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Abstract: MapReduce systems have become popular for processing large data sets and are increasingly being used in
e-science applications. In contrast to simple application scenarios like word count, e-science applications in-
volve complex computations which pose new challenges to MapReduce systems. In particular, (a) the runtime
complexity of the reducer task is typically high, and (b) scientific data is often skewed. This leads to highly
varying execution times for the reducers. Varying execution times result in low resource utilisation and high
overall execution time since the next MapReduce cycle can only start after all reducers are done.
In this paper we address the problem of efficiently processing MapReduce jobs with complex reducer tasks
over skewed data. We define a new cost model that takes into account non-linear reducer tasks and we provide
an algorithm to estimate the cost in a distributed environment. We propose two load balancing approaches, fine
partitioning and dynamic fragmentation, that are based on our cost model and can deal with both skewed data
and complex reduce tasks. Fine partitioning produces a fixed number of data partitions, dynamic fragmentation
dynamically splits large partitions into smaller portions and replicates data if necessary. Our approaches can
be seamlessly integrated into existing MapReduce systems like Hadoop. We empirically evaluate our solution
on both synthetic data and real data from an e-science application.

1 INTRODUCTION

Over the last years, MapReduce has become popular
for processing massive data sets. Most research in
this area considers simple application scenarios like
log file analysis, word count, or sorting, and current
systems adopt a simple hashing approach to distribute
the load to the reducers.

Processing massive amounts of data is also a key
challenge in e-science. However, scientific applica-
tions exhibit properties to which current MapReduce
systems are not geared. First, the runtime complex-
ity of the reducer tasks is often non-linear. Second,
the distribution of scientific data is typically skewed.
The high runtime complexity amplifies the skew and
leads to highly varying execution times of the reduc-
ers. Thus reducers with a low load have to wait for
the reducers with high load.

MapReduce jobs with high reducer complexity
include data mining tasks, which are popular in
e-science and often have higher polynomial or even
exponential worst case complexity. Consider, for ex-
ample, the Millennium simulation (Springel et al.,
2005), an important astrophysical data set that conta-

ins more than 18 million trees with a total of 760 mil-
lion nodes describing the evolution of the universe.
Experiments with frequent subtree mining on a sub-
set of the Millennium trees resulted in execution time
differences of several hours between the reducers.

Scientific data is often skewed. Skew arises from
physical properties of the observed objects (e.g., the
height of patients in medical studies), from research
interests focussing on subsets of the entire domain
(e.g., areas with active volcanoes in geosciences), or
from properties of the instruments and software em-
ployed to gather the data. In the Millennium simula-
tion, each tree node has a mass. The mass distribution
is highly skewed, with the 7 most frequent values ap-
pearing over 20 million times each, while almost 75%
of the values appear no more than 10 times.

In the map phase, MapReduce systems generate
(key,value) pairs from the input data. A cluster is the
subset of all (key,value) pairs, or tuples, sharing the
same key. Standard systems like Hadoop1 use hashing
to distribute the clusters to the reducers. Each reducer
gets approximately the same number of clusters. For
skewed data, this approach is not good enough since

1http://hadoop.apache.org
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clusters may vary considerably in size. With non-
linear reducers, the problem is even worse. The non-
linear reduce function is evaluated for each cluster
and even sets of clusters with the same overall number
of tuples can have very different execution times. Pro-
cessing a small number of large clusters takes much
longer than processing many small clusters.

Example 1. Assume a set of clusters consisting of
four tuples. The cost of a cluster is the number of
tuples to the third. If the four tuples belong to one
cluster, its cost is43 = 64. If the set consists of two
clusters with two tuples each, the cost is only2 ·23 =
16.

In this paper, we design a new cost model that
takes into account non-linear reducer functions and
skewed data distributions. Instead of considering only
the size of the data partition (set of clusters) that is as-
signed to each reducer, we estimate its execution cost.
This is a challenging problem since a single cluster
may be produced by different mappers in a distributed
manner. Computing detailed statistics for each clus-
ter is too expensive since the number of clusters may
be proportional to the data size. We estimate cluster
cardinalities and their cost from aggregated statistics
computed on distributed mappers.

We design two new algorithms that use our cost
model to distribute the work load to reducers. The
first algorithm,fine partitioning, splits the input data
into a fixed number of partitions. The number of par-
titions is larger than the number of reducers, and the
goal is to distribute the partitions such that the execu-
tion times for all reducers are similar. Fine partition-
ing does not control the cost of the partitions while
they are created, but achieves balanced loads by dis-
tributing expensive partitions to different reducers. In
our second approach,dynamic fragmentation, expen-
sive partitions are split locally by each mapper while
they are created, and tuples are replicated if neces-
sary. As a result, the cost of the partitions is more
uniform and a good load balancing is easier to achieve
for highly skewed distributions.

Summarising, our contribution is the following:

• We present a new cost model that takes into ac-
count non-linear reducers and skewed data distri-
butions, and we propose an efficient algorithm to
estimate the cost in a distributed environment.

• We propose two load balancing algorithms that
are based on our cost model and evenly distribute
the load on the reducers. The first algorithm, fine
partitioning, splits the data into a fixed number
of partitions, estimates their cost, and distributes
them appropriately. The second approach, dy-

namic fragmentation, controls the cost of the par-
titions while they are created.

• We empirically evaluate our techniques on syn-
thetic data sets with controlled skew, as well as on
real e-science data from the astrophysics domain.

2 DATA SKEW IN MapReduce

From a data-centric perspective, a MapReduce system
works as follows.m mappers transform the input to
a MapReduce job into a bag of (key,value) pairs, the
intermediate result I⊆K×V. The sub-bag ofI con-
taining all (key,value) pairs with a specific keyk is a
cluster

C(k) = {(k,v) ∈ I}

The intermediate result is split intop partitions. The
partition for an intermediate tuple is determined by
applying a partitioning function

π : K→{1, . . . , p}

to the key of the tuple. This way, all tuples belonging
to the same cluster are placed into the same partition.
A partition is thus a “container”, or bucket, for one or
more clusters. We denote a partitionj as

P( j) =
⊎

k∈K:π(k)= j

C(k)

The partitions are distributed tor reducers which pro-
duce the output of the MapReduce job. All partitions
assigned to the same reducer form apartition bundle.

A good data distribution tries to balance the clus-
ters such that all reducers will require roughly the
same time for processing. There are two aspects
which need to be considered.

1. Number of Clusters.Some reducers might get
more clusters than others, leading to larger par-
tition bundles and longer execution times.

2. Difficulty of Clusters. The execution times may
vary from cluster to cluster. Reducers with “diffi-
cult” clusters might take much longer to complete
than reducers with “easy” clusters, even if the
overall size of the partition bundles is the same.

The first of these two points can be solved by
using an appropriate hash function for partitioning
the data. The second point describes two challenges
which can not be handled by optimal hashing: clusters
of varying size and clusters of varying complexity. In
the following we will elaborate on these two aspects
of load balancing in MapReduce systems.
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3 COST MODEL

The reducer workload should be evenly distributed
to all participating nodes. This maximises resource
utilisation, as no reducers remain idle, waiting for
some overloaded reducers to complete. Moreover,
well-balanced execution times minimise the time un-
til job completion, because parallel processing is bet-
ter exploited. Finally, similar execution times are
a common (and often implicit) assumption in both
scheduling and failure detection strategies proposed
for MapReduce (Dean and Ghemawat, 2008; Zaharia
et al., 2008).

3.1 Current Situation

In state of the art MapReduce systems, like Hadoop,
every mapper partitions the share of intermediate re-
sults it creates intor partitions (i. e.,p= r in the par-
titioning functionπ defined in Section 2, and all par-
tition bundles consist of a single partition only). As
all mappers use the same partitioning function, tuples
belonging to the same cluster are all placed into the
same partition. This is visualised in Figure 1, where
we have two reducers. Thus, two partitions are cre-
ated per mapper. The partitions of the first mapper
are shown in more detail on the left: the first partition
contains four clusters, the second one holds three.
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Figure 1: Traditional Data Distribution.

Typically, a hash function is used for partitioning.
Assuming a reasonably good hash function, the clus-
ters are uniformly distributed to the partitions. Ev-
ery partition is then assigned to a dedicated reducer
for further processing. Figure 1 shows an example of
the current data distribution strategy in MapReduce:
partition P0 of every mapper is assigned to the first
reducer, P1 to the second one.

This approach is perfectly suitable in situations
where the key frequencies are (almost) uniformly dis-
tributed, and the amount of work a reducer spends per
cluster does not vary strongly. In many other situa-
tions, however, distributing the keys uniformly is sub-
optimal. The most prominent problems are:

1. Skewed Key Frequencies.If some keys appear
more frequently in the intermediate data tuples,
the number of tuples per cluster will vary. Even if
every reducer receives the same number of clus-
ters, the overall number of tuples per reducer will
be different.

2. Skewed Tuple Sizes.In applications which hold
complex objects within the tuples, unbalanced
cluster sizes can arise from skewed tuple sizes.

3. Skewed Execution Times.If the execution time
of the reducer is worse than linear, processing a
single, large cluster may take much longer than
processing a higher number of small clusters.
Even if the overall number of tuples per reducer
is the same, the execution times of the reducers
may differ.

Example 2. Consider a reducer which compares all
items within a cluster to each other. Obviously, the
reducer’s complexity is quadratic in the number of tu-
ples within a cluster. Processing a cluster with six
tuples thus has a cost of62 = 36. Three clusters of
size two only have a total cost of3·22 = 12. The total
number of tuples is, however, six in both cases.

Skew is symbolised by smaller and larger partition
icons and reducer boxes in Figure 1. In this example,
partition P0 is much larger than partition P1 on two
mappers. The reducer on the left thus gets a much
larger share of the data than the one on the right.

We will now propose an approach for obtaining
the best possible load balancing.

3.2 Optimal Solution

In order to balance the workload on the reducers, we
need to know the amount of work required for every
cluster. Typically, the work per cluster depends either
on the number of tuples in the cluster, or on the byte
size of the cluster, or both these parameters. There-
fore, while creating the clusters, we monitor for every
clusterC(k) the number of tuples it contains,|C(k)|,
and its (byte) size,‖C(k)‖. Based on the complex-
ity of the reducer algorithm, we can then calculate the
weight, w(|C(k)|,‖C(k)‖), i.e., the amount of work
for each clusterk as a function of tuple count and size.

Example 3. For the reducer described in Example 2,
we estimate the weight of a cluster as w(t,s) = t2.
As an example of a reducer complexity depending on
the byte size of the processed cluster, consider the fol-
lowing scenario: Every tuple contains an array of
values. The reducer’s task is to find the median of
these values per cluster over all contained tuples. The
amount of work to spend thus depends on the com-
bined size of all arrays within a cluster, rather than
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the tuple count. If the array size is proportional to the
tuple sizes, we will therefore base the work estimation
on the byte size of the clusters. As finding the median
element of an array of length n is possible in nlogn
time, we estimate the work as w(t,s) = slogs.

We obtain the optimal, i. e., the best weight bal-
anced assignment of clusters to reducers by solving
the associated bin packing problem. The optimal so-
lution is not feasible for two reasons.

1. In a worst-case scenario, the monitored data
grows linearly in the size of the intermediate data
I . Such a situation arises, e. g., when joining two
tables on their primary key columns: every key
value can appear only once per table, and the re-
sulting clusters contain at most two tuples.

2. The bin packing problem isNPhard. Hence, even
for a moderate number of clusters, calculating the
assignment of clusters to reducers can become
more expensive than the actual execution of the
reducers.

In the following we will address these two problems,
and develop heuristics for approximately solving the
load balancing problem.

3.3 Approximate Cost Estimation

The first problem with the optimal solution is the size
of the monitored data. In the worst case, the number
of clusters,|K|, grows linearly with the number of in-
termediate data tuples. With MapReduce being a sys-
tem designed for processing terabyte scale data sets,
we can therefore not afford to monitor every cluster
individually. Instead, we do the monitoring on parti-
tion level, i. e., we create a histogram of monitoring
data using the partitionsP( j) as histogram buckets.
Besides tuple count,t( j), and total size,s( j), we also
include the number of clusters per partition,c( j) in
our monitoring dataµ: µ( j) = (c( j), t( j),s( j)) with

c( j) = |{C(k) : k∈K,C(k)⊂ P( j)}|

t( j) = |P( j)|

s( j) = ∑
k∈K,C(k)⊂P( j)

‖C(k)‖

Recall from the preceding section that we need the
weight for each cluster. We estimate the tuple counts
and sizes of the clusters based on the monitoring in-
formation for the partitions using average values:

tc( j) =
t( j)
c( j)

sc( j) =
s( j)
c( j)

We can now determine the processing cost per
cluster,w(tc( j),sc( j)), using the tuple count and size

estimates. Summing up all processing costs for a par-
tition, we obtain the partition cost,W( j):

W( j) = c( j)w(tc( j),sc( j))

Since the input data is assumed to be skewed, the
average cost values for the clusters can differ substan-
tially from the actual values. Despite this approxi-
mation error we achieve much better load balancing
than current MapReduce implementations. We will
discuss this issue in Section 4.1 and present support-
ing experimental evaluation in Section 6.3.

Collecting accurate statistics for clusters is an
open research problem. As discussed in Section 3.2,
exact monitoring at the cluster level is not feasible.
Possible solutions could collect monitoring data on
a granularity level between clusters and partitions,
or selectively monitor only the most relevant clusters
within each partition.

3.4 Distributed Monitoring

The bagI holding all intermediate tuples is not mate-
rialised on a single host. Therefore, we need to col-
lect our monitoring data in a distributed manner, and
then aggregate it in order to obtain information on the
global data distribution. We denote byIi the bag of
intermediate (key,value) pairs generated by mapperi,
i. e.,{I1, I2, . . . , Im} is a partitioning ofI . Every map-
per i gathers monitoring information for all partitions
j based on the tuples in its share of the intermediate
data,Ii . We collect all this monitoring data on a cen-
tral controller and aggregate it in order to obtain an
approximation ofµ. Note that for our cost estimations
we do not need to introduce a new centralised com-
ponent in MapReduce, but we exploit the centralised
controller for task scheduling. For the tuple count and
size of partitionj, we collect, on every mapperi, the
local tuple count,ti( j), and size,si( j). By summing
up those values, we can reconstruct the exact number
of tuples per partition,t( j), and their total size,s( j).

t( j) = ∑
1≤i≤m

ti( j) s( j) = ∑
1≤i≤m

si( j)

For the number of clusters per partition, the same ap-
proach is not applicable, as clusters are typically dis-
tributed over multiple mappers. We employ the linear
counting approach (Whang et al., 1990) for approxi-
mating the cluster count per partition.

4 LOAD BALANCING

Now that we have a cost model that takes into account
non-linear reducer tasks, we define two load balanc-
ing approaches based on this model.
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4.1 Fine Partitioning

By creating more partitions than there are reducers
(i. e., by choosingp> r, in contrast to current MapRe-
duce systems wherep= r), we retain some degree of
freedom for balancing the load on the reducers. The
range ofp is obviously bounded by the number of
reducers,r, on the lower end, and the number of clus-
ters,|K|, on the upper end. Withp< r, some reducers
would not obtain any input. Withp> |K|, some par-
titions will remain empty.

The number of partitions,p, influences the quality
of the obtained load balancing. The higher we choose
p, the more possibilities the controller has to balance
the load. On the other hand, the management over-
head grows withp. This overhead impacts on the ex-
ecution of the MapReduce job twice. First, we need
to collect and process more monitoring data. For very
high values ofp (close to|K|), handling the monitor-
ing data could thus become a bottleneck in the job
execution. Second, partitions are the units of data
transfer (i. e., files) from the mappers to the reducers.
Transferring a few large files is faster and results in
less overhead than transferring many small files. We
need to be aware of this trade-off when choosingp.

The goal of assigning partitions to reducers is
to balance the load. The optimal load balance is
achieved by solving the respective bin packing prob-
lem. Unfortunately, bin packing isNP hard. We pro-
pose a greedy heuristics (sketched in Algorithm 1) to
determine the partition bundles. We pick the most ex-
pensive partition not yet assigned to a reducer, and
assign it to the reducer which has smallest total load.
The load of a reducer is the sum of the costs of all par-
titions assigned to that reducer. We repeat these steps
until all partitions have been assigned.

Algorithm 1: Assign Partitions to Reducers.

Input: W : {1, . . . , p}→R
+

Output: R: a set of partition bundles
1: R← /0
2: P= {1, . . . , p}
3: while P 6= /0 do
4: q= argmaxj∈PW( j)
5: P← P\ {q}
6: if |R|< r then
7: R←R∪{{q}}
8: else
9: s= argminl∈R∑ j∈l W( j)

10: R← (R\ {s})∪{s∪{q}}
11: end if
12: end while
13: return R

Note that we calculate the partition bundles only
after all mappers have completed their execution,
which prevents thereducer slow-startoptimisation of
Hadoop. We will discuss this aspect in Section 4.3.
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Figure 2: Partitioned Data Distribution.

An example for an approximate bin packing so-
lution is shown in Figure 2. Even though we only
have two reducers, every mapper creates three parti-
tions. Based on the monitoring data obtained from the
mappers, the controller determines the assignment of
partitions to reducers. P1 is the most expensive parti-
tion and is assigned to a dedicated reducer, while P0
and P2, which are cheaper, share a reducer.

Recall from Section 3 that we do not know the
exact cost for every partition, but only approximated
values. This impacts the load balancing on the reduc-
ers as follows.

1. If the clusters are similar in cost, our cost estima-
tion is accurate, and the load balanced well.

2. If the clusters are heavily skewed, i. e., there are
very few clusters which are considerably larger
than the others, also the partitions containing
these clusters will be much larger than the others.
The estimated cost for those partitions will, there-
fore, also be higher than that of partitions contain-
ing only small clusters. Partitions containing large
clusters will thus very likely be assigned to dedi-
cated reducers, as long as the total number of re-
ducers is sufficiently large.

3. Finally, for moderately skewed data, two situa-
tions may arise.

(a) The larger clusters are evenly distributed over
all partitions. Then we overestimate the cost of
all partition. This is, however, not a problem
since the absolute cost is irrelevant for assign-
ing the partitions to reducers and we still obtain
a reasonable good load balancing.

(b) The partitioning function assigns the larger
clusters to a small number of partitions. Then
the same reasoning as for heavily skewed data
applies.
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4.2 Dynamic Fragmentation

With the fine partitioning approach presented above,
some partitions may grow excessively large, making
a good load balancing impossible. In this section we
present a strategy which dynamically splits very large
partitions into smallerfragments. We define a parti-
tion to be very large if it exceeds the average partition
size by a predefined factor. Similar to partitions, frag-
ments are containers for multiple clusters. In contrast
to partitions, however, the number of fragments may
vary from mapper to mapper.

As before, every mapper starts creating its output
partitions according to the partitioning functionπ. If a
partition gains excessively more weight than the oth-
ers, the mapper splits this partition into fragments. We
choose the number of fragments,f , to be the small-
est integer greater than 1 s.t.p 6≡ 0 mod f . This is
shown in Figure 3. The leftmost mapper splits par-
tition P2, which has almost twice the weight of the
other partitions, into two fragments (3≡ 1 mod 2).
The mapper in the middle splits partitions P0 and P2,
while on the rightmost mapper splits partition P1.
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Figure 3: Fragmented Data Distribution.

Upon completion, each mapper sends a list of par-
titions which it has split into fragments, along with the
monitoring data, to the controller. For each partition
which has been fragmented on at least one mapper,
the controller considers both exploiting the fragments
or ignoring them. This is achieved by calculating the
partition bundles (the setR in Algorithm 1) for each
possible combination and then picking the best one.
When the fragments of a partition are sent to differ-
ent reducers, data from mappers which have not frag-
mented that partition needs to be replicated to all re-
ducers which get assigned one of the fragments. In
Figure 3, fragment F2a is assigned to the reducer on
the right, whereas fragment F2b is assigned to the left
one. Partition P2 from the rightmost mapper must be
copied to both reducers, as it might contain data be-
longing to both fragments. A filtering step is inserted
at the reducer side that eliminates data items not be-
longing to the fragments of that reducer immediately
after receiving the file.

We choose the best partition assignment using a
cost based strategy. The first aspect that the cost func-
tion needs to consider is how well the weight is bal-
anced. We use the standard deviationσ of the weight
of the partition bundles to express this aspect. The
lower the standard deviation, the better the data is bal-
anced. The second aspect to include is the amount of
replication. In the cost function we use the average
weight w of the partition bundles. We want to keep
w, and thus the amount of replicated data, as low as
possible and define the cost of an assignmentR as

C (R) = w(R) · (1+σ(R))e

We strive for an assignment with low cost. The pa-
rametere controls the influence of the balancing over
replication. Low values ofe favour assignments with
lower replication at the cost of unbalanced partition
bundles, high values favour well balanced partition
bundles at the cost of replication. A good choice fore
depends on the complexity of the reducer task.

Example 4. For the reducer in Example 2 with
quadratic runtime complexity, we choose a smaller
value for e than for a reducer with exponential worst
case complexity. The difference in execution time due
to unbalanced loads is much higher for expensive
reducers and the additional communication cost for
replication is likely to outweighed with balanced re-
ducers.

In the example of Figure 3, the benefit of assign-
ing fragments F2a and F2b to different reducers out-
weighed the increased cost resulting from the replica-
tion of partition P2 to both reducers. Partition P1, on
the other hand, was only fragmented on the rightmost
mapper. Placing its fragments on different reducers
would require to replicate the partitions P1 from the
other mappers to both reducers, which in our example
did not pay off.

4.3 Reducer Slow-start

In “traditional” MapReduce systems, the first reduc-
ers are already launched when a small percentage of
mappers is done. During thisslow-start phase, reduc-
ers fetch their inputs from completed mappers. Both
approaches presented in the preceding sections, how-
ever, require all mappers to have completed process-
ing before the assignment of partitions (and possibly
fragments) to reducers can be calculated. For highly
complex reduce algorithms, the time savings due to
slow-start are negligible. For reduce algorithms of
moderate complexity, we can derive an initial assign-
ment of partitions to reducers based on the monitoring
data from the first completed mappers, and adapt the
assignment later if necessary. Empirical evaluations
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(which are not further discussed due to space limi-
tations) show a fast convergence of the assignments
afterr mappers are completed.

5 HANDLING LARGE CLUSTERS

The techniques presented so far aim at distributing
clusters to reducers such that the resulting load on
all reducers is balanced. In some situations, however,
good load balancing is not possible. Such situations
arise, e. g., when we have less clusters than reducers
(|K|< r), or when the cluster costs are heavily skewed
and very few of the clusters make up for most of the
total cost.

According to the MapReduce processing model, a
single cluster must not be distributed to multiple re-
ducers for processing. The processing code executed
on the reducers is supplied by the user. The possi-
bilities for the framework to react to expensive clus-
ters are therefore very limited. We propose to pro-
vide an optional extension to the interface, allowing
the framework to notify the user code if expensive
clusters are encountered. Hence, the user can react to
large clusters with application specific solutions, e. g.
using multi-threading or approximate algorithms.

6 EXPERIMENTAL EVALUATION

In this section we report on the experimental evalua-
tion of the presented partitioning strategies and their
impact on a specific e-science application.

6.1 Measurement Environment

We evaluate our partitioning strategies and their im-
pact using both synthetic and real e-science data. We
generate synthetic data sets based on Zipf distribu-
tions with 200 clusters and varyingz parameter. The
e-science data set consist of allmerger tree nodes
from the Millennium run2 (Springel et al., 2005), a
294 GB data set with more than 760 million tuples.

We simulated a MapReduce environment, build-
ing on each mapper the histogram as described in
Section 3.4. We then calculated the partition bun-
dles based on these histograms, using the bin pack-
ing heuristic of Section 4.1. For the Millennium
data set, we used the number of mappers (389) and
the actual distribution of data to the mappers chosen
by Hadoop, configured with default settings except
for the HDFS block size, which we increased from

2http://www.g-vo.org/Millennium

64 MB to 512 MB. We altered the block size because
Hadoop chooses the number of mappers based on the
number of input data blocks. With simple map tasks,
it is thus reasonable to use large block sizes in or-
der to avoid creating a huge number of short running
mappers. For the synthetic data, we chose parameters
close to the values observed in real world datasets. We
scheduled 400 mappers, generating 1.3 million inter-
mediate tuples each. We repeated all measurements
20 times and report the averages.

6.2 Partitioning Strategies

In our first evaluation, we compare the current data
redistribution scheme (Section 3.1) with the fine par-
titioning (Section 4.1) and the dynamic fragmenta-
tion (Section 4.2) approaches for varying parameters
e (0.05, 0.15, 0.3) in the cost function. We choose the
number of partitions,p, to be four times the number
of reducers. With this choice, we obtain a sufficient
number of partitions to balance the load quite well,
while not exceeding the number of clusters.

We show the obtained results for varying numbers
of reducers in Figure 4. The left graph in each fig-
ure shows the replication overhead introduced by dy-
namic fragmentation with varyinge parameter. Stan-
dard MapReduce and fine partitioning are not shown
in these graphs as they introduce no replication. If dy-
namic fragmentation chooses the same result as fine
partitioning, i. e., the fragments are not exploited, then
no fragmentation overhead incurs and no bars are vis-
ible in the diagram. The right part of the figures shows
the standard deviation in the tuple count per reducer.
The values are relative to the average number of tu-
ples per reducer without replication.

Both fine partitioning and dynamic fragmentation
balance the load considerably better than standard
MapReduce systems. Dynamic fragmentation has the
highest impact in the scenario with moderate skew
(Figure 4b) and with moderate reducer count. The
remaining situations are as follows. For low skew
(Figure 4a), except for the scenario with 10 reduc-
ers, no partition grows noticeably larger than the oth-
ers. Therefore no fragments are created, and dynamic
fragmentation falls back to fine partitioning. For high
skew (Figure 4c), the partition(s) with very expensive
clusters are fragmented. Expensive clusters, however,
cannot be split. Therefore, the possible gain in bal-
ancedness is low, and fragments are exploited only
for high e values. An exception is the scenario with
10 reducers. Due to the very low number of reducers,
splitting the partition with the most expensive clus-
ter has a strong impact, allowing to accept even high
fragmentation overhead.
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(b) Synthetic,z= 0.5.
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(c) Synthetic,z= 0.9.
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(d) Millennium data.
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Figure 4: Data Balancing.

Comparing the different configurations for dy-
namic fragmentation, we see thate is a reasonable pa-
rameter for configuring the amount of replication tol-
erated in order to achieve better data balancing. The
largere is, the more replication is accepted if this re-
sults in better balancing. The choice ofe should thus
depend on the expected execution time of the reduc-
ers. For fast reducers, slightly skewed execution times
are typically acceptable. For long-running reducers,
more replication overhead will be outweighed by bet-
ter balancing the reducer execution times.

With the Millennium data (Figure 4d), the benefit
of our load balancing techniques becomes even more
evident. For most of the reducer numbers, even the
fine partitioning approach is able to reduce the devia-
tion by far more than 50%.

6.3 Influence on Applications

Finally, we evaluate the impact of our load balancing
approaches on the execution times of a MapReduce
application. Figure 5 shows the execution times for
a reducer side algorithm with quadratic complexity in
the number of input tuples, e. g., an algorithm doing a
pairwise comparison of all tuples within a cluster. The
total bar heights show the synthetic execution time for
the longest running reducer. We calculate the syn-
thetic execution time according to the algorithm com-
plexity, based on exact cluster sizes. Bar heights up to
the cut show the shortest reducer time. The (red) line
spanning over both bars for the same reducer count
gives the average execution time for a reducer. The
average is identical for both evaluated approaches, as
the same work is performed in both scenarios. Fi-
nally, every diagram includes the processing time re-
quired for the most expensive cluster (green, dotted
line). This value is a lower bound of the execution
time since clusters can not be split.

For the synthetic data sets, we observe the highest
impact of fine partitioning on moderately skewed data
(z= 0.3, Figures 5b and 5e). Here, we are able to re-
duce the time required on the longest-running reducer
(the bar heights) by over 30%. For 25 and more reduc-
ers, the time spent for the longest-running reducer is
very close to the most expensive cluster (green, dotted
line), which gives the lowest reachable value. Note
also the small difference between average (red line)
and shortest (cut in the bars) execution times, indi-
cating that only very few reducers require more time.
Comparing Figures 5b and 5e, we see the positive im-
pact of a higher number of partitions, especially for
the configurations with 20 and 25 reducers.

For both very balanced data (Figure 5a) and very
skewed data (Figure 5d), we see only small differ-
ences between the two approaches. In the balanced
scenario, the naı̈ve data distribution in current Hadoop
obtains a reasonably good result. The average ex-
ecution time (red line) is roughly half way between
the shortest and the longest execution times. For the
very skewed scenario, a single expensive cluster dom-
inates the overall execution time (see the execution
time for the most expensive cluster). The only way to
reduce the total execution time is thus to isolate this
expensive cluster. Fine partitioning achieve this goal
already for a lower number of reducers.
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Figure 5: Execution Times.

For the Millennium data set (Figure 5f) fine parti-
tioning reaches to optimum (the maximum cost is the
cost of the most expensive cluster) already with 20
reducers, while the standard approach requires more
than 50 reducers.

7 RELATED WORK

Despite the popularity of MapReduce systems, which
have been at the centre of distributed systems research
over the last years, skew handling has received little
attention. Only very recently, the SkewReduce sys-
tem (Kwon et al., 2010) was proposed. In SkewRe-
duce, data characteristics are collected by a sampling
approach. The user has to provide cost functions
which derive, from this sampling data, information
on the runtime behaviour of the application. With the
techniques described in this paper, the user needs to
specify only the runtime complexity of the reducer
side algorithm; all remaining components are pro-

vided by the framework.
When processing joins on MapReduce systems,

data skew might arise as well. A recent publication
(Afrati and Ullman, 2010) shows how to best use
Symmetric Fragment-Replicate Joins (Stamos and
Young, 1993) on MapReduce systems in order to min-
imise communication. Based on the input relation
sizes, the presented system finds the optimal degree
of replication for all relations. Our work is orthog-
onal to this approach. Skewed join attribute distribu-
tion can lead to load imbalance on the reducers, which
is tackled by the techniques presented in this paper.

A scheduling algorithm for MapReduce in het-
erogeneous environments was presented in (Zaharia
et al., 2008). They show that an improved scheduling
strategy can effectively decrease the response time of
Hadoop. The scheduling strategy determines invoca-
tion time and hosts for the single reduce tasks, but not
the assignment of clusters to reducers. Their approach
can thus be combined with our load balancing tech-
niques in order to further reduce the response time.

MapReduce and (distributed) database systems
are often used for similar tasks. Hence, over the
last years there has been substantial effort from the
database community to both compare (Pavlo et al.,
2009; Stonebraker et al., 2010), and to combine the
two approaches. Database systems are used as intel-
ligent storage back-ends for MapReduce (Abouzeid
et al., 2009), and indexing is integrated with Hadoops
native data storage (Dittrich et al., 2010). MapReduce
applications written in dedicated high level languages
are optimised using techniques from query optimisa-
tion (Gates et al., 2009; Battré et al., 2010). All of this
work is orthogonal to the data skew handling tech-
niques for MapReduce we presented in this paper.

Distributed database literature offers much prior
work on handling skewed data distributions. Our
dynamic fragmentation approach is inspired by dis-
tributed hash join processing techniques (Zeller and
Gray, 1990), and extends these techniques such that
multiple mappers can contribute as data sources.

Data skew was also tackled in the Gamma project
(DeWitt et al., 1992). Some of their techniques are
applicable to MapReduce. Our fine partitioning ap-
proach is similar toVirtual Processor Partitioning.
Other techniques are very specific to distributed join
processing and cannot be directly transferred to our
scenario. An example is theSubset-Replicateap-
proach. Similar to the Fragment-Replicate Join, this
approach allows to distribute one cluster over multi-
ple sites. Such a technique is not applicable to ar-
bitrary distributed grouping/aggregation tasks, which
we need for load balancing in MapReduce.

Our bin packing heuristics for distributing the load
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to reducers resembles the First Fit Decreasing (FFD)
algorithm (Johnson, 1973). Different from the stan-
dard bin packing scenario, the bins in our scenario
have no capacity limit. We choose the bin with the
lowest load to place the next item in.

8 SUMMARY AND ONGOING
WORK

Motivated by skewed reducer execution times in e-
science workflows, we analysed the behaviour of
MapReduce systems with skewed data distributions
and complex reducer side algorithms. We presented
two approaches, fine partitioning and dynamic frag-
mentation, allowing for improved load balancing.

In future work, we will consider collecting more
sophisticated statistics on the partitions in order to
estimate the workload per partition more accurately.
Moreover, we will focus on skewed data distributions
on the mappers. Such skew can arise, e. g., in data
warehouses capturing a shifting trend.
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