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Abstract: Focusing on three questions “what faults to seed”, “how to seed faults more effectively” and “how to select 
the seeded fault locations”, the methods of fault seeding are studied. Aiming at procedural language source 
code, a fault classification scheme is presented. Referring to Howden’s fault classification scheme, and 
based on the occurrence causes and manifestations of software faults, a hierarchy of fault classes is 
designed. The faults are categorized as assignment faults, control flow faults or runtime environment faults. 
Then they are further classified by degrees, respectively. 96 categories are included in all. According to this 
classification, a statistical method based on Bayes formula is designed to determine the manifestations of 
seeded faults. A logical method based on the logical relation between control flow and data flow of program 
is presented to set seeded locations. And the concrete seeding process is introduced. Finally, the methods are 
verified by a case. 

1 INTRODUCTION 

In order to resolve the creditability problem of 
software testing results, the ability of the testing 
strategy should be evaluated firstly. Fault 
detectability and detection effectiveness are effective 
measures to evaluate testing techniques (Basili and 
Selby, 1987; Shen et al., 1985). So we can evaluate 
the effectiveness of the testing strategy according to 
the ability to detect certain types of faults which are 
seeded into programs in terms of analysis and 
practical experiences. Software fault seeding refers 
to introducing software faults into programs, usually 
to estimate the number of faults, measure test 
effectiveness and reliability, evaluate test 

detectability, or compare testing strategies 
(Stephens, 2001; Boehm and Port, 2002; Copeland 
and Haemer, 2000; Meek and Siu, 1989; Offutt and 
Hayes, 1995; Scott and Wohlin, 2008; Pocatilu, 
2010).  

It has been proved by practice that if the same 
testing strategies are applied to different types of 
programs, the testing results are different. A testing 
strategy that is effective for all faults in an arbitrary 
program is inexistent (Girgis and Woodward, 1986; 
Selby, 1986). Classifying faults on some principles 
firstly and then de signing testing methods in terms 
of the classification can improve test effectiveness. 
The occurrence probability of each type of fault is 
unequal to another. After classifying faults, different 
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measures can be taken to faults with unequal 
occurrence probability. This can increase test 
efficiency. Referring to Howden’s fault 
classification (Howden, 1976) and based on the 
different occurrence causes, manifestations and 
characteristics of faults, a fault classification scheme 
which aims at procedural language source code is 
put forward. The classification scheme lays one of 
the foundations for the designment of seeded faults. 

The concept of fault seeding has been put 
forward since at least the early 1970s’, but it has not 
been widely used because of many difficulties 
(Stephens, 2001; Boehm and Port, 2002; Copeland 
and Haemer, 2000; Meek and Siu, 1989). One of the 
most important reasons is that there are few 
available strong alternative approaches. Therefore, 
many scholars consider it is worth exploring new 
approaches to fault seeding, which can be used in 
practice. 

The key issue of fault seeding is that it requires a 
way to introduce “representative” faults (Stephens, 
2001; Boehm and Port, 2002; Meek and Siu, 1989; 
Offutt and Hayes, 1995). This paper studies on this 
issue. Focusing on three questions “what faults to 
seed”, “how to seed faults more effectively” and 
“how to select the seeded fault locations”, large 
numbers of work have been done, and a set of 
effective methods which apply to procedural 
language programs have been presented. On the 
basis of the fault classification scheme, a statistical 
method based on Bayes formula is designed to select 
the seeded “content”. Based on the logical relation 
between control flow and data flow of a program, a 
method used to select seeded fault locations is 
designed. Then the problem about seeded fault 
locations is solved. The context of the above work is 
procedural language programs. 

In section 4, the above methods are applied to a 
real program. The size of the program is 4781 LOC. 
And sixteen faults were seeded into the program. 
Then the faulty version of the program was tested. 
The results of the experimentation prove that these 
methods are effective and feasible. 

2 FAULT CLASSIFICATION  

For different purposes, some different software fault 
classification schemes have been put forward (Kuhn, 
1999; Zeil, 1989; Harrold and Offutt, 1994; Telles 
and Yuan, 2001). Starting with the occurrence 
causes of software faults in procedural language 
programs, a fault classification scheme which aims 
at source code is put forward. This classification lays 

the foundation for solving the question of “what 
faults to seed”. 

2.1 The Occurrence Causes of Faults  

The occurrence cause of software faults in 
procedural language programs includes the 
following three aspects. 

Firstly, the assignment statement of procedural 
language program disobeys the Referential 
Transparency principle which is a basic axiom of 
mathematical deduction. This brings about a series 
of side effects. 

Secondly, in procedural language programs, the 
change of program execution order is owing to 
conditional transfer or unconditional transfer. 
Condition and decision are the premises of 
conditional transfer. Producing condition correlates 
with assignment statement nearly. Decision requires 
to execute various test instructions or comparison 
instructions. Dijkstra and his supporters claim that 
unconditional transfer is one of the important 
reasons which cause programs to make faults (Clark, 
1984). Some scholars consider the number of 
unconditional transfer instructions as a predictor of 
faults in a program (Shen et al., 1985). 
Consequently, control and decision are important 
reasons that lead to various faults in procedural 
language programs.   

Thirdly, some software faults about designing or 
coding could create circumstances under which will 
cause computing environment faults. And the 
program execution must depend on computing 
environment. So this will cause failed execution of 
the program. 

The above three fundamental reasons are 
important theoretical bases of the fault classification 
scheme. 

2.2 Fault Manifestations  

By analyzing the manifestations of real faults which 
were detected in tests, the fault manifestations in 
procedural language programs are divided into three 
categories.  

Firstly, when faults occur, calculation in the 
program is incorrect. This produces incorrect 
outputs, but the control flow cannot be changed. 

Secondly, when faults occur, the program takes 
an incorrect path in the execution process, namely, 
the incorrect jumps or loops are caused. This makes 
the program control flow changed. 

Thirdly, when faults occur, circumstances which 
cause  runtime  environment incorrect are generated, 
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so the program cannot execute successfully. 

2.3 Fault Classification Scheme  

According to the occurrence causes of faults and real 
faults which were detected in tests, concerning fault 
manifestations, domain/computation fault 
classification scheme developed by Howden (1976) 
is enhanced. Software faults can be categorized as 
assignment faults, control flow faults or runtime 
environment faults, which are given below. This 
classification scheme applies to procedural language 
programs. 

An assignment fault refers to that the fault only 
causes calculation outputs incorrect, but cannot 
affect the execution path. Assignment faults only 
affect the data flow, but cannot affect the control 
flow. Assignment faults are further classified into 
two categories. An assignment statement fault 
occurs during calculation. A procedure call and 
execution fault occurs during calling, returning or 
executing the called procedure. Then according to 
the concrete occurrence reasons, assignment 
statement faults and procedure call and execution 
faults are further classified by degrees, respectively. 
Thirty-three categories are included in all. 

A control flow fault refers to the fault which 
causes a program to take the incorrect path. Control 
flow faults are further classified into two categories. 
A decision fault occurs when a program takes the 
incorrect path at the decision point, or the required 
path is missing because of the incomplete 

conditions. A control fault occurs when the control 
flow of a program is incorrect because of other 
reasons, although the predicate of the program is 
correct. Then according to the concrete occurrence 
reasons, decision faults and control faults are further 
classified by degrees, respectively. Fifty-one 
categories are included in all. 

The runtime environment cannot generate faults 
of oneself under normal circumstances. But 
sometimes the conditions that make runtime 
environment abnormal are created because of the 
fault in a program. This fault is called runtime 
environment fault. And runtime environment faults 
are categorized as memory faults and interrupt 
faults. Then they are further classified by degrees, 
respectively, according to the concrete occurrence 
reasons. Twelve categories are included in all. 

Then a hierarchy of fault classes is designed. 
Figure 1 only shows the first, the second and the 
third levels because of the limit of the paper length. 

3 FAULT SEEDING METHODS  

This section introduces the methods of designing 
seeded fault manifestations and determining seeded 
locations. These methods provide effective solutions 
for the problem about “what faults to seed”, “how to 
seed faults more effectively” and “how to select the 
seeded fault locations”. 
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Figure 1: The above three levers of the fault classes. 
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3.1 The Application of Bayes Formula 
to Fault Seeding  

Practice has proved that each type of fault includes 
many manifestations. Bayes formula is used to 
compute their occurrence probability, respectively. 

Suppose that Fi belongs to the fault type i of the 
fault classification and Eij belongs to the 
manifestation type j of the fault type i, then the 
expressions are as follows: 

P(Fi) is the occurrence probability of Fi, 
P(Eij) is the occurrence probability of Eij, 
P(Fi|Eij) is the probability that the manifestation 

type j belongs to fault type i, 
P(Eij|Fi) is the probability that the manifestation 

of fault type i is type j. 
Then according to Bayes formula, P(Eij|Fi) is 

calculated: 

∑
=

= m

q
iqiiq

ijiij
iij

EFPEP

EFPEP
FEP

1

)|()(

)|()(
)|(

 
(i=1, 2, 3…n, j=1, 2, 3…m). 

(1) 

The real faults were collected from many 
programs in former tests. And classify them 
according to the above fault classification scheme. 
Then P(Fi), P(Eij) and P(Fi|Eij) can be calculated. 
For example, suppose that one hundred real faults 
can be collected, and three faults therein belong to 
type i, then P(Fi) can be calculated: P(Fi) = 3%. 

In terms of the above formula, P(Eij|Fi) can be 
easily calculated. It refers to the occurrence 
probability of each type of fault manifestation Ei1, 
Ei2 … Eim, when a type of fault Fi occurs. 

From these results, it can be concluded that 
which fault manifestations of a type occur more 
frequently in programs. During fault seeding, these 
fault manifestations should be designed after the 
type of fault is decided. The advantage of this 
method is that it can make the seeded faults 
“representative” and the most effective.  

3.2 Seeded Locations  

A procedural language program is composed of 
control flow and data flow. Figure 2 is a sketch map 
of the program structure. The node “start” stands for 
the start of a program. The solid arrow “c” stands for 
the control flow. And the solid arrow “d” stands for 
the data flow. If the control flow and the data flow 
correlate, the solid arrow “r” stands for the action 
which a program goes into a loop, and the solid 

arrow “j” stands for the action which the control 
flow transfers under the influence of the data flow. 

 
Figure 2: Program structure hint. 

According to Figure 2, the relation between 
control decision and assignment of a program can be 
deduced, as Figure 3 shows. This figure includes 
nodes “IF” which stand for control and decision of a 
program, nodes “:=” which stand for assignment, 
and solid arrows which stand for the control flow or 
the data flow of a program. Figure 3 indicates the 
correlation phenomenon between control decision 
nodes and assignment nodes. Among the congeneric 
nodes, the upper level nodes affect the lower nodes, 
and this is also indicated in Figure 3. If a program is 
analyzed and the seeded locations are determined in 
terms of Figure 3, the conditions are too complex to 
deduce the conclusions. So this figure must be 
decomposed and simplified. 

 
Figure 3: The correlation between control and decision 
nodes and assignment nodes of a program. 

During fault seeding, a simplified analysis 
method is adopted. In this method, the control 
decision and assignment of a program are analyzed 
separately. Figure 3 is divided into the control and 
decision sketch map, such as Figure 4, and the 
assignment sketch map, such as Figure 5. Analyzing 
the control decision and the assignment of a program 
in terms of the practical requirements and 
applications, respectively, can make the problem 
easy, and make the process clear. Consequently, this 
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approach facilitates practical applications. Practice 
has proved that this simplification is feasible.  

Figure 4 is an asymmetric binary tree. Each node 
“IF” has two branches. They correspond to the 
optional paths “then” or “else” and point to a new 
node “IF”, respectively. This figure shows a simple 
hint of the control and decision process of a 
program. Figure 5 is a hierarchy chart. There are 
some assignment nodes on each level, and the 
number of nodes increases level by level. The 
assignments of the lower level nodes are influenced 
by the upper nodes. This figure shows a simple hint 
of the assignment process of a program. 

 
Figure 4: Control and decision hint of a program.  

 
Figure 5: Assignment hint of a program.  

The structures, functions and input domains of a 
program module are analyzed, and the real running 
circumstantialities of the program in the past are 
considered thoroughly. Then each branch of a node 
“IF”, that is the path “then” or “else” of Figure 4, is 
assigned a weight based on the occurrence 
probability. Afterwards, the weight of each node 
“IF” can be obtained by calculating.   

The following illustrates the concrete 
applications of the above method. Figure 6 is a flow 
chart of a program module. The rhombuses stand for 
the control and decision node. Obviously, the first to 
the fifth control and decision nodes of Figure 6 
correspond to nodes “IF” of Figure 4. Suppose that 
IF1, IF2, IF3, IF4 and IF5 represent the control and 
decision nodes of Figure 6, respectively. Their two 
branches “Y” and “N” correspond to the optional 
paths “then” or “else” of Figure 4, respectively. 
Figure 6 also gives the weight coefficients of all 
branches, such as 1ω , '

1ω , and so on. Figure 7 is a 

control and decision sketch map with weights of the 
program module. 

 
Figure 6: The flow chart of the program module.  

 
Figure 7: Control and decision hint of the module with 
weights. 

Linking theoretical analysis with real running 
circumstantialities, the occurrence probabilities of 
“Y” and “N” branches of each control and decision 
node are calculated. Then iω , '

iω ( i=1, 2, 3, 4, 5 ) 
are assigned as follows:  
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Then the weights of all nodes “IF” of the 
program module are given below:  
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2 1 1The weight of the weight of 

0.9
IF IF= ∗
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ω  (8) 

4 2
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Then the weights of all nodes “IF” of the 
program can be figured out. That is to say, the 
weights of all control and decision nodes of the 
program can be obtained. During fault seeding, the 
control and decision nodes with less weight should 
be selected to be optional seeded locations, because 
these parts are more difficult to reach and this can 
make the influence of the seeded faults on the 
program smaller. Consequently, this can force the 
test cases to be of higher efficiency. Thus the 
problem of “how to select the seeded fault locations” 
is solved. 

4 FAULT SEEDING AND TEST 
CASE  

This section introduces concrete steps of fault 
seeding using the above methods by a case. Some 
artificial faults were seeded into a subject assembly 
program. And the faulty versions of the program 
were tested. 

4.1 Historical Statistics of Real Faults  

Collecting the detected faults from many programs 
during recent years, and analyzing their occurrence 
reasons, the type of each fault can be determined. 
Table 1 shows the proportion of each type of fault.  

In this study, these programs are real-time 
embedded software and written in C or assembly 
language. Aiming at different types of programs or 
different organizations’ programs, the different 
experiences and historical data of real faults should 
be collected. That is to say, their own data as table 1 
should be presented. This can lay the foundation for 
“representative” fault designing. 

4.2 Case Study  

This paper seeds faults by the following five steps. 
The subject program is written in assembly 
language. And the size of the program is 4781 LOC. 

In the first step, the source code of the subject 
program was entirely analyzed. 

Table 1: Proportion of Each Type of Fault.  

Type of 
Fault Subcategory 

Percentage of 
each 

Subcategory 

Percentage 
of each 
Type 

Assignment 
faults 

Procedure call and 
execution faults 1.8% 

30.9% Assignment 
statement faults 29.1% 

Control flow 
faults 

Decision faults 45.5% 
48.2% 

Control faults 2.7% 

Runtime 
environment 
faults 

Interrupt faults 16.4% 
20.9% 

Memory faults 4.5% 

All computing nodes of the program were found 
out. Their computing results were analyzed, 
respectively, to determine whether they had effects 
on decisions of path selecting in the program. The 
number of all conditional transfer instructions and 
all unconditional transfer instructions were counted, 
respectively. Table 2 shows the statistical results. 

Table 2: Percentage of Various Transfer Instructions in the 
Subject Program.  

Instruction Number Percentage Instruction Number Percentage 

JMP 77 37.6% JZ 47 22.9% 

JA 13 6.3% JNC 2 1% 

JAE 6 2.9% JNE 4 1.95% 

JB 20 9.8% JNZ 31 15.1% 

JE 3 1.5% JNA 2 1% 

JP 3 1.5% Sum 205 100% 

In the second step, the types and the 
manifestations of the seeded faults were initially 
designed. 

From the work introduced in subsection 4.1, 
some results can be deduced. The percentage of 
assignment faults is 30.9%. Some incorrect changes 
of the control flow were caused by assignment 
statement faults, and the percentage is 62.9%. 
Consequently, during selecting the types of the 
seeded faults, assignment statement faults were 
considered emphatically. From the above 
classification, eight assignment faults were selected. 
Table 3 shows the details about the types of these 
faults.  

The subcategories of seeded control flow faults 
were decided in terms of the data of table 1. The 
transfer instructions which occurred more frequently 
were selected as subject transfer instructions in 
terms of the data of table 2. Six control flow faults 
were selected from the above classification. Table 3 
shows the details about the types of these faults. 
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Considering the characteristics of the subject 
program, two runtime environment faults were 
selected. And they were an interrupt fault and a 
memory fault. 

By using the methods presented in subsection 
3.1, the manifestations of seeded faults were 
designed.   

In the third step, seeded locations were 
determined, and the artificial faults were seeded into 
the subject program one by one. 

In the source code of the subject program, for 
each artificial fault which was designed in the 
second step, the code nodes which can be regarded 
as seeded locations were found out and marked. 
Assignment faults should be located on the 
computing nodes and these nodes must have no 
influence on control flow of the program. Control 
flow faults should be located on the control and 
decision nodes which include conditional transfer 
instructions, unconditional transfer instructions or 
call instructions. Some computing nodes of the 
program affect the control flow change. Control 
flow faults can also be located on these nodes. 
Runtime environment faults should be located on the 
code nodes which have effects on software runtime 
environment. 

According to the methods presented in 
subsection 3.2, the weights of all marked control and 
decision nodes were calculated. The nodes with less 
weight were considered as alternate seeded 
locations. Considering the characteristics of the 
program language, the structures and functions of 
the subject program and so on, the seeded locations 
for each fault were initially selected. Then the faults 
were seeded into the subject program one by one. 

After seeding a fault, the faulty version of the 
subject program was compiled to build an 
executable file. If it is successful, another fault could 
be seeded. If it is unsuccessful, the seeded location 
was modified until generating executable file 
successfully.  

In the fourth step, the faulty version of the 
subject program was tested in order to improve 
seeding.  

Under the current testing conditions, the faulty 
version of the subject program was tested using the 
real testing strategies. If some seeded faults were 
masked by others, or the output data fell into 
confusion, or some seeded faults correlated with 
others etc., the testing strategies can not be evaluated 
effectively. Then the third step needs to be repeated 
for the purpose of improving the seeded locations.  

In the fifth step, the fourth step was repeated 
until all artificial faults which were designed in the 
second step were seeded into the subject program.  

4.3 Tests  

The faulty version of the subject program was tested 
by validation testing. Each validation test case was 
conduced. And table 3 shows the test results. Three 
faults were not detected. They are a variable initial 
value fault, a computational accuracy fault and a 
closing interrupt omission fault. The variable initial 
value fault belongs to variable faults. The 
computational accuracy fault belongs to calculation 
faults. 

Table 3: Fault Seeding in the Subject Program and Testing 
Results. 

Type of Fault Subcategory of Fault Number of 
seeded faults 

Number of 
detected 

faults 

Assignment 
faults 

Incorrect parameter 
passing 1 1 

Incorrect variable  2 1 

Incorrect statement 
position 1 1 

Incorrect constant 
reference 1 1 

Incorrect calculation  2 1 

Register misuse 1 1 

Control flow 
faults 

Incorrect testing 1 1 

Incorrect comparison  1 1 

Incorrect boolean  1 1 

Condition omission  1 1 

Transfer instruction  
misuse 1 1 

Call omission 1 1 

Runtime 
environment 

faults 

Omission of disable 
interrupt  1 0 

Memory invading  1 1 

This variable initial value fault is a maskable 
fault. The initial value of the variable was assigned 
in the variable definition section, but it was not used 
in the program. Consequently, no matter what the 
initial value was, there was no influence on the 
program. This brought hidden trouble to the program 
reliability. As for the computational accuracy fault, 
the data type of the variable was changed from 
“DQ” to “DD”. Although the accuracy was reduced, 
the influence was small because the value of the 
variable was large. So the change was not detected 
by comparing testing data. After seeding the closing 
interrupt omission fault, there was no other 
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interrupts during the program running. So it did not 
cause any influence on the program. This also could 
bring hidden trouble to the program security and 
reliability. 

5 CONCLUSIONS 

This paper presents a source code oriented fault 
classification scheme. The classification scheme was 
applied to software fault seeding. Regarding the 
essence of the procedural language and the 
occurrence causes of software faults as theoretical 
foundations, and considering three aspects about 
assignment statements, control decision and runtime 
environment, the software faults are classified as 
assignment faults, control flow faults or runtime 
environment faults. Then they are further classified 
by degrees, respectively, according to the concrete 
occurrence reasons. That is to say, a hierarchy of 
fault classes is designed.  

A statistical method based on Bayes formula is 
presented, which can provide a guarantee for 
“representative” faults seeding. A logical method 
based on the logical relation between control flow 
and data flow of a program is also presented, which 
can be used to determine the seeded locations 
rationally. After seeding faults into the subject 
program, and testing the faulty version, the fault 
detectability and detection effectiveness can be 
measured by analyzing testing results. This can 
provide important hints for the testing strategy 
improving.  

In the future work, large numbers of naturally 
occurring faults will be collected, and this will 
further improve the authenticity of statistical data. 
Moreover, this can make the types and the 
manifestations of seeded faults which are designed 
during fault seeding more “representative”. The 
proposed methods lay theoretical foundations for 
fault seeding. According to the requirements of the 
real project, the methods can be adjusted properly, 
and the automatic fault seeder will be designed. 
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