namely, the notions of Course, 
Setting, Quality, Function and Resource. 

2.1 Semantic Interoperability              
in Supply Chain Networks 

One of the crucial competitiveness factors of the 
enterprises, especially SME’s, is their ability to 
ensure the quality performance, when 
simultaneously participating in more than one 
supply chain, with the same or different products. 
This ability is mainly driven by the enterprises’ 
capacity to conform to different collaboration 
(processes) requirements, issued by the customers, 
where these requirements are described by the 
different standards or models (SCOR, RosettaNet, 
ISO/TS 16949 quality specification for automotive 
industry supply chain and others) and/or methods 
(CPFR, Vendor-Managed Inventory, etc.).  

One of the main challenges is to define the 
references between the standards, make the 
corresponding models compatible or complementary 
and thus, ensure the interoperability of the relevant 
systems, driven by those models. This challenge can 
be addressed by formalizing collaboration standards 
and methods, identifying common enterprise notions 
(and relating those to the standards’ elements) and, 
mapping them to a general body of knowledge, 
namely, enterprise models. Hence, the relevant 
systems, based on those models, will become fully 
or partially – semantically interoperable. 

ISO/IEC 2382 defines interoperability as the 
“capability to communicate, execute programs, or 
transfer data among various functional units in a 
manner that requires the user to have little or no 
knowledge of the unique characteristics of those 
units”. Semantic interoperability builds upon this 
notion and it means ensuring that the precise 
meaning of exchanged information is uniquely 
interpreted by any system not initially developed for 
the purpose of its interpretation. It enables systems 

to combine and consequently process received 
information with other information resources and 
thus, to improve the expressivity of the underlying 
ontologies. In our research, we adopt the formal 
definition of John Sowa (Sowa, 2000; SUO, 2001), 
because we can use it to evaluate semantic 
interoperability of enterprise systems: 

“A sender's system S is semantically operable 
with a receiver's system R if and only if the 
following condition holds for any data p that is 
transmitted from S to R: 

For every statement q that is implied by p on the 
system S, there is a statement q' on the system R 
that: (1) is implied by p on the system R, and (2) is 
logically equivalent to q. The receiver must at least 
be able to derive a logically equivalent implication 
for every implication of the sender's system.” 

We represent this definition in controlled natural 
language, as asymmetric logical function 
semantically-interoperable(S,R): 

 
data(p) ∧ system(S) ∧ system(R) ∧ 

semantically-interoperable(S,R) ⇒ 
∀p ( 
(transmitted-from(p,S) ∧ 

transmitted-to(p,R)) ∧  
∀q(statement-of(q,S) ∧ p⇒q) 

∃q’(statement-of(q’,R) ∧ p⇒q’ ∧ 
q’⇔q) 

) 
 
Figure 2 illustrates the following assumption of 

semantic interoperability of systems, represented by 
the local ontologies: when two different application 
ontologies of two partners in the supply chain (or 
two departments or contexts of the same enterprise) 
are mapped to the same domain ontology, relevant 
information systems whose knowledge they 
represent will become fully or partially semantically 
interoperable in specific direction, depending on the 
mappings. 

In other words, if there exist two isolated 
enterprise information systems S1 and S2 and 
corresponding application ontologies OL1 and OL2 
and if there are mappings ML1D1 and ML2D1, 
established between the concepts of OL1, OL2 and 
domain ontology OD1, respectively, then there exist 
mappings ML1L2 which can be inferred as logical 
functions of ML1D1 and ML2D1. Each of the local 
ontologies may (not necessarily) represent one of the 
contexts of the enterprise (C1-Cn). 

In our research, we aim at confirming this 
assumption by   inferring  the   mappings between   
two contexts   of   the   enterprise, represented    by  
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Figure 2: Semantic interoperability of systems. 

formalizations of an ERP system (S1-OL1) and 
SCOR-based system (S2-OL2) for managing the 
supply chain operations of the enterprise. Mappings 
are inferred as logical functions of mappings 
between corresponding formalizations and SCOR-
FULL ontology (OD1). Also, by exploiting the 
mappings between SCOR-FULL (OD1) and TOVE 
organizational and foundational ontologies (OD2), we 
aim at showing how the expressivity of the overall 
ontological environment can be increased, for the 
benefit of improved semantic interoperability and 
increased competence. Finally, we evaluate the 
semantic interoperability of the systems by using the 
definition above. 

In this paper, we focus only on the local 
ontologies, namely, the formalizations of enterprise 
information systems’ data models and we 
demonstrate the approach to automated (or semi-
automated) generation of local ontologies on basis of 
the relational database structure. 

3 INTEROPERABLE LOCAL 
ONTOLOGIES 

One of the major challenges in the efficient use of 
computer systems is interoperability between 
multiple representations of reality (data, processes, 
etc.) stored inside the systems, or actual 
representations and reality itself – systems’ users 
and their perception of reality (Hepp, 2007). Where 
latter can be formalized by the domain ontologies, as 
shared specifications of the conceptualizations, 
former relies upon the local ontologies – wrappers 
for heterogeneous sources of information, business 
logic and presentation rules. 

In our work, the range of semantic 
interoperability is clearly set to enterprise 
information systems. The semantic interoperability 
of the enterprises is considered as more complex 
problem and is not addressed in this paper. The 

conceptualization of their information systems is 
made on basis of the business logic, which is hidden 
in the actual code, in most cases, and data model, 
represented by the corresponding relational database 
structure. We consider EIS’s databases as legitimate 
starting point for building a relevant local ontology. 
Obviously, business logic which is encapsulated in 
the EIS’ will remain hidden – only underlying data 
model is exposed by ontology. The exceptions are 
database’s triggers, which can be considered as 
business rules, if they are not implemented only to 
enforce referential integrity of the database. 

In the remainder of this section, some of the 
reported work in database to ontology mapping is 
presented. Then, our approach to local ontology 
generation is described and demonstrated on the case 
of ER model (database) of OpenERP enterprise 
software. 

3.1 State of the Art in Database to 
Ontology Mapping 

Review of the relevant literature reveals several 
approaches which address database to ontology 
mapping. In this section, we present the main 
features of four distinctive frameworks, made with 
different objectives, and we identify gaps, in terms 
of the usability and coverage of the frameworks. 

Work on DB2OWL mapping facility is a part of 
development of a general interoperability 
architecture (Ghawi and Cullot, 2007) that uses 
ontologies for explicit description of the semantics 
of information sources, and web services to facilitate 
the communication between the different 
components of the architecture. DB2OWL (Cullot et 
al., 2007) looks for some particular cases of database 
tables to determine which ontology component has 
to be created from which database component. 
According to these cases, conversion process is 
performed (table -> class, column-> property, 
constraint -> relation) where the set of 
correspondences between database and ontology 
components is conserved, thus enabling the 
translation of ontological to SQL queries and 
retrieval of corresponding entities. However, it 
remains unclear how this translation will be 
implemented. More important, the semantics of 
existential constraints of the columns and cardinality 
of relations is not taken into account. 

Relational.OWL (de Laborda and Conrad, 2005) 
is a candidate for data and schema representation 
format, relevant for database to ontology mapping. It 
provides a meta-model, which describes the 
components of the relational database. Hence, it can 
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be used as an intermediary in the process of database 
to ontology mapping, instead of a document with 
correspondences, used by DB2OWL. Unfortunately, 
it suffers from the same problems as DB2OWL - 
multiplicity of the foreign keys is not in the model. 
Thus, it is not possible to use it to assign source and 
destination cardinality to OWL properties. 
Moreover, source multiplicity determines important 
aspect of the semantics of the underlying concept or 
database table. Namely, where source multiplicity of 
the foreign key is 1, the corresponding OWL relation 
shall be necessary condition for instantiation of the 
concept in its domain. This is important semantic 
feature, because it enables intensional 
conceptualization of the entity. 

Where DB2OWL is used to create new ontology 
from existing schema, D2OMapper (Xu et al., 2006) 
is a tool for automatic or semi-automatic creation of 
the mappings between database schema and existing 
ontology. D2OMapper follows a set of predefined 
heuristic rules, based on the conceptual 
correspondences between the schema and ontology. 
This work is based on the authors’ experience in 
developing ER2WO (Xu et al., 2004) tool for 
translating ER schema into OWL ontology. 

Vis-A-Vis tool (Konstantinou et al., 2006) uses 
the Protégé libraries for graphically representing an 
ontology, a database model (MySQL or 
PostgreSQL) and the mappings between them. The 
plug-in allows queries to be asked to the ontology 
and returns results from the database. The key 
motivation of the authors was to keep the instances 
stored in a database and maintain a link to the 
dataset. Thus, ontologies become smaller. 

3.2 Our Approach to Database to 
Ontology Mapping 

Mapping is a process in which implicit semantics of 
a database schema is mapped to the explicit and 
formal knowledge structure of the ontology. In our 
approach, we use the database schema to generate 
this formal structure, while preserving the logical 
mappings between ER meta-model and generated 
local ontology. These mappings will enable the 
translation of semantic to database queries. 

Generation process consists of 4 phases: a) data 
import and classification of ER entities; b) 
classification (inference) of OWL types and 
properties; c) lexical refinement; d) generation of 
local ontology; and is illustrated on Figure 3, below. 
The process is supported by a web application, 
developed by using RAP API (Oldakowski et al., 
2005), a PHP-based package for parsing, querying, 
manipulating, serializing and serving RDF models. 
Web application consists of modules for data 
import/assertion of ER meta-model instances, lexical 
refinement and transformation of classified OWL 
types and properties to a local ontology. 

First, database schema is investigated and OWL 
representation of the ER-model is constructed. This 
is realized by developed application, which connects 
to the database, uses introspection queries to 
discover its structure and asserts the relations 
between the artifacts by using proposed ER 
formalization (er.owl). 

Following assertions are made for   each    field 
of the corresponding table:  has Attribute   (entity, 
attribute),   hasType    (attribute,   type)   and 

 

Figure 3: Approach to database-to-ontology mapping. 
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hasConstraint(attribute,’not-null’) and/or 
hasConstraint(attribute,’unique’) (if applicable). 
Following assertions are made for each relation: 
hasDestinationAttribute (relation, attribute), 
hasSourceAttribute(relation, attribute). 

Second, resulting (serialized) OWL 
representation of the database ER-model is imported 
into meta-model (s-er.owl), which classifies future 
OWL concepts (Ax1) and domains and ranges of the 
object and data properties, according to defined 
axioms (Ax2, Ax4). Although specification of object 
and data properties may impose the unnecessary 
restrictions on the resulting ontology, we consider 
those as important for improving the efficiency of 
mapping or alignment process, which is critical for 
the semantic interoperability. Another reason for the 
assertion of object properties in OWL representation 
of database ER-model is that object properties of the 
resulting local ontology will be annotated with the 
URI’s of the respective relations, in order to enable 
the correspondence between the ontology and 
database representation, for the benefit of query 
transformation. On the other hand, existential 
constraints from the ER-model are associated to an 
explicit semantics of the resulting ontology, namely, 
necessary conditions for entailment of the 
corresponding concepts. According to these 
constraints, axioms for intensional conceptualization 
(necessary conditions, or inherited anonymous 
classes) for particular entity are identified by 
inferring ranges of hasDefiningProperty(concept, 
concept) and hasDefiningDataProperty(concept, 
data-concept) relations (Ax2.2 and Ax4.2). Finally, 
the approach takes into account the functionality of 
the properties (owl:FunctionalProperty). Functional 
property is property that can have only one (unique) 
value y for each instance x. They are classified when 
relation one-to-one is identified between two 
concepts (Ax2.3). 

Classification of future OWL concepts is inferred 
by exploiting following axioms: 

Ax1. Concepts are all entities of the ER model’s 
OWL representation, except the entities whose all 
attributes are relation sources (corresponding to 
intermediary tables, connecting two tables with 
many-to-many relationship). 

er:entity(x) ∧ not (er:hasAttribute 
only (er:attribute ∧ 
(er:isSourceAttributeOf some 
er:relation))) ⇒ s-er:concept(x) 
 

Ax2.1. Domains and ranges of the object 
properties are inferred by using the rule below. 

er:entity(x) ∧ er:entity(y) ∧ 
er:relation(r) ∧ er:hasAttribute(x, 
a1) ∧ er:hasAttribute(y, a2) ∧ 
er:isDestinationAttributeOf(a2, r) ∧ 
er:isSourceAttributeOf(a1, r) ⇒ s-
er:hasObjectProperty(x, y) 

 
Ax2.2. Domains and ranges of the defining 

properties (necessary conditions of the concept) are 
inferred by using the rule below. Defining property 
is a sub-property (rdfs:subPropertyOf) of the object 
property (hence, simplified representation of the rule 
below). 

s-er:hasObjectProperty(x, y) ∧ 
er:hasConstraint(a1,'not-null') ⇒ s-
er:hasDefiningProperty(x, y) 

Ax2.3. Domains and ranges of the functional 
properties are inferred by using the rule below. 
Functional property is a sub-property 
(rdfs:subPropertyOf) of the defining property 
(hence, simplified representation of the rule below). 

s-er:hasObjectProperty(x, y) ∧ 
er:hasConstraint(a1,'not-null') ⇒ s-
er:hasDefiningProperty(x, y) 

Ax3. Data concepts are all attributes of the ER 
model’s OWL representation which are not at the 
source of any relation. 
er:attribute and not 
(er:isSourceAttributeOf some 
er:relation) ⇒ s-er:data-concept 

Ax4.1. Domains and ranges of the data 
properties are inferred by using the rule below. 
Ranges of the data properties are data types, 
corresponding to the simple types from XML 
schema. 

er:type(x) ⇒ s-er:data-type(x) 
s-er:concept(c) ∧ er:attribute(a) ∧ 
er:type(t) ∧ er:hasAttribute(c, a) ∧ 
er:hasType(a, t) ⇒ s-
er:hasDataProperty(c, t) 

Ax4.2. Domains and ranges of the defining data 
properties are inferred by using the rule below. 
Defining data property is a sub-property 
(rdfs:subPropertyOf) of the data property (hence, 
simplified representation of the rule below). 

s-er:hasDataProperty(c, t) ∧ 
er:hasConstraint(a,'not-null') ∧ 
er:hasConstraint(a,'unique') ⇒ s-
er:hasDefiningDataProperty(c, t) 

 

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

28



 

Rules above classify instances of the OWL 
representation of the database ER model (er.owl) 
into a meta-model (s-er.owl). Inferred triples can be 
edited in a simple web application, which also 
launches the process of local ontology generation. In 
this process, meta-model entities are transformed 
into corresponding OWL, RDF and RDFS constructs 
– a resulting local ontology. Concepts of the 
generated local ontology are annotated with URI’s 
of the corresponding ER entities from er.owl model. 
Thus, translation of semantic to SQL queries 
becomes possible. 

3.3 Case Implementation 

The approach above is implemented on the case of 
OpenERP enterprise information system. OpenERP 
is an open source suite of business applications 
including sales, CRM, project management, 
warehouse management, manufacturing, accounting 
and human resources. It uses PostgreSQL relational 
database for data storage and application server for 
enterprise logic. 

With all modules installed, OpenERP database 
counts 238 tables. In the first step of database import 
into er.owl model, namely, instantiation of the OWL 
representation of ER model, 3806 individuals are 
created (2633 attributes, 238 entities, 934 relations) 
and 7999 object property assertions are made. In the 
second step of classification of OWL concepts and 
properties, 696 of individuals’ entailments (193 
concepts and 493 data-concepts) and 2779 properties 
are inferred, on the basis of axioms, presented in 
section 3.2. All inferences are stored in a separate 
OWL file in order to reduce the processing 
requirements for the final step. In the final step of 
local ontology generation, application transforms 
classified instances of the meta-model of the 
openERP database to the corresponding OWL 
concepts and properties (see Fig. 4). 

 
Figure 4: OpenERP local ontology in Protege. 

One of the benefits of the semantically 
interoperable systems (see Fig. 2) is the possibility 
to use the single criterion (or criteria) to infer the 
statements that hold true in all these systems, despite 
their heterogeneous structure. Namely, specific 
semantic query executed against the local ontology 
OLi would normally infer triples of information from 
the database of Si. However, if mappings (or logical 
function of mappings) between OLi and OLj exist, 
inferred triples will also include information from 
the database of Sj. For example, in supply chain 
networks, a single semantic query can be used to 
find out the availability of specific resource or 
competence, of all - owned and used by the 
enterprises from the Virtual Breeding Environment 
(for the benefit of virtual enterprise formation 
process). 

3.4 Reasoning with Local Ontologies 
and Translation of Semantic           
to SQL Queries 

In this section, we describe the method for instance 
assertions to local ontology on basis of the semantic 
query results. Method consists of the following 
steps: 1) decomposition and analysis of the semantic 
query; 2) data extraction and instance assertions; 3) 
reasoning. 

Semantic query can be considered as a pair (O, 
C), where O is a set of concepts which need to be 
inferred and C - a set of restrictions to be applied on 
their properties, namely value (owl:hasValue and 
qualified cardinality restrictions, owl:allValuesFrom, 
owl:someValuesFrom) and cardinality constraints 
(owl:cardinality, owl:minCardinality, 
owl:maxCardinality). This consideration 
corresponds to a simplified representation of a SQL 
query which includes tables (and fields) and 
comparison predicate, namely restrictions posed on 
the rows returned by a query. In addition, different 
types of property restrictions correspond to different 
cases (or patterns, where complex semantic query is 
mapped) of SQL queries.  

Where relevant entailments can be reasoned only 
by property domain and range inferences, a set C 
may be considered as necessary and sufficient for 
representation of the semantic query. For example, 
in openERP ontology (see Fig. 4), a DL query 
“hasAccountAccountType some (hasCode value 3)” 
returns all instances of account_account concept 
whose type’s code is exactly 3. This kind of query 
representation (only by using properties restrictions) 
may produce unpredictable and misleading results 
where the restrictions are posed on the common 
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lexical notions of different concepts, such as 
“name”, “type”, “id”, etc. Ambiguity of the 
corresponding properties is reflected on the relevant 
ontology in the sense that their domains are typically 
defined as union of large number of concepts. For 
example, in openERP ontology, domain of the 
“hasName” data property is union of 170 concepts. 
However, this ambiguity may be considered as an 
advantage in some cases. Value restrictions on 
ambiguous data properties may produce relevant 
inferences and thus, facilitate semantic querying 
without a need to have extensive knowledge on the 
underlying ontology structure. This kind of query is 
mapped to a SQL UNION query which combines 
SELECT sub-queries made on the each element of 
the property domain, with the WHERE statement 
corresponding to the relevant rows restrictions. For 
example, in a mapping process, DL query “hasName 
value ‘Derek Porter’” is first used to infer all 170 
possible entailments (property domains), which are, 
then, used to assemble qualified (O,C) pairs, e.g. 
“res_users and hasName value ‘Derek Porter’”. 
When corresponding element of the UNION query is 
assembled, a static field with appropriate label (a 
reference to the concept) is added to each of the 
elements, so as to become possible to decide on the 
entailments. In other words, we need this to 
determine which sub-query actually returned the 
results. 

In the first step of the method, decomposition 
and semantic analysis of the input query is 
performed. The 4-tuplets in forms of (subject 
predicate some|only|min n|max m|exactly o bNode) 
and (subject predicate value {type}) are extracted 
from the input query. In case of the DL query which 
returns all concepts which are related to a company 
whose primary currency is EURO 
(“hasResCompany some (hasResCurrency some 
(hasName value "EUR"))”), following 4-tuplets are 
identified: 

X hasResCompany some bNode1 
bNode1 hasResCurrency some bNode2 
bNode2 hasName value "EUR" 

Next, a database connection is established and 
SQL query is constructed and executed for each 4-
tuplet, in reverse order, as a result of analysis 
described above. Each query returns data which is 
used to generate OWL statements which are asserted 
to a temporary model. Each set of the OWL 
statements corresponds to a sub-graph whose focal 
individual is an instance of the concept, inferred on 
basis of the 4-tuplet’s property domain or returned 
result (label). Other individuals or values correspond 
to defining properties of this concept (inherited 

anonymous classes). In case of ambiguity, resulting 
blank nodes are represented as the sets, which are 
filtered as a result of range inference of the parent 4-
tuplet, in a final stage of the method. 

4 CONCLUSIONS AND FUTURE 
WORK 

Work, presented in this paper is a part of the 
research of semantic interoperability in supply chain 
networks. This research is based on formalization of 
widely adopted supply chain process reference 
model and includes development of its OWL 
representation, semantically enriched model, 
specification of some of its entities (namely, system 
and goal) and correspondences with other models. It 
transforms implicit semantics of the reference model 
to the explicit specification which uses common 
enterprise notions, assumingly defined in other 
domain ontologies and/or conceptualizations of 
relevant enterprise models, architectures and 
frameworks. Used approach is characterized by the 
multiple, cross-referenced levels of abstraction, 
represented by the OWL models of different 
expressivity. Modular design contributes to the 
usability of the ontology framework, by avoiding 
performance related problems in reasoning, as well 
as by providing increased potential for ontology 
matching. Thus, it is expected to facilitate the 
semantic interoperability in supply chain networks. 

In this paper, we focus on introducing the partial 
realities of the enterprises, namely data 
representations of their information systems, into 
heterogeneous environment of a supply chain 
network. In presented approach, enterprise data 
models are used to generate local ontologies, by 
applying a set of rules for interpreting the semantics 
of an ER model, namely database schema. Although 
“database to ontology mapping” is not a novel 
concept, we show that existing approaches are 
characterized by weaknesses, most of which are 
related to lack of completeness of properties’ 
semantics. Our approach and corresponding tools 
aim at overcoming those, thus enabling the complete 
(from the aspect of OWL expressivity) interpretation 
(explicitation) of the implicit semantics of the ER 
model, as well as full correspondence between 
semantic and database queries. 

In context of the semantic interoperability in 
supply chain networks, resulting local ontologies 
may be considered as enterprise message models. As 
such, they aim at enabling the semantic 
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interoperability of corresponding enterprise 
information systems, not the enterprises themselves. 
Still, significant research efforts are needed for 
representation and exposition of the enterprise 
business logic, which is hard-coded in the systems, 
as well as the semantics of the instances, namely 
information which is stored in the database (for 
example, occurrence patterns). Another line of 
research in the future will aim at enactment of the 
generated ontologies, as they are considered only as 
intermediary models. We consider those research 
directions as important for increasing collaboration 
in a supply chain network, as its fulfilment will 
enable logic driven, automatic and transparent 
decision making, thus, facilitating a transition from 
traditional supply chains to virtual enterprise and 
related paradigms. 
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