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Abstract: Cloud Computing continues to be a rapidly evolving and prevalent paradigm where Quality of Service has a
pivotal role to play in guaranteeing performance and provisioning of resources on-demand in a timely fashion.
Improvements to the performance of Cloud technology ensure provider profitability and an increased number
of applications that can make use of a Cloud where overheads would have otherwise limited usage. This
paper presents the results of a quantitative evaluation into the performance overheads of propagating Virtual
Machine images to physical resources, at the Infrastructure as a Service layer and then accessing the images,
via a Hypervisor’s virtual block I/O device. Two Virtual Infrastructure Managers are evaluated: Nimbus and
OpenNebula, along side two Virtual Machine Managers: XEN and KVM. Benchmark results demonstrate
Nimbus out of the box outperforming OpenNebula and the performance of XEN exceeding KVM in a greater
number of benchmark tests. Conclusions are drawn from the results on the suitability of these technologies
for data intensive applications and applications requiring highly dynamic resource sets, where making an
uninformed decision on what technology to use could prevent an application reaching its full potential.

1 INTRODUCTION

The prevalence of Cloud Computing as a distributed
paradigm that can deliver economic, automation and
flexibility benefits far beyond more traditional IT in-
frastructure has and continues to thrust Cloud services
into the lime light. Infrastructure as a Service (IaaS)
providers play a pivotal role in the Quality of Service
(QoS) provisioned in the majority of Cloud architec-
tures comprised of an interchangeable multilayer soft-
ware stack (Vouk, 2008). Virtualization, as the fun-
damental resource building block of IaaS, is critical
to maintaining acceptable levels of performance to
prevent breaches in Service Level Agreements (SLA)
and thus increasing the overall profitability of a Cloud
(Xiong and Perros, 2009). This provides primary mo-
tivation for efficient Hypervisor design and remains
a limiting factor in what applications are deployable
and can take full advantage of a Cloud. Although
research on the topic of Virtualization is not new, it
has seen a resurgence of interest in recent years in
the problem domain of Cloud Computing (Jun Zhu
et al., 2010; Imada et al., 2009; Xu et al., 2009). One
such area of interest is Virtual Machine (VM) lifecy-
cle management (Hansen and Jul, 2010; Goiri et al.,
2009), where guarantees that a VM will be on-line

within a certain timeframe are of importance to the
rate at which IaaS can react to changes in demand
(Van et al., 2009). Another area of interst is VM
I/O (Kesavan et al., 2010), which can have adverse
affects on application performance (Dong-Jae Kang
et al., 2008).
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Figure 1: Simplified life cycle states of a non persistent VM.

In the life cycle of a VM managed by an IaaS,
overhead is associated with transitions of state illus-
trated in Figure 1. IaaS requires time to provision
resources, transfer data and confirm termination. A
trade off exists where at some point reducing these
overheads incurs a penalty associated with polling
and the contention of resources. In this paper, we fo-
cus on analyzing both the overheads of resource ac-
quisition and data access, i.e. propagation of non-
persistent VM images to physical resources and the
use of paravirtualized I/O device drivers to access the
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data held within an image after propagation. The aim
of our work is to expose the limitation of Cloud tech-
nologies through performance evaluation with results
that provide insight into the rapidly evolving land-
scape of Cloud tools in the context of commodity
hardware.

We compare via benchmarking two Cloud infras-
tructure managers Nimbus: (Kate Keahey et al., 2007)
and OpenNebula (Sotomayor et al., 2009), along-
side the two latest versions of each of the open
source Hypervisors: XEN (Barham et al., 2003) and
KVM (KVM, 2010), using a combination of synthetic
benchmarks. We find that Nimbus can boast a reduced
overhead, compared to OpenNebula, when initializ-
ing and terminating VMs and that the additional sup-
port of a Grid transfer protocol in Nimbus can reduce
transfer times by 46%. In addition, we find that KVM
guests perform poorly in contrast to XEN in most
benchmark tests regarding the write performance to
a VM image but this has been partially rectified in a
new release of KVM.

We argue that previous work on the subject of hy-
pervisor I/O performance is now outdated due to the
pace of development surrounding paravirtualized de-
vice drivers. We infer that overheads have the poten-
tial to influence Cloud performance and thus the us-
age patterns of IaaS providers. If predominant Cloud
technology is not chosen wisely, it can prevent data
intensive applications from reaching their full poten-
tial and applications that require highly dynamic re-
source sets from scaling efficiently. We draw the con-
clusion that reducing overheads could lead to an in-
crease in the pace of Cloud adoption. A reduction
in resource acquisition waiting times enables quicker
reaction, by an IaaS, to a changing environment and
reduces operating costs via a similar reduction in the
number of virtual resources needed to be provisioned
for a given quantity of concurrent client requests.

The remainder of the paper has the following
structure. Section 2 and 3 outline the Cloud infras-
tructure managers Nimbus and OpenNebula, and the
Hypervisors XEN and KVM, respectively. Section
4 describes the experimental environment. Section 5
presents and evaluates experimental findings. Section
6 reviews the contributions of the paper and critiques
related work. Finally, Section 7 presents the conclu-
sion of the paper and future work.

2 VIRTUAL INFRASTRUCTURE
MANAGEMENT

An electrical utility provider needs a system in place
to provision and monitor resources to ensure ser-

vice reliability and performance, keeping pace with
changes in demand so that consumer usage patterns
and high resource contention do not adversely affect
the QoS provided. Cloud IaaS providers are no differ-
ent in that they use Virtual Infrastructure Managers
(VIM). Virtual resources need to be brought on and
off-line as required and monitored to assess status so
that intelligent decisions can be made on how best
to use the underlying physical resources for the busi-
ness objectives of an IaaS provider. VIMs achieve this
through a scheduling component that assigns VMs to
physical resources with feedback gathered from mon-
itoring services for both the physical and virtual in-
frastructure. A scheduling component orchestrates
with others in the system to: i) assess the needs of a
VM, ii) provision a suitable physical resource and iii)
transfer a VM image from a central repository over
the network via an available network protocol. Once
transferred a Hypervisor adapter component is used to
execute the VM image on the physical host machine
and bring the virtual resource on-line.

2.1 OpenNebula & Nimbus

OpenNebula (Sotomayor et al., 2009) is an imple-
mentation of the research being performed and led
by Reservoir (Rochwerger et al., 2009), a European
Union FP7 funded research initiative in virtualized in-
frastructure and Cloud computing. It can be used as
a Virtualization tool for the manipulation of local vir-
tual infrastructure within datacenter clusters for the
creation of private Clouds. Public Cloud support, via
a selection of management interfaces, exposes func-
tionality of a remote provider’s VM, storage and net-
work resources using de facto standards through a lo-
cally accessible portal. Hybrid Clouds, made possible
through the combination of public resources and local
virtual infrastructure, enable highly scalable applica-
tion hosting environments. The design of OpenNeb-
ula efficiently manages multiple types of workloads
with emphasis placed on addressing business require-
ments and use cases. A black box approach to design
facilitates the homogeneous management of VM Op-
erating Systems (OS) and services.

Nimbus (Kate Keahey et al., 2007) builds on past
research into Grids by reusing many of the standards
and technologies invented by the Grid community,
particularly those used in the Globus Toolkit. It pro-
vides an upgrade path to the Cloud for organizations
using Grids. This is enabled via the features of Nim-
bus that make use of Grid resources and its integra-
tion with familiar resource schedulers, such as PBS,
to schedule VMs. Development of Nimbus has placed
emphasis on use cases applicable to the needs of the
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scientific community but many non-scientific appli-
cations are still well suited to the virtual infrastruc-
ture it provides. The components of Nimbus are mod-
ular in design with hypervisor agnostic support en-
abled via Libvirt and support for Amazon EC2 via
a SOAP based API for invocation and securing of
off-site resources. Nimbus also supports a Web Ser-
vice Resource Framework (WSRF) frontend for con-
trolling virtual infrastructure and context broker and
agent components enabling automated contextualiza-
tion of VM images for “one-click” clusters (Keahey
and Freeman, 2008).

3 VIRTUAL MACHINE
MANAGEMENT

A Virtual Machine Manager (VMM) or Hypervisor,
partitions a physical host machine though the use of
three generalized techniques: Full Virtualization, Par-
avirtualization and Hardware Assisted Virtualization
(HVM) and is responsible for controlling the life cy-
cle and resource utilization of local VMs. These
techniques provide a layer of abstraction away from
the underlying physical hardware. The techniques
provide a complete virtual hardware environment in
which a guest OS can execute in isolation and where
resources are multiplexed transparently between con-
currently executing OSs.

Full Virtualization (FV) involves the creation of
hardware devices purely in software to provide an ad-
equate supply of simulated hardware for a guest Oper-
ating System (OS) to run unmodified. This comes at a
considerable performance penalty due to the interpre-
tation of hardware operations in the guest (Popek and
Goldberg, 1974). Paravirtualization (PV) imitates a
device interface using a far more direct path to handle
devices inside a VM and can achieve better perfor-
mance than FV. A downside of this technique is that it
requires the installation of altered device drivers into
a guest OS. A benefit is that this reduces the amount
of time a guest spends accessing the device by re-
locating execution of critical tasks to its host where
such tasks are more performant. HVM of a guest uti-
lizes the additional hardware capabilities of an under-
lying host and provides the best performance of all
the Virtualization techniques. Currently this takes the
form of Virtual Machine Extensions (VMX) within
the instruction set of a host processor. This acceler-
ates and isolates context switching between processes
running in different VMs, increasing computational
performance as instructions are directly passed to the
host processor without having to be interpreted and
isolated by the VMM. Unfortunately this technique

comes at the expense of limiting the guest to using
the same instruction set as the host. Complete sup-
port for HVM of all computer subsystems, i.e. I/O
peripherals, has yet to be fully realized in commodity
computer hardware. However the performance ben-
efits of HVM I/O have been explored using directed
I/O Virtualization extentions (Dong et al., 2009).

3.1 XEN & KVM

Historically XEN has concentrated on the develop-
ment of PV guests. Recently both VMMs support
multiple Virtualization techniques often referred to
as Hybrid Virtualization (Nakajima and Mallick Asit
K., 2007). Hybrid Virtualization combines the prin-
ciples of both HVM and PV to obtain near native
performance for guest OSs. This however has the
disadvantages of both techniques; altered OS de-
vice drivers are necessary, along with modern VMX
supporting hardware. XEN and KVM both support
FV through the utilization of core components from
QEMU, a “generic and open source machine emula-
tor and virtualizer” (QEMU, 2010) that provides em-
ulation of other devices besides CPU architectures.
When QEMU acts as a machine emulator it provides
emulation of different CPU architectures through bi-
nary translation. When QEMU is used as a virtualizer
in combination with KVM or XEN the features that
enable emulation of other devices besides CPUs can
be used to virtualize an OS when paravirtualized de-
vice drivers do not exist or hardware support for HVM
is limited but this approach has an associated perfor-
mance cost. Before the combination of multiple Vir-
tualization techniques in KVM, the consolidation of
an organization’s current hardware using KVM was
not feasible if its infrastructure did not support the in-
struction set extensions necessary for HVM guests.
KVM conversely provided an excellent foundation for
the creation of new virtual infrastructure through a re-
duction in the number of physical machines required
for peak operating demand and thus lowers hardware
running and setup costs. XEN on the other hand, with
its better support for paravirtualized guests, was more
appropriate for deployment onto older hardware and
still enabled consolidation.

Comparing XEN and KVM further, the lack
of support for fully paravirtualized guests in KVM
across all OSs, such as the closed source and propri-
etary Microsoft Windows, has the potential to reduce
performance. Alternatively the costs of porting par-
avirtualized device drivers (Barham et al., 2003) to
these OSs for XEN do not exist. XEN is a more ma-
ture Virtualization solution and has been developed
for far longer than KVM pertaining to greater stabil-

CULTIVATING CLOUD COMPUTING - A Performance Evaluation of Virtual Image Propagation & I/O
Paravirtualization

541



ity. However KVM continues to be on the forefront
of implementing new Virtualization techniques and
utilizes the latest research into HVM. This provides
greater performance improvements over the same im-
plementations in software with the downside of re-
quiring state-of-the-art hardware. One such technique
introduced recently was hardware page-table walk-
ers that reduce memory address-translation overheads
and remove the need for shadow page tables at the
memory management unit level, providing memory
savings and performance benefits that were not ini-
tially available in XEN.

Another non-functional comparative advantage of
KVM over XEN is that KVM is less pervasive due
to its hypervisor classification. XEN is classified as a
Type I hypervisor and KVM as a Type II hypervisor
according to (Goldberg, 1972). Type I hypervisors
run directly on the host hardware with the guest OS
running one level above the hypervisor. In the case
of XEN an installed micro-kernel is booted before
the administrative guest “Domain0”, which is used to
configure other guests. On the other hand, Type II hy-
pervisors run from within a conventional OS, where
the hypervisor operates as a distinct second software
layer and the guests execute above in a third layer.
KVM is comprised of a single module probed into a
standard Linux kernel. The comparative advantage of
this is that a considerably smaller code-base has to
be maintained, which lowers the risks of introducing
bugs and reduces the amount of code to optimize.

3.2 Paravirtualization of Block I/O
Devices

KVM and XEN have different PV architectures for
accessing virtual block devices or virtual Hard Disk
Drives (HDD) within a guest OS. One of the aims of
our work is to evaluate the performance of these de-
vices to ascertain the suitability of virtual infrastruc-
ture for data intensive applications.

KVM has adopted Virtio (Russell, 2008), a Linux
standard for virtual I/O device driver Application Bi-
nary Interfaces (ABI), for PV of block storage. With
Virtio the guest OS is “aware” of the virtual environ-
ment in which it is running, in essence cooperating
with the VMM, attaining higher performance and the
benefits of PV. Virtio uses a layer of abstraction and a
memory ring buffer as a transport for data between a
VM and its host as expressed in Figure 2.

This provides the ability to write generic front-
end virtual device drivers and arbitrary back-ends to
support different device types for different OSs and
VMMs. It removes the need to maintain multiple sets
of virtual device drivers for each brand of VMM avail-
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Figure 2: A simplification of virtual block I/O PV.

able. The XEN approach is very similar to that of
KVM as Virtio is based considerably on the works
of the XEN developers. XEN supports block devices
through a “hypercall” ABI that makes use of an al-
tered version of the Linux blkback device, used for
user land access to block devices, named blktap or
“block tap”. The blktap device is used in combination
with a frontend driver embedded in a guest. XEN ver-
sion 4.0.1 introduces blktap2 the successor to the old
blktap1 disk backend driver. Both versions of blk-
tap will be tested to ascertain if there are any per-
formance improvements or regressions from this new
implementation. Two versions of KVM of differing
maturity will also be tested again to see how perfor-
mance has changed over time. Paravirtualized support
for non-modifiable OSs, such as Windows, has been
implemented in both KVM and XEN with emulated
PCI devices replacing the ABI in traditional PV. The
performance of these devices has been omitted from
the scope of this paper but will make an interesting
addition in future work.

4 EXPERIMENTAL DESIGN

This section of the paper introduces the testbed archi-
tecture, the benchmarks used to assess performance
and the experimental methodology that discusses the
selection of independent and dependent variables for
each of the benchmarks.

4.1 Testbed Architecture

The experimental testbed was comprised of Dell com-
modity servers. Each server consists of a four core
X3360 Intel Xeon CPU, running at the default clock
speed of 2.83GHz and a total of 4GB of RAM (four
modules of 1GB DDR2 at 800Mhz). In addition, each
server utilized a single 3.5 inch Western Digital RE3
250GB SATA HDD (Model: WD2502ABYS), with
16MB of cache and a spindle speed of 7200 RPM.
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The machines connect via Gigabit Ethernet using a
Broadcom PCI-E NIC (Model: BCM95722). The file
system in use on both the physical machines and the
VMs is EXT3. VMs were not provisioned concur-
rently and each instance used all available hardware
with the exception of half the available RAM (2GB)
of the host. The VM images are contained in raw for-
mat and stored on top of the host file system. The
OS present on both machines is Centos release 5.4
(Final). The following hypervisor versions are used:
KVM versions 83 and 2.6.32.24; XEN versions 3.4.3
and 4.0.1. Two Centos based Linux Kernel versions
are used to test the older versions of KVM and XEN:
2.6.18-164.15.1.el5 for testing the performance of the
native host and KVM version 83 guests; and 2.6.18-
164.11.1.el5xen for testing the performance of XEN
Dom0 and XEN 3.4.3 guests. The same vanilla Linux
Kernel version 2.6.32.24 is used to test KVM ver-
sion 2.6.32.24 and XEN version 4.0.1. Version 2.6
of Nimbus and version 2.0.1 of OpenNebula are de-
ployed on the testbed. Globus Toolkit version 4.0.8 is
installed enabling support for GSIFTP. The following
versions of the benchmarking software, with justifi-
cations in the next subsection, are used in the exper-
iments: Bandwidth Monitor NG version 0.6 (BWM-
NG, 2010), IOzone version 347 (IOzone, 2010) and
Bonnie++ version 1.03e (Bonnie++, 2010).

4.2 Benchmarks

Three benchmarks were used in the performance eval-
uation. The first a bespoke image propagation bench-
mark for reviewing the overheads of transferring a
VM image between two nodes on a Cloud system.
The two other benchmarks were used to expose the
performance of VMM block I/O systems.

The image propagation benchmark integrated
Bandwidth Monitor NG (BWM-NG) as a tool to mea-
sure the input and output of the NIC from where
the VM image repository and VIM were resident, re-
ferred to in this paper as the ‘head node’. The bench-
mark involved the creation of: i) scripts to amalga-
mate the commands necessary for a user to provision
a VM, ii) verify the VM was on-line and executing
and iii) terminate the VM in an automated fashion
so that iterations of the experiment could be repeated
with relative ease. Each action was timed and com-
pared to the start and end of the data transfer recorded
by BWM-NG. This exposed the overheads of each
stage of the image propagation, from the head node
to the destination node where a VM was deployed.
The image propagation benchmark takes a single pa-
rameter; the size of image to be transferred. The
benchmark was wrapped around the three platforms:

OpenNebula using the SCP protocol, Nimbus using
the SCP protocol and Nimbus using GSIFTP.

Two synthetic benchmarks: IOzone and Bon-
nie++, were chosen for the performance evaluation
of virtual block I/O devices. These synthetic bench-
marks try to encompass all possible parameters that
could represent different workloads, such as database
software writing small files randomly to file servers
reading large files sequentially. IOzone is a bench-
mark that generates and measures a selection of file
operations to analyze the performance of a file sys-
tem. Bonnie++ is a benchmarking suite with the abil-
ity to perform several tests to assess the performance
of a file system and underlying HDD. In addition to
monitoring the above, Bonnie++ also monitors the
CPU overhead of a given test which gives a good in-
dication of the efficiency of the block I/O implemen-
tation. Two benchmarks were also chosen to enable
the validation of results so that any anomalies can be
ruled out as implementation specific issues. A test file
size of twice the amount of available RAM was used
in both to prevent CPU and RAM caches from biasing
the results.

The following IOzone tests, with accompanying
definitions, were chosen for the experiments: Write –
Measures the performance of writing a new file, in-
clusive of writing file metadata; Re-write – Measures
the performance of writing to a file that already ex-
ists, omitting much of the workload required in writ-
ing metadata; Read – Measures the performance of
reading an existing file; Re-read – Measures the per-
formance of reading a recently read file, illustrative of
caching affects that can improve performance as reads
are satisfied by cache; Random Read – Measures per-
formance of reading random locations within a file,
indicative of the performance of cache hierarchy and
seek latency; Random Write – Measures performance
of writing to random locations within a file, indica-
tive of the performance of cache hierarchy and seek
latency.

The subsequent Bonnie++ tests, with accompany-
ing definitions, were recorded during the experiment:
Sequential Throughput – The number of blocks of
data that can be read or written adjacent to one another
in respect to the physical medium, in kilobytes per
second; File Operations – The number of sequential
or random, create or delete file operations per second
illustrative of the overheads associated with manipu-
lating file metadata in a file system; Read File Op-
erations – The number of sequential or random read
operations of file metadata in zero size files per sec-
ond an indicator of the efficiency of a file system’s
structure.
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4.3 Methodology

The image propagation experiment alters the image
size, in the range 3GB to 21GB, in increments of 3GB
and records time in seconds. It is difficult to gauge
what sizes of image are representative of those used
in the real world as the image size is often depen-
dent on the application. We in part have chosen this
range as it is representative of a Service Oriented Ar-
chitecture pathology application we have deployed on
our testbed that requires large volumes of data be em-
bedded into the VM image. In addition, the chosen
range should provide enough data points for any re-
lationship between the variables to be observed. For
the IOzone and Bonnie++ experiments, the software
stacks on which the benchmarks run are altered. The
software stacks are the native host, KVM hypervisor
deployed on the native host, XEN Domain0 or privi-
leged guest that facilitates XEN VMs and XEN Do-
mainU or XEN guest VM. In addition, the newest sta-
ble releases of KVM and XEN are also introduced.
Depending on which benchmark test is being per-
formed, either the throughput in bytes per second or
the number of operations per second is recorded. The
percentage CPU time, where applicable in the case
of Bonnie++ tests, is also recorded. Ten iterations of
each of the benchmark tests are performed and the
average result, along with the standard deviation, are
presented where possible.

5 EXPERIMENTAL RESULTS

This section dicusses the results of each of the three
benchmarks outlined in the Section 4.2.

5.1 Image Propagation Performance
Analysis

The results of the image propagation benchmark pro-
vide an interesting insight into how the underlying de-
sign and implementation of the image management
supervision processes used in each IaaS manager, im-
pact the time it takes for a single iteration of a VM’s
lifecycle. Figure 3(a) presents these times against an
increasing VM image size.

It is clear that Nimbus using GSIFTP as a transfer
protocol outperforms both Nimbus and OpenNebula
using SCP. Adding appropriate trend lines, interpolat-
ing to an image size of zero and reading the appropri-
ate value from the y-axis intercept, provides an indi-
cation of the overhead created by the implementation
within each IaaS manager, responsible for managing
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Figure 3: Image propagation: Trends.

the propagation process of a VM. Figure 3(b) illus-
trates the theoretical performance of the NIC which
neither protocol obtains. It also show that on average
GSIFTP transfers data nearly twice as fast or in ∼46%
less time than SCP and when using the SCP protocol
the transfer time is agnostic of the IaaS manager used.
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Figure 4: Image propagation: Overheads.

Figure 4 show the results of the time spent wait-
ing to change from one state to another in each of
the platforms tested. It can be seen that the major-
ity of the time is spent in a transferring state, waiting
for the transfer protocol to complete the movement of
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data from the image repository to the VM host ma-
chine. On the other hand, when transferring smaller
images the initial and terminal overheads of the IaaS
manager supervising the propagation process become
an increased proportion of the total time spent wait-
ing. When comparing the SCP transfer protocol on
different IaaS managers Nimbus can be seen to out-
perform OpenNebula with a considerable reduction
in the time spent in the initialization and termina-
tion states, specifically ∼3.5 times faster or in ∼72%
less time, creating less overhead for identical sizes
of image. When Nimbus utilizes the GSIFTP trans-
fer protocol the initialization time remains roughly
proportional to the overall propagation time. This is
in contrast to the other platforms where the percent-
age of time spent in the initialization and termination
states decrease proportionally with an increase in im-
age size, that is the overheads remain constant. This
feature is also illustrated by the polynomial trend line
in Figure 3(a).

5.2 Virtual Block I/O Performance
Analysis

Block I/O devices are incredibly slow in comparison
to the performance of memory and CPU caches in
traditional computer systems, with many millions of
CPU cycles being wasted to service a single I/O re-
quests when a cache miss occurs. Optimization of the
virtual equivalent block I/O, like any leading bottle-
neck within a system, should be of a high priority and
has repercussions for applications that utilize large
datasets. The results in this subsection on the bench-
marks of IOzone and Bonnie++, divulge the perfor-
mance of the VMM block I/O devices and thus re-
veal the state of development, the amount of effort
and time assigned to optimization and an indication
of the maturity of the Virtualization solutions KVM
and XEN.
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Figure 5: IOzone - record size: 16MB, file: 4GB guest;
8GB host.
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Figure 6: IOzone on 2.6.32.24 - record size: 16MB, file:
4GB guest.

Figure 5 and 6 illustrates the maximum through-
put of the virtual block I/O devices for a given plat-
form, where a record size of 16Mbyte is used to min-
imize CPU usage. It can be seen that out of the box,
KVM 83 write performance is incredibly poor in con-
trast to XEN 3.4.3. KVM 83 on average across all
write tests exhibited ∼17% of the throughput of XEN
3.4.3. IOzone read tests demonstrate that KVM 83
performs similarly to XEN 3.4.3 in the initial read test
but failed to equal the throughput for the re-read and
random read tests attaining ∼77% of the throughput.
The tests on the newer versions of KVM and XEN are
shown in Figure 6. KVM 2.6.32.24 again shows poor
write performance but is a vast improvement over the
older version by roughly a factor of 3. The perfor-
mance of XEN 4.0.1 is on par with the older version
of XEN 3.4.3.

After further investigation, the bottleneck was
tracked to the caching system of the QEMU back-end
used by KVM. By default a write-through cache is
deployed for consistency to guarantee storage is com-
mitted to the underlying physical device. This has the
effect of increasing the amount of bus traffic and ad-
ditional copy operations needed and consequently re-
duces the performance of write operations. With this
in mind, the benchmarks for KVM were rerun avoid-
ing the use of the cache all together and this demon-
strated far superior performance. This time KVM dis-
played ∼79% of the throughput of XEN. Figure 6
shows the new version of KVM 2.6.32.24 performing
on par with and on occasion better than XEN 4.0.1.

Comparing XEN 3.4.3 with the native host plat-
form and accounting for variance, write throughput
was on par on all tests other than the initial write
test which revealed that XEN 3.4.3 exhibited ∼83%
of the throughput. The results of the XEN 3.4.3 ini-
tial read test demonstrated similar results with ∼71%
of the throughput of the host. The other XEN 3.4.3
read tests were indistinguishable from the host and
the performance of the privileged guest “Domain0”
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Figure 8: Bonnie++ on 2.6.32.24 - Throughput MB/Sec.

was equivalent to the native host performance across
all tests.

The results of the Bonnie++ benchmark for se-
quential throughput (Figure 7 and 8) are confirmatory,
showing near identical results to IOzone for the se-
quential write and read tests but oddly show differing
results for the sequential re-write test across all plat-
forms. These results show roughly a 50% reduction in
throughput compared to IOzone. This could indicate
that the sequential re-write test throughput is a formu-
lation of the time to execute two consecutive sequen-
tial write operations and has not been accounted for.
The discrepancy highlights the need for an additional
confirmatory benchmark when running performance
evaluation experiments.

While throughput of the virtual block devices pro-
vides an indication of performance, the number of op-
erations that can be performed per second give further
insight into how efficient the implementations are.
Figure 9 and 10 presents the Bonnie++ benchmark
results for sequential and random deletion and cre-
ation of files respectively. The results show that KVM
83 performs poorly in all cases, more so in the create
tests where an order of magnitude less operations can
be executed and where turning off the storage cache
in KVM has minimal impact on performance. Inter-
estingly XEN 3.4.3 guests outperform the native host.
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Figure 9: Bonnie++ - File operations per second.
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Figure 10: Bonnie++ on 2.6.32.24 - File operations per sec-
ond.

Again it can be seen that the performance of KVM
2.6.32.24 is comparable to XEN 3.4.3 and 4.0.1.

Another indicator of efficient design and imple-
mentation is that of CPU usage used when performing
I/O related tasks. Applications using CPU resources
can become starved by OS subsystems such as block
I/O back-ends using excessive CPU time to service re-
quests for accessing I/O devices. Figure 11(a) shows
KVM 83 performing poorly on all sequential oper-
ations using a greater percentage of CPU to service
less requests in comparison to XEN. Interestingly the
XEN 3.4.3 guest performs better than the underlying
XEN Domain0, exhibiting very little CPU usage if the
CPU metric gathered within the XEN guest is to be
trusted. Disabling the storage cache of KVM 83 cre-
ates an increase in the percentage of CPU time used.
In the file operation tests of Figure 11(b) this per-
formance gap is even more prominent with all tests
exhibiting CPU usage around 80%. At first glance
KVM with storage cache seems to outperform XEN
in the percentage of CPU time used to create files
randomly but performs far less operations per sec-
ond. Figure 12(a) demonstrates another performance
improvement for KVM 2.6.32.24 over KVM 83 and
a slight performance regression from XEN 3.4.3 to
4.0.1. Figure 12(b) reveals a large reduction in CPU
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usage across the tests for KVM 2.6.32.24 with and
without cache and a modest improvement for XEN
4.0.1 over XEN 3.4.3.
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Figure 11: Bonnie++ - Left-to-Right, Top-to-Bottom: Se-
quential Throughput CPU Usage, File Operations CPU Us-
age & Read File Operations.

Figure 11(c) presents evidence that KVM 83
guests outperform XEN 3.4.3 guests and that the XEN
3.4.3 privileged guest Domain0 performs worse than
the native host when operating on file metadata. This
indicates that the cause of the write bottleneck of
KVM 83 with storage cache is due to the inefficient
manner in which data is transferred from the host
physical storage to the guest and not due to the han-
dling of file system metadata. Finally comparing Fig-
ure 11(c) and Figure 12(c) another performance re-
gression is illustrated from XEN 3.4.3 to 4.0.1.
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Figure 12: Bonnie++ on 2.6.32.24 - Left-to-Right, Top-to-
Bottom: Sequential Throughput CPU Usage, File Opera-
tions CPU Usage & Read File Operations.

6 RELATED WORK

The main contribution of this paper lies in the find-
ings of a performance evaluation into a specific as-
pect of Cloud Computing; the management and use
of data at the Virtualisation level. Results are pre-
sented that provide insight into how Cloud technology
can be improved and what technology is best for the
needs of a given application. There have been numer-
ous studies on the performance of hypervisors within
the literature (Kesavan et al., 2010; Padala et al.,
2008; Stantchev, 2009; Yu Liang and Lu, 2008; Xi-
anghua Xu et al., 2008; Jianhua Che et al., 2008; De-
shane et al., 2008) and this paper differentiates from
these by giving a contemporary performance evalua-
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tion within the context of Cloud Computing. We con-
tribute and implement a novel benchmark to evaluate
end to end image propagation overheads of any IaaS.
(Yigitbasi et al., 2009) present a performance analy-
sis framework for the overheads in resource acquisi-
tion and release. However the results of their work
are for resources deployed onto Amazon EC2 with
the framework left untested on other virtual resource
management architectures. (Goiri et al., 2009) de-
scribe a proof-of-concept framework for facilitating
resource management in service providers in which
a performance evaluation of the overhead of creat-
ing a VM image is considered not the time to prop-
agate an already existing VM image to a physical re-
source. (Chen et al., 2009) explore how multicast-
ing file transfers can reduce image propagation over-
heads.

Previous related works have concentrated on the
performance and scalability of CPU virtualisation
omitting a performance analysis inclusive of I/O
(Padala et al., 2008). An additional publication
(Stantchev, 2009) formulates an approach to perfor-
mance evaluation, using real world workloads on
Amazon EC2 and considers the system as a “black
box” without finding the root causes of the perfor-
mance bottlenecks. Another creates a methodology
for the collection of virtual I/O metrics (Yu Liang
and Lu, 2008) but evaluates the performance of only
a single hypervisor. Other publications (Xianghua
Xu et al., 2008; Jianhua Che et al., 2008) incorrectly
setup a parameter of the IOzone benchmark using a
64MB test file instead of twice the size of available
memory, bringing into question the validity of the re-
sults obtained. (Deshane et al., 2008) present results
that KVM outperforms XEN in IOzone tests. Our ex-
periments have been unable to confirm these results
and one can only assume, due to limited informa-
tion from the paper on the experimental environment
used, that again the file size parameter for the IOzone
benchmark has been set incorrectly.

7 CONCLUSIONS AND FUTURE
WORK

The aspect of performance within QoS has an impor-
tant role to play in the provisioning of resources in
Cloud Computing. This paper presented the findings
of a performance evaluation into the management and
utilization of data inside an IaaS provider. The im-
plementation of technologies used in virtual infras-
tructure has been highlighted as influencing the out-
come of resource performance and consequently the
QoS provisioned to end users, the competitiveness of

a provider in the Cloud ecosystem and likely return
on investment of services made available. This subse-
quently makes the selection of technology a decisive
decision for any Cloud provider. The outcome of our
work provides quantitative evidence that can enhance
this decision making process and aid in the prevention
of SLAs breaches.

The results of our experiments illustrate that
OpenNebula and KVM, relative new comers to the
paradigm of distributed systems, perform to a lower
standard than Nimbus and XEN. This is being recti-
fied over time as seen with KVM version 2.6.32.24
but, like XEN 4.0.1, is not currently distributed with
enterprise grade operating systems such as CentOS
5.4. A general theme has reoccurred throughout our
performance analysis: the maturity of a particular
technology heavily influences performance. There-
fore it could be concluded that the findings of our
work advocate mature software solutions due to cor-
relation with improved relative performance, but this
is not always the case as seen in XEN version 4.0.1
where a new implementation of the blktap disk back-
end driver in a mature software solution has intro-
duced performance regression. This puts into context
the contemporary feature sets these new technologies
provide, which we argue are more appropriate or spe-
cific to the usage scenarios of a Cloud environment.
As a consequence this trade off between performance
and feature set should be factored in when making any
decision on whether to use the technology evaluated
here in.

The implications of our results draw attention to
the impact performance overheads have on the adop-
tion of Cloud technology. OpenNebula for exam-
ple has a comparatively limited aptitude to react to
changes in demand in a stochastic and highly dynamic
environment and accordingly Nimbus would be more
appropriate in this scenario. Data management ser-
vices such as Amazon’s S3, when considered not eco-
nomically viable or where the cost of these Cloud ser-
vices are not completely transparent and vary signif-
icantly (Kossmann et al., 2010), could result in data
having to be stored and accessed within a local VM
image. The lack of KVM 83 guests at writing and
reading data could be a limiting factor for applica-
tions that access large quantities of data locally and
conversely XEN 3.4.1 would be an advisable choice
here.

Future work is planned to evaluate the trade off be-
tween the features of enhanced image formats such as
QCOW2, VMware’s VMDK and Microsoft’s VHD
and the performance of raw images. In addition, the
overheads surrounding other popular VIMs, such as
Eucalyptus (Eucalyptus, 2010), will be evaluated.
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