A STATISTICAL APPROACH FOR IDENTIFYING MEMORY LEAKS IN CLOUD APPLICATIONS

Vladimir Šor and Satish Narayana Srirama
Institute of Computer Science, University of Tartu, J. Liivi 2, Tartu, Estonia

Keywords: Troubleshooting, Java™ Virtual Machine, Byte code instrumentation, Cloud computing, Tools.

Abstract: This position paper describes the attempt to automate the statistical approach for memory leak detection in Java™ applications. Proposed system extends the basic statistical memory leak detection method with further intelligence to pinpoint the source of the memory leak in the source code. As the method adds only small overhead in runtime it is designed to be used in production systems and will help detecting memory leaks in production environments without constraint to the source of the leak. Architecture of the proposed approach is intended to use in cloud applications.

1 INTRODUCTION

Memory leaks can be a major problem in distributed applications, depleting their performance, even if they run on platforms with automatic memory management like Java Virtual Machine. Finding memory leaks is covered by many researches and there are several tools and methodologies to find memory leaks. However, these tools are incorporated in profilers and are designed to use in the development phase. On one hand, this is perfectly justified, as memory leaks are bugs in software and finding bugs is a work for developers. For this to happen it is expected that such bugs are found in test environment, or at least they can be reproduced or simulated in test environment.

On the other hand, configuration of the production environment (e.g. integrations with real systems), uptime of the system is much longer, and the usage patterns that real users generate are much more rich than teams of QA and analysts could think of. All this means that in production could happen more untested situations that may result in memory leaks. And a memory leak even in a modern JVM will inevitably result in the need for a restart of the JVM.

Use of clustering and cloud computing (Armbrust et al., 2009) reduce the impact of such restarts for the end user, who may even not notice anything, but for operations this still is a problem. Moreover, cloud computing and virtualization brings in additional uncertainty of not knowing the configuration of the physical hardware on which the application is actually running. Thus, a memory leak that only occurs in production under very specific circumstances (often hardly specifiable) can be very hard to find and fix in development and test environments.

This is the area we think we can improve by developing the solution that uses efficient statistical algorithm to detect memory leaks in advance, imposes low overhead in production system and would help tracking down the source of the leak. The rest of the paper is organized as follows. Section 2 address the related work in detail. Section 3 describes the statistical method we propose along with preliminary analysis. Section 4 discusses how cloud computing benefits from such a method. Section 6 concludes the paper with future research directions.

2 RELATED WORK

Memory leaks have been studied in the industry and in research community extensively and currently there are several approaches for finding memory leaks in Java applications.

First option is the offline memory dump analysis. Offline in this context means that the memory dump is taken and then analyzed outside of the running JVM. Memory dump can be either requested from the live JVM (during this procedure JVM execution is stopped) or it can be generated automatically by the JVM when out of memory condition occurs. There are several algorithms to analyze memory dumps to detect possible leaking objects. For example (Maxwell, 2010) shows usage of graph mining al-
algorithms for this purpose. Eclipse Memory Analyzer or MAT (The Eclipse Foundation, 2010) is an example of production quality heap dump analysis software which is freely available. However, such offline analysis has several problems: heap dumps can be expensive to acquire in production environment (because generating a dump file requires freezing the application) and heap dump files can be very big (up to several gigabytes, depending on the memory configuration). Because of the file size it can be hard to run analysis software on a regular development machine. Another drawback is the static nature of the memory dump – there is no information regarding the source of allocation of the objects, so finding the code responsible for memory leak is a separate task from just finding leaked objects.

Another approach is to monitor certain collection classes for unlimited growth. This approach relies on bytecode instrumentation and one possible solution is described in (Xu and Rountev, 2008). This technique is also used in several Application Performance Monitoring (APM) suites. For example, CA Wily Introscope® LeakHunterTM (CA Wily Introscope, 2010) and AppDynamics (AppDynamics, 2010). Both APM suites add some intelligence to ease finding the cause of the memory leak. Unfortunately there is no information about exact algorithms used in them. Also, mentioned APM suites are targeted to the Java Enterprise application and are not applicable for example for desktop GUI applications.

As alternative to direct bytecode instrumentation, aspect-oriented instrumentation may be used to find the metrics needed for memory leak detection. FindLeaks tool is using AspectJ pointcuts for this purpose to analyze references between objects and find out leaking objects together with the sites of allocation (Chen and Chen, 2007). In that paper only GUI applications were used for testing.

Profilers are often used in development for finding memory leaks. Different profilers allow gathering different metrics that may help finding memory leaks. For example, profiler of the NetBeans IDE can obtain object age which can then be used by human operator to apply statistical method (Sedlacek, 2010). This data can be collected during object allocation profiling. Major disadvantage of the profilers is the need for qualified and experienced operator who can find the actual leaking code. Inexperienced developer, given the profiler, fact of the memory leak and reasonably big code base would be arguably successful in this process.

In addition to different instrumentation and byte code modification techniques there are several research projects applying different statistical methods for analyzing unnecessary references between objects: Cork, (Jump and McKinley, 2007) and stale objects: SWAT, (Chilimbi and Hauswirth, 2004). Cork implements statistical memory leak detection algorithm directly in the Virtual Machine by integrating the method in the garbage collector itself. Cork has achieved significantly small performance penalty – only 2% and good results in memory leak detection (Jump and McKinley, 2007). The only problem is that this project is implemented as a module in the Research Virtual Machine (RVM) Jikes (The Jikes RVM Project, 2010), which makes it usable mostly in the research community, as the industry is not very keen anticipating the research VM.

Biggest disadvantage of these methods is the need for qualified human operation to analyze gathered data to find real place in the source code responsible for the memory leak. We think that this manual decision and search process can also be automated.

3 STATISTICAL APPROACH TO MEMORY LEAK DETECTION

Based on the review of related work we noted that there is still space for the automated end-to-end memory leak detection solution that would work on the HotSpot or OpenJDK Java Virtual Machines, would maximally assist the developer by pinpointing both allocation and reference points of leaking objects and would do that also in the distributed and cloud environments with little performance penalty so it could be usable in production systems. Similar idea about memory leak detection with statistical method is described in (Formanek and Sporar, 2006) as an example of application of dynamic Java byte code instrumentation. However, so far it hasn’t been implemented end-to-end in any known profilers or scientific publications.

There are several challenges for implementation of this approach using standard tools:

- Gathering the data with low overhead during runtime. As the number of objects during application is huge (for example, specJVM 2008 benchmark, which we used to test performance impact, during its 2 hour run created 877 958 317 objects).
- Actually applying statistical method in real time to detect classes suspected to be leaking.
- Apply dynamic byte code instrumentation to find spots of allocation and most importantly referencing objects (as actually objects referencing leaking ones are sources of the leaks rather than those instantiating leaking objects).
• Present findings in a user friendly way.

The basis of the statistical method is the generational hypothesis or infant mortality of objects and it is described in (Sun Microsystems Inc., 2003). Generational hypothesis states that most of the objects become unreachable very soon after creation, or in other words – they “die” young. This means that the memory these objects occupy can be freed early by garbage collector. Objects that stay reachable, or alive, survive several garbage collection cycles.

On the other extreme there are number of objects that were created during initialization and start up of the application and they stay alive until the end of execution (e.g., application main classes, static caches, etc.). See figure 1. Leaking objects on the other hand are being created time after time and not being freed (thus the name – leak).

From these observations one can conclude that if we measure the age of the object as the number of garbage collection cycles (or generations) it has survived, then by analyzing how live instances of the class are distributed over different generations we can evaluate if objects follow the generational hypothesis. If the number of generations, in which instances of a class are present, keeps growing then this means that application allocates objects of a particular type and doesn’t free them, which suggests we have a memory leak.

![Figure 1: Distribution of survived bytes over generations, (Sun Microsystems Inc., 2003).](image)

Generational hypothesis is also a basis for modern generational garbage collectors that use it to divide the heap into different regions to keep objects of different age in different regions: eden, tenured and permanent. Having different regions also yields to different collections – minor (collection in eden space only, takes place when there is no more space in eden for new objects) and major (collection of both eden and tenured spaces, takes place if collecting the eden space haven’t freed enough space for the new allocation). Objects that have already survived some number of collections are moved from eden to tenured space (Sun Microsystems Inc., 2003). So, as garbage collector has to keep track of object ages anyway to perform its work, the best place to collect the data for the statistical method would be the garbage collector itself. Unfortunately as of now it is not possible as there is no interface in OpenJDK or HotSpot virtual machines that would expose information about the age of objects for external code.

In following sections we’ll describe our ideas and tests we have conducted on how to gather required data and implement the statistical method.

3.1 Automated Statistical Sampling

To implement the statistical method we have to monitor object ages with small performance penalty.

As described in previous section we will designate the time of creating of the object with the garbage collector cycle counter. In section 2 we mentioned that NetBeans profiler collects the garbage collection cycle when profiling object allocations. Reasonable question arises – why not use it somehow? As NetBeans are general purpose profiler it collects a lot more information that is needed for our task and because of this much more overhead occurs both in terms of memory and processor time.

So, to monitor the age of the object we need to get information about garbage collector activity. As garbage collector is an internal process of the JVM and it doesn’t have any public API to access from Java code, we have to utilize Java™ Virtual Machine Tool Interface (JVMTI) functionality to get this data.

JVMTI provides native interface to add hooks for the JVM’s internal events and functions to communicate with memory management, stack frames, and many more. (Sun Microsystems Inc., 2006). The functionality we require are the hooks for garbage collection events:

```java
void GarbageCollectionFinish(jvmtiEnv *env)
void GarbageCollectionStart(jvmtiEnv *env)
```

As the simplest solution, we created native agent that uses JVMTI tagging to assign ages to objects. In JVMTI tags are marker-values of type long that can be attached using JVMTI functions to objects and classes. Afterward, it is possible to iterate over heap using JVMTI functions filtering objects by their tags. Whether the tag will be used as a plain value or a pointer to some richer data structure depends on the usage. As tags are kept in the native memory rather than on Java heap, their use would not introduce any impact Java heap-wise, which is very desired effect for the case we are addressing.

To set tags we used naive agent to instrument the java.lang.Object class to tag all created objects
with the value of current garbage collector generation, i.e. time of creation of an object. At the moment of writing, the agent is also capable of outputting the histogram of distribution of classes over generations upon request.

As a next step of our research we’ll change the agent in the way that for any given class it would output number of different generations where live instances of this class are present. Based on this output statistical method will be applied to detect classes of leaking objects. To define effective threshold value for this number requires fair amount of testing on applications with different types of applications.

4 APPLICATION OF THE METHOD IN CLOUD COMPUTING

Troubleshooting applications, even on a single system, can be a demanding task due to several factors that must be considered and a lot of available monitoring metrics from which correct conclusions have to be made to fix the problem. Distributed computing as such increases the complexity of troubleshooting, because several machines can now participate in a single transaction. Cloud computing, with its elastic nature and possibility of scaling to very large number of virtual machines, further increases the troubleshooting complexity. Memory leak detection using statistical method is only a part of our broader vision of distributed troubleshooting tool. In the final picture, memory leak detection will be one agent among different troubleshooting agents that could be dynamically engaged or disengaged to detect different kinds of problems.

The following subsections explain how the distributed troubleshooting tool method can be applied in cloud computing domain and how cloud applications could benefit from it.

4.1 Deployment Scenario Architecture

Cloud computing is a style of computing in which, typically, resources scalable on demand are provided "as a service (aaS)" over the Internet to users who need not have knowledge of, expertise in, or control over the cloud infrastructure that supports them. The provisioning of cloud services can be at the Infrastructure level (IaaS) or Platform level (PaaS) or at the Software level (SaaS). A cloud computing platform dynamically provisions, configures, reconfigures, and de-provisions servers as requested. This ensures elasticity of the systems deployed in the cloud. Our distributed troubleshooting solution will operate on the IaaS level, meaning that the solution is aware of different virtual servers and will monitor separate JVM instances.

To implement the automated statistical method, or end-to-end memory leak troubleshooting solution for the cloud computing domain, we propose monitoring agents and analysis modules. The architecture of the proposed solution is shown on Figure 2. Each JVM under inspection will have one agent installed which will perform sampling of object age distribution. Coordination server, or dashboard, collects data from the agents and applies the statistical method to find candidate classes, instances of which are suspected to be leaking. After suspected classes are identified, adaptive introspection will take place. This means that the agent will instrument only suspected classes and monitor allocation sites and incoming references of the selected instances. Collected data will be sent back to the coordination server to be analyzed and presented to the end user.

Figure 2: Proposed solution architecture.

Dashboard is an important part of the cloud deployment as it aggregates the data from many cloud instances. The coordination server and its activities can also be presented at the dashboard. Agents and dashboard will use auto-discovery to automatically configure new/shut down instances. Moreover, as only the standard APIs are used in the approach, it will be simple to deploy our solution with regular shell scripts which belong the usual tool set for configuring cloud instances.

4.2 Troubleshooting in Large Scale Data Analysis Applications

Commercial APM suites are targeted to enterprise usage, mostly concentrating on web-based applications. Our approach is also suitable for scientific computing and large scale data analysis applications, which are getting more common on the cloud. One example is MapReduce (Dean and Ghemawat, 2004), which
is a programming model and a distributed computing framework, which is widely used for large scale data analysis on the cloud. It was first developed by Google to process very large amounts of raw data that it has to deal with on daily basis, e.g., indexed Internet documents and web requests logs, which grows every day. Google uses MapReduce to process data across hundreds of thousands of commodity computers. However, Google’s implementation of MapReduce is proprietary. Apache Hadoop is an open source implementation of MapReduce written in Java. Apart from MapReduce, Hadoop also provides Hadoop Distributed File System (HDFS) to reliably store data across hundreds of computers. Apache Hadoop is in active development and is used both commercially and in research community.

As part of other projects at our institute, we are also interested in deploying several of our scientific computing and enterprise applications to the cloud. Especially we are interested in establishing private clouds at the universities and deploying scientific computing applications to the hybrid clouds. In the Scicloud (Srirama et al., 2010) project we are mainly studying how to reduce the scientific computing algorithms to MapReduce framework so that they can efficiently use the cloud computing resources. From this analysis we observed that most of the scientific applications take huge amounts of resources and times and observing the memory leaks in the algorithms is very essential. We presume that statistical method for detecting memory leaks will be applicable in the domain and our future research addresses this scope in particular.

5 PRELIMINARY ANALYSIS OF THE APPROACH

After implementing simple counting agent described in section 3.1 we measured the performance impact using SPECjvm2008 benchmark ((Standard Performance Evaluation Corporation, 2008)) with and without our age counting agent, which resulted in composite result of 11.72 ops/m and 5.48 ops/m respectively. Detailed results of the benchmark are showed on figure 3.

Benchmarking was made on a laptop computer with Java HotSpot™ Client VM (build 17.1-b03) bundled with Java™ SE Runtime Environment (build 1.6.0_22-b04) on Intel® Core™ 2 CPU at 1.83GHz and 3GB ram under Windows XP; however actual value of the benchmark result is not important while we are interested only in the amount of performance degradation, which is roughly 50%.

6 CONCLUSIONS AND FUTURE WORK

Research and experiments done so far are show that automating statistical method is promising both in terms of memory leak detection and also in using described method in cloud computing environments. We are actively working on different aspects of current proof of concept implementation.

Further work includes implementation of the adaptive introspection i.e., collection additional data like allocation and reference places in the source code. Adaptive introspection will be achieved using dynamic byte code modification with the help of JVMTI function RetransformClasses. Main benefit on dynamic bytecode modification is that during regular runtime code doesn’t have any overhead whatsoever. We only instrument classes that we are interested in and after we got enough information to present to the user we remove instrumentation. Work done for JFluid (Dmitriev, 2003) shows that such limiting of the profiling code yields in good results in terms of performance overhead.

As described in section 3.1, the Java agent calcu-
lates the distribution of live instances of a class over different generations and can provide gathered information for analysis. Analysis will be performed outside of the JVM being under inspection. This design is made with distributed and cloud applications in mind, to have one analysis dashboard which performs analysis of several JVMs and gives an overview for the end user. Performing analysis outside of the host JVM will also use less computing resources of a host JVM. Such cooperation of modules and their adaptation will achieve what we call intelligence in terms of profiling only what is needed and when it is needed.

When the class, instances of which are leaking, is found, source of the leak is presented to the user then the only thing left for him is to wait until JVM runs out of heap memory. Collecting the data related to the rate of creation of leaking objects, size of these objects it is possible to forecast when out of memory exception might occur. This information can be valuable for the operations team to know how to react and when to be ready to react to out of memory error. In case of web applications the reaction might be adding nodes (or cloud instances) to the cluster.

Finding the alarming ratio, or threshold, for the count of live objects across different generations is another topic for further testing and analysis.

ACKNOWLEDGEMENTS

This research is part of the EUREKA Project 4989 (SITIO) co-funded by the European Regional Development Funds via Enterprise Estonia.

REFERENCES

Sun Microsystems Inc. (2003). Tuning Garbage Collection with the 5.0 Java™ Virtual Machine.

The Jikes RVM Project (2010). The jikes rvm project. Online.