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Abstract: Implementation specific computation modules hold the key to the success of fast DSP and Embedded 
systems. Exponential encoders, dedicated multipliers, barrel shifters and accumulators are common units 
available on DSPs. The family of constant divider circuits of the form 2p±1, which are useful for image 
processing, statistical processing like histograms etc., is the specific focus of this paper. This family is 
largely dominated by the Residue Number System (RNS), Petry and Srinivasan algorithms and the Shuo-
Yen Robert-Li algorithm. While these algorithms offer various trade-offs in terms of accuracy, memory 
footprint, power consumption and timing behavior, none of these methods are suited for processing 
serialized inputs, dividend inputs with apriori unknown bit length and the circuits have to be replaced with 
change in input bit length. The circuit size also grows enormously for large input lengths along with a 
reduction in accuracy. These methods are suited only for integer division and are unsuited for extension to 
floating/fixed point division. In this paper a novel constant divider algorithm is offered, which overcomes 
the above mentioned limitations while handling arbitrary length, serial/ parallel data and producing full-
precision, full-accuracy, floating point capable results with constant circuit requirements and comparable 
timing to state of the art methods.     

1 INTRODUCTION 

Software and hardware optimization processes are 
essential elements towards building a cost-effective 
and efficient embedded system. Dedicated 
computation modules hold the key to the success of 
fast DSP, GPU and Embedded systems. Modern 
DSP development and deployment kits host a 
number of dedicated computation units. Exponential 
encoders, dedicated multipliers, barrel shifters and 
accumulators are common units available on DSPs. 
One specific computation module that holds 
considerable importance with respect to embedded 
systems designed for signal and image processing 
applications is the constant division operation. The 
family of constant divider circuits of the form 2p±1 
is the specific focus of this paper.  

This computational module is useful for image 
processing applications (such as division by image 
dimensions or array lengths or extreme image 
intensity values – typically represented as 2p-1), 
signal processing (such as Fourier Transform 
normalization), statistical processing like histogram 

estimation etc. Division by 2p-1 also assumes 
significance due to the fact that division by any 
integer can be converted to that format using the 
Euler-Fermat theorem.  

2 RELATED WORK 

The state of the art with respect to this family of 
constant division by 2p±1 includes the Residue 
Number System (RNS) (Al-Besher, 1997), Petry and 
Srinivasan algorithms (Srinivasan, 2007) (Petry, 
1994) (Petry, 1983) and the Shuo-Yen Robert-Li 
algorithm (Li, 1985). While these algorithms offer 
various trade-offs in terms of accuracy, memory 
footprint, power consumption and timing behavior 
(extensive comparisons are presented in 
(Schwarzbacher, 2000) and (Srinivasan, 2007)), 
none of these methods are suited for processing 
serialized inputs, dividend inputs with apriori 
unknown bit length and the circuits have to be 
replaced with change in input bit length. In other 
words, once a circuit has been designed for a certain 
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input bit stream size, the circuit has to be modified 
in order to support longer bit streams. Also, these 
circuits cannot produce partial or serialized results 
and require the entire input data to be available 
before performing the division operation. The 
quotient and remainder are estimated using a shift, 
add/subtract and scale paradigm resulting from 
inverting the divisor in the binary format. 
Alternatively, the division can be represented as a 
multiplication (or shift and add) with a pre-scaling 
operation. While some of the methods such as (Guei, 
1985) compute the quotient bits from higher order to 
lower order, methods such as (Artzy, 1974) compute 
it in the reverse order. Methods such as (Petry, 1994) 
do not give out an explicit remainder. Certain 
methods are also restricted to exact divisions.  

In addition to these constraints, the circuit size 
for the implementation of most of these algorithms 
also grows enormously for large input lengths along 
with a reduction in accuracy and increase in 
processing time (Figure 1 and 2). The addition of a 
single tuple of dividend bits demands a circuit 
change requiring an additional shifter and adder at 
the very least. Moreover, these methods are suited 
only for integer division and are unsuited for 
extension to floating/fixed point division. 

 
Figure 1: Accuracy and error deviation of different 
approaches for a divide-by-3 operation (Src: 
Schwarzbacher, 2000). 

3 CONSTANT DIVIDER 
ALGORITHM 

In this paper a novel constant divider algorithm is 
offered, which overcomes the limitations of the 
previous algorithms, while handling arbitrary length, 
serial/ parallel data and producing full-precision, 
full-accuracy, floating point capable results with 
constant circuit requirements and comparable timing 
to state of the art methods.  

 
Figure 2: Timing behavior of different approaches 
obtained on European Silicon Structures 0.7µ CMOS 
technology (Src: Schwarzbacher, 2000). 

Two specific streams of processing are employed 
for the cases of 2p-1 and 2p+1. These are described 
in Figure 3 and Figure 4 respectively. 

3.1 Division by 2p-1 

The pseudo-code for the case of 2p-1 is detailed 
below. 
Step 1: Segment dividend into p-bit tuples 
Step 2: Load Tn into register 1, Tn-1 into register 2 
Step 3: Add register 1 and 2 
Step 4: If Sum >= 2p-1 
  Quotient tuple = register 1 + 1; 
  Remainder tuple = Sum – (2p-1); 
 Else 
  Quotient tuple = register 1; 
  Remainder tuple = Sum; 
Step 5: Save quotient tuple in output buffer 
Step 6: Load remainder tuple into register 1, next 
dividend tuple (Tn-k) into register 2 
Step 7: Continue to Step 4, unless there are no 
dividend tuples left 
Step 8: Output partial remainder as remainder (for 
integer division) or repeat partial remainder tuple 
(for floating point division)  

For the case of division by 2p-1, the input data 
stream is divided into tuples of equal bit length ‘p’. 
Zero padding is carried out, if necessary to 
regularize the Most Significant Tuple (MST) to the 
tuple size (p) being used. For the case of serial data 
streams, this regularization may not be necessary, if 
the serial input stream has been pre-synchronized for 
the required tuple size. In Figure 3, it has been 
assumed that for a tuple size of ‘p’ bits and input 
dividend data stream length of ‘N’ bits, the number 
of tuples generated is ‘n’. For the generation of the 
most significant quotient tuple (represented by t=0 in 
Figure 3), the MST (Tn) of the dividend and the 
second most significant tuple (Tn-1) are loaded to 
registers 1 and 2 respectively. A p-bit adder 
calculates the sum of the two tuples. For the case of 
an overflow – i.e. the carry bit being set, it is 
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Figure 3: Functional units of the proposed 2p-1 constant divider circuit. 

 
Figure 4: Functional units of the proposed 2p+1 constant divider circuit. 

necessary to increment the contents of register 1 in 
order to obtain the MST of the quotient. This is done 
by connecting the activation port of the incrementor 
to the carry bit. The incrementor is a functional unit 
that increments the contents of a register by 1. It can 

possibly be implemented using a simple adder 
circuit or a counter. The MST of the quotient (Qn-1) 
thus generated can be stored in a quotient buffer or 
serialized for an output data stream. The sum output 
from  the  p-bit  adder  forms the partial remainder.  
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Similar to the quotient tuple, the partial 
remainder has to be corrected in the case of a 
generated carry. A second incrementor with the 
activation port tied to the carry bit output of the 
adder is used to obtain the partial remainder from the 
generated sum tuple. For successive time sample 
instances (t > 0), the partial remainder is loaded into 
register 1 for the calculation of successive tuples of 
the quotient. At these instances (t > 0), higher order 
tuples (Tn-2, Tn-3, Tn-4, Tn-5 ..... etc.) are progressively 
loaded into register 2. The adder then outputs the 
partial quotient and remainder for each time instant. 
The incrementor normalizes the partial quotient and 
the remainder which are fed to the output queue and 
to register 1 for the processing of the next sample 
instant, respectively. The cycle generates the 
quotient tuple bits for the whole part (non-fractional) 
part in the case of both integer and floating point 
division.  

The processing is terminated when all the input 
dividend tuples have been processed. In the case of 
integer division, the process remainder equals the 
partial remainder obtained from the second 
incrementor for the last time sequence instant (t = n-
1). In the case of floating point division the 
fractional part of the quotient is obtained as non-
terminating, recurring tuple bits computed by 
repeating the tuple bits representing the partial 
remainder. The fractional tuples can be generated to 
any length based on the required levels of system 
accuracy and precision. While this computation is 
not very straightforward for the case of division by 
2p+1, we present an alternate scheme to tackle this 
issue, as demonstrated in the next section. 
Computation of the fractional part is a major 
advantage of the scheme presented in this paper and 
unlike Petry and Srinivas or RNS, full accuracy can 
be maintained to any desired precision.  

3.2 Division by 2p+1 

The pseudo-code for the case of 2p+1 is detailed 
below. 
Step 1: Segment dividend into p-bit tuples 
Step 2: Load Tn into register 1, Tn-1 into register 2 
Step 3: Subtract register 1 from 2 
Step 4: If Difference >= 0 
  Quotient tuple = register 1; 
  Remainder tuple = Difference; 
 Else 
  Quotient tuple = register 1 - 1; 
  Remainder tuple=Difference+(2p+1); 
Step 5: Save quotient tuple in output buffer 

Step 6: Load remainder tuple into register 1, next 
dividend tuple (Tn-k) into register 2 
Step 7: Continue to Step 4, unless there are no 
dividend tuples left 
Step 8: Output partial remainder as remainder (for 
integer division) or repeat partial remainder less 1 
and its 2p-1 complement tuple (for floating point 
division)  

For the case of division by 2p+1, the input data 
stream is similarly divided into tuples of equal bit 
length ‘p’. Again, zero padding is carried out, if 
necessary to regularize the Most Significant Tuple 
(MST) to the tuple size (p) being used. In Figure 4, it 
has been assumed that for a tuple size of ‘p’ bits and 
input dividend data stream length of ‘N’ bits, the 
number of tuples generated is ‘n’. Similar to the case 
of division by 2p-1, for the generation of the most 
significant quotient tuple (represented by t=0 in 
Figure 4), the MST (Tn) of the dividend and the 
second most significant tuple (Tn-1) are loaded to 
registers 1 and 2 respectively. A p-bit subtractor 
calculates the difference of the two tuples (register 2 
– register 1). The subtractor can be implemented 
using a 2’s complement logical adder. This also 
helps obtain the correct difference between the two 
tuples (the value being the absolute difference 
between the two tuples along with a negative sign, 
indicated by the borrow/overflow bit, for the case 
when the value in register 2 is smaller than that in 
register 1). In this case, i.e. the overflow or borrow 
bit being set, it is necessary to decrement the 
contents of register 1 in order to obtain the MST of 
the quotient. This is done by connecting the 
activation port of the decrementor to the borrow bit. 
The decrementor is a functional unit that decrements 
the contents of a register by 1. It can possibly be 
implemented using a simple subtractor circuit or a 
counter. Again, similar to the case of division by 2p-
1, the MST of the quotient (Qn-1) thus generated can 
be stored in a quotient buffer or serialized for an 
output data stream. The difference output from the 
p-bit subtractor forms the partial remainder.  

The partial remainder also has to be corrected 
in the case of a generated borrow. A p-bit subtractor 
(or alternatively a bit reversal module) with the 
activation port tied to the borrow bit output of the 
subtractor is used to obtain the partial remainder 
from the generated sum tuple. The subtractor 
computes the value of 2p+1 – Diff. Note that the 
‘Diff’ quantity used here is the absolute difference 
value between the two registers and hence the need 
for the additional negative sign. For successive time 
sample instances (t > 0), the partial remainder is 
loaded into register 1 for the calculation of 
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successive tuples of the quotient. As before, at these 
instances (t > 0), higher order tuples (Tn-2, Tn-3, Tn-4, 
Tn-5 ..... etc.) are progressively loaded into register 2. 
The subtractor then outputs the partial quotient and 
remainder for each time instant, while the 
decrementor and the second subtractor normalize the 
partial quotient and the remainder which are fed to 
the output queue and to register 1 for the processing 
of the next sample instant, respectively. The cycle 
generates the quotient tuple bits for the whole part 
(non-fractional) part in the case of both integer and 
floating point division.  

The processing is terminated when all the input 
dividend tuples have been processed. In the case of 
integer division, the process remainder equals the 
partial remainder obtained from the second 
subtractor for the last time sequence instant (t = n-1). 
In the case of floating point division, the fractional 
part of the quotient is obtained as non-terminating, 
recurring tuple bits computed by repeating the tuple 
bits representing the partial remainder less 1 and its 
2p-1 complement. In other words the fraction part 
consists of repeating sets of 2 tuples, the first of 
which is one less than the partial remainder (R – 1) 
and the second tuple is (2P-1) – (R-1).  

As before, the fractional tuples can be 
generated to any length based on the required levels 
of system accuracy and precision.  

4 ANALYSIS 

Numerically, the algorithm presented in this paper 
has an analogue in (Guei, 1985). However, unlike 
the (Guei, 1985) algorithm which requires the entire 
input stream for the computation, our scheme 
requires only two tuples at any time sequence 
instant, giving out one tuple of quotient bits along 
with the partial remainder, based on carry/ borrow 
calculation. Thus, our algorithm is well suited for 
serial processing. Moreover, the circuit requirements 
are constant for varying input bit lengths. 
Additionally, our algorithm is well suited for integer 
as well as floating point divisions and can generate 
fractional results with arbitrary accuracy/ precision. 

Since tuples can be processed serially using a 
single adder and 2 incrementors (example case of 
division by 2P-1), the constant circuit can be 
efficiently implemented in hardware. As noted 
earlier, the requirements do not change with increase 
in input bit length and the same circuit can be 
replicated for operation in parallel mode, in which 
case the number of such computation units will be 
equal to n – 1. Also, the design provides a natural 

way to trade-off speed and circuit requirements 
through the possibility of using a serial mode of 
operation working on multiple tuples (or parallel 
tuples) at the same time. 

The possibility of calculating the fractional part 
of the quotient to any arbitrary length with full 
accuracy supports the use of the algorithm for 
constant divider circuits in DSPs and other 
embedded systems. 

Since the number of computational units in the 
pipeline is less than or is at least comparable to other 
state-of-art methods, it can be expected that the 
computational time numbers also favor use of our 
approach. 

5 CONCLUSIONS 
AND FUTURE WORK 

In this paper, we have presented the design for a 
constant divider circuit of the form of the form 2p±1. 
Analyses have also been presented to demonstrate 
the constant computation requirements of the 
approach. The method is well suited for processing 
serialized inputs, dividend inputs with apriori 
unknown bit length while producing full-precision, 
full-accuracy, floating point capable results. The 
next step would be to implement the design using 
VHDL/Verilog for simulation and testing followed 
by actual implementation in VLSI for a thorough 
evaluation of timing, power requirements, memory 
footprint and chip area estimation. This is expected 
to be followed by performance evaluation of the 
circuitry in consonance with a DSP or Embedded 
System or a GPU targeted at applications such as 
image processing, signal processing and statistical/ 
mathematical computation and modeling. 
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