
EVENT PROCESSING IN THE CLOUD ENVIRONMENT
WITH WELL DEFINED SEMANTICS

Marc Schaaf, Arne Koschel
University of Applied Sciences and Arts, Ricklinger Stadtweg 120, 30459 Hannover, Germany

Stella Gatziu Grivas
University of Applied Sciences Northwestern Switzerland, Riggenbachstr. 16, 4600 Olten, Switzerland

Keywords: Active DBMS, Activity service, Event condition action (ECA) rules, Cloud computing, Enterprise architecture
frameworks, Event driven architectures, Complex event processing.

Abstract: The paper presents the OM4SPACE project, which aims to provide an integration of active functionality into
cloud environments to enable applications to further benefit from the agility of this new environment. In
particular, we propose an activity service that incorporates well defined interfaces and the clear semantic of
Active Database Management System (Active DBMS) style event processing combined with the concepts of
modern Event Driven Architectures and the approach of Complex Event Processing. This gives the potential
to provide active functionality across the boundaries of one Cloud and to decouple the usage of active func-
tionality from the concrete cloud provider. In this paper we present our initial prototypic implementation of
this activity service.

1 INTRODUCTION

Cloud computing (Armbrust et al., 2009) is a ’trendy
new kid on the block’ as many recent activities in
research and industry show. Companies and open
source players almost constantly announce new fea-
tures for their cloud platforms.

Event-based active mechanisms are an important
feature for the cloud, be it just in form of messag-
ing or in more elaborated event- or rule-driven behav-
ior (Rozsnayi et al., 2007). Although the necessity of
supporting active behavior is clear, the open issue is
the lack of a well-defined semantic.

The overcome of this drawback is the contribution
of our work. For our OM4SPACE (Open Mediation
4 SOA and P2P Based Active Cloud Components)
project, we proposed an activity service for cloud
computing (Schaaf et al., 2010). The activity service
adopts its semantics from the well-proven and clear
semantics of Active Database Management System
(Active DBMS) style (Widom and Ceri, 1996; Paton,
1999) event-condition-action (ECA) rules. This se-
mantic is modified and extended for the cloud. The
design of the activity service is based on proven prin-
ciples, patterns, and technologies from service orien-

ted architectures (SOA). Eventually, we will deliver
an activity service with a precisely defined Active
DBMS style ECA rule and execution model for the
cloud.

Event-Driven mechanisms have been extensively
investigated in the 1990s starting with the approach of
active databases supporting ECA-rules. One step be-
yond go approaches concerning ECA rule processing
in distributed environments. In (Koschel and Locke-
mann, 1998), active functionality was extended into
an ECA rule service for CORBA-based distributed
environments. Actually, this approach is one initial
step in our direction. Recently Event Driven Archi-
tecture (EDA) have been proposed as an architecture
style for the creation of distributed systems with the
aim to create agile applications. Event Driven Archi-
tectures are tightly linked to Complex Event Process-
ing (CEP), which is an emerging enabling technology
to apply context-aware knowledge from and against
large amounts of event data in near real-time (Luck-
ham, 2001).

With the activity service we will extend the set of
available cloud services, which can be used by the de-
velopers to rapidly create or adapt their applications
for the cloud. Moreover, it will bridge the gaps be-

176 Schaaf M., Koschel A. and Gatziu Grivas S..
EVENT PROCESSING IN THE CLOUD ENVIRONMENT WITH WELL DEFINED SEMANTICS.
DOI: 10.5220/0003393001760179
In Proceedings of the 1st International Conference on Cloud Computing and Services Science (CLOSER-2011), pages 176-179
ISBN: 978-989-8425-52-2
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



tween several cloud specific messaging or notification
mechanisms by providing an abstraction across the
vendor specific API’s. This will enable developers of
event-driven cloud applications to utilize a powerful
middleware for active functionality without the risk
of a vendor lock-in. Application areas include, for ex-
ample, cloud vendor independent complex event pro-
cessing scenarios or the processing of events, which
occur in logistics or finance applications.

To achieve our goals we need to deal with several
challenges including: Well-defined semantics for the
activity service, architectural issues, highly dynamic
runtime environments, highly heterogeneous system
environments, vendor specific event or message com-
munication mechanisms etc.

While (Schaaf et al., 2010) sketched the idea and
key high-level architectural concepts of the activity
service, this paper summarizes them only briefly. Its
core contribution is our meanwhile developed initial
prototypic implementation of the activity service.

The remainder of this paper starts with an
overview description of the activity service with its
components. Afterwards we describe our prototypic
implementation followed by an outline of the next
steps for the implementation. Eventually we conclude
with a summary and an outlook on the next steps for
the whole project.

2 AN ACTIVITY SERVICE FOR
THE CLOUD

The aim of our work is to bring active functionality
into the cloud in the form of a simple and easy to use
service, which features a clear semantic. Instead of
defining the semantic for the service from scratch, we
base our approach on the proven and well-defined se-
mantics of active database systems and aim to adapt
them to the new, highly dynamic and massively dis-
tributed environment. The architectural and seman-
tical base of our work uses the unbundling approach
for active functionality from Active DBMS concepts
(Gatziu et al., 1998) for distributed and heterogeneous
environments. Based on these results and in order to
achieve a high flexibility, we base our activity service
on two components: the event service and the rule ex-
ecution service (Figure 1).

The communication between the components is
realized based on the concept of a SOA thus utiliz-
ing services with well-specified interfaces with clear
semantics. Thereby the concrete implementation of
the different components is interchangeable.

We consider the interaction of applications located
in one cloud with applications located in other clouds

Infrastructure
E
M

Platform E
M

Application E
M

C
lo

u
d

M
e
d
ia

to
r

E M

Event Service

CEDEvent History

Rule Execution Service

Rule
Management

Event Sources / Event Consumers

publish event

consume
event

consume
event

execute 
action

Rule Base

Service 
Registry

E
M

= Event Monitor

manage 
rules

Figure 1: The components of the activity service and their
interactions.

as a common use case. Thus the event producers and
consumers of the activity service are not limited to the
components in the cloud where the activity service is
located.

2.1 Activity Service: Components

Figure 1 illustrates the different components of the ac-
tivity service and their interactions. Their functional-
ity is explained in more detail in (Schaaf et al., 2010)
and thus only summarized in this section.

The event service component provides the means
to be informed about the occurrence of events from
different event sources, to pre-process those events
and to deliver them to appropriate event consumers.
Therefore it provides a service, which can be used
by event producers to send their events to the event
service via a sendEvent method. For each incoming
event, the event service determines if there are event
consumers that are interested in this particular event
and delivers the event to them.

In addition the incoming events are stored into
an event history to support the monitoring of com-
plex/composite events. A complex event detector
(CED) evaluates the events and derives new complex
events, which are fed back into the processing mecha-
nism. Consequently they are handled again as if they
were incoming events.

To receive events from the event service, an event
consumer has to implement an appropriate event han-
dler service, which needs to be published to the ser-
vice registry. The event service discovers those ser-
vices through the service registry. To extend the
mechanism of the event service, we utilize the con-
cept of an event monitor which capsules data sources
that are not able to actively notify the event service
(Schaaf et al., 2010).

The rule execution service receives events from
the event service to evaluate them against sophisti-
cated ECA rules. Therefore it acts as an event con-
sumer of the event service by registering an event han-
dler service. The rules result in the execution of action
handlers. Such an action handler needs to be imple-

EVENT PROCESSING IN THE CLOUD ENVIRONMENT WITH WELL DEFINED SEMANTICS

177



Legacy
App.

EventMonitor
(concrete)
Capsule

API C
o
n

v
e
rt

e
r sendEvent

WSC

Event Service

Converter EventHandler

EventDispatcher

Esper Handler
Esper

WSC
WS

Rule Execution
Service

Converter EventHandler

Esper Handler
Esper

Event
Consumer

WSC
WS

WS
WSC

WS
WSC

Action
Handler WS

WSC

sendEvent
(De)Registration

consume
Event

ExecuteAction

UDDI
Registry

Registration Registration

Registration

Figure 2: The Technical Architecture of the Activity Service

mented by each of the components that are intended
to be called from within rules.

2.2 Putting the Activity Service into
Context

Most of the cloud architectures that were reviewed fo-
cus on just technical stacks that lack interoperability
with other providers. In the area of event process-
ing mechanisms, many existing offerings include the
means for message passing like for example Amazon
with their Simple Queuing Service. However these
offerings also lack common interoperable and well-
defined interfaces that prevent a vendor lock-in and
enable applications to use active mechanisms across
the boundaries of a single provider. With our activity
service we fill this gap by providing a well-defined
service with a clear semantic, which is independent
of the concrete cloud provider. Furthermore we will
extend the activity service across the boundaries of
one cloud so that it not only provides a general inter-
face but also provides the means to communicate with
application parts located in different clouds. The long
term objective of our project is to extend the platform
for cloud based applications so that it provides the
means to create applications that can benefit from the
dynamics of cloud environments by utilizing active
mechanisms in a provider independent way.

2.3 Prototypic Implementation

Based on our conceptual work a prototypical imple-
mentation of the activity service was developed. Its
technical system architecture is illustrated in Figure 2
and described in the following subsections.

2.3.1 Technical Architecture

Technically the activity service uses Web Services
to receive events from event producers. After the
event processing, it delivers the events to Web Ser-
vices, which are provided by the event consumers.

The event processing in the event service itself is cur-
rently based on the complex event processing engine
Esper (esper.codehaus.org). However, all details re-
garding the integration of Esper are hidden from the
event producers and consumers. Thus the processing
engine could be replaced with another rule processing
engine such as CLIPS or Drools .

As a starting point we work with an event type
which basically consists of the event type name, the
event source name and a set of timestamps to record
the event occurrence, detection and processing times.
The mentioned fields provide the header information
of the event, the body of the event contains a flexi-
ble set of key value pairs, which are specific for each
event type and can be used as needed.

The discovery of event consumers is realized as a
facade in front of an UDDI repository, which informs
the event service of new event consumers by sending
an event whenever a service appears or disappears.
The reason for the introduction of a facade in front of
the repository is the lack of a notification mechanism
in UDDI to inform a subscriber about newly added
services

For the notification of the event service, the UDDI
facade uses the active mechanisms that are provided
by the event service in the first place. Thus the fa-
cade acts as an event producer and informs the event
service of registered or deregistered event hander ser-
vices by raising an event. The event contains the
WSDL of the event handler service. Furthermore it
contains a filter string to specify events, which the
handler is interested in. The event service receives
the event and thus gets all the required information to
contact the event handler if a matching event has to
be delivered. Due to this mechanism, the event ser-
vice does not require any knowledge about the UDDI
registry.

As the implementation provides all required com-
ponents and functionalities, a complete roundtrip
from the event producer through the (complex) event
processing to the event consumers including the auto-
matic discovery of event handlers is possible.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

178



One of the next steps for the implementation is to
move from the specialized Web Service interfaces to a
dedicated communications layer that is outlined in the
next section. Moreover we are working on the real-
ization of the rule execution service to support the de-
coupled processing of more elaborated and time con-
suming rules that result in the execution of an external
action instead of the generation of new events.

2.3.2 Communication Infrastructure
Abstraction

Our previous descriptions, as well as our current
implementation, are tightly linked to Web services.
However our general concept is not limited to one
communication mechanism. Instead we will extend
our implementation with a layer of abstraction from
the actual communication mechanism to allow the ac-
tivity service to interact with cloud provider specific
solutions like the messaging facilities provided as part
of Amazon’s cloud offerings.

Moreover the activity service will provide the pos-
sibility to use multiple communication mechanisms in
parallel. This provides the capability to mediate be-
tween different mechanisms in order to combine event
based applications, which use otherwise incompatible
(provider specific) communication mechanisms.

For this purpose we are currently working on an
abstraction layer, which hides the different provider
specific methods from the activity service and the
event produces and consumers. This layer will then be
implemented for each specific communication mech-
anism like Amazons Simple Queuing Service, a JMS
client or a WS-Eventing based system and can thus
provide an optimal mapping of the event structure to
the transport mechanism.

Discovery. With regard to the integration of an ab-
straction layer from the transport mechanisms, a sim-
ilar technology independent approach is required for
the discovery.

Our approach for the discovery of new event han-
dlers is based on events and thus decoupled from the
actual discovery component. For the current imple-
mentation the technology specific parts of the dis-
covery are handled by the mentioned UDDI facade.
This facade creates events with a technology indepen-
dent description of the requested event types, which
is needed by the event service itself and a technology
specific description of the endpoint. This mechanism
allows the event service to discover event handlers
that use any of the communication mechanisms that
are supported by the abstraction layer.

3 CONCLUSIONS

With the OM4SPACE project we extend the cloud
platform with active functionality so that cloud based
applications can easily integrate active mechanisms
and therefore react to events just in time. With this
we will assist cloud applications to become even more
dynamic and to reach their full potential. Further-
more we provide this active behavior with the clear
and well-proven semantic of Active DBMS and well-
defined interfaces across the border of a single cloud
and without the limitations given by vendor specific
messaging mechanisms.

After the definition of the architecture and a pro-
totypic realization of the activity service, we now fo-
cus on the extension of the concept across the border
of a single cloud and the adaption to the new highly
dynamic environment. Furthermore we focus on the
evaluation of our concept in the scope of real live ap-
plication scenarios.

REFERENCES

Armbrust, M. et al. (2009). Above the Clouds: A Berkeley
View of Cloud Computing. Technical report, EECS
Department, University of California, Berkeley.

Gatziu, S., Koschel, A., et al. (1998). Unbundling active
functionality. ACM SIGMOD Rec., 27(1):35–40.

Koschel, A. and Lockemann, P. C. (1998). Distributed
events in active database systems: letting the genie out
of the bottle. Data Knowl. Eng., 25(1-2):11–28.

Luckham, D. C. (2001). The Power of Events: An Intro-
duction to Complex Event Processing in Distributed
Enterprise Systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA.

Paton, N. W., editor (1999). Active Rules for Databases.
Springer, New York.

Rozsnayi, S. et al. (2007). Event Cloud - Searching for
Correlated Business Events. 9th IEEE International
Conference on E-Commerce Technology.

Schaaf, M., Koschel, A., Grivas, S. G., and Astrova, I.
(2010). An active dbms style activity service for cloud
environments. Lisbon, Portugal. XPS (Xpert Publish-
ing Services).

Widom, J. and Ceri, S., editors (1996). Active Database
Systems: Triggers and Rules for Advanced Database
Processing. Morgan Kaufmann Publishers, San Fran-
cisco, CA, U.S.A.

EVENT PROCESSING IN THE CLOUD ENVIRONMENT WITH WELL DEFINED SEMANTICS

179


