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Abstract: IaaS is a popular cloud computing service paradigm based on virtualization technology. In an IaaS cloud 
environment, the service provider configures VMs with physical computing resources (e.g., CPU and 
memory) and leases them to IaaS customers to run their applications. The customers pay for the resources 
they use. Such a pay-as-you-go charging mode brings about a few critical concerns about the expenses paid 
and the performance received. From the standpoint of cloud customers, such concerns as minimizing the 
expenses while ensuring the performance, optimizing the performance within the budget limit, 
compromising the expenses and performance, or balancing performance of applications running on different 
VMs, etc. thus arise. For the IaaS provider, how to reasonably configure VMs so as to meet various 
requirements from different customers becomes a challenge, whose solution influences the acceptance of 
IaaS in the future. In this paper, we address this problem and present a weighted multiple objective 
optimization approach for flexible control of expenses and performance in an IaaS cloud environment. We 
focus on database applications, consisting of various queries to be executed on different VMs. A genetic 
algorithm is implemented based on a fine-grained charging model, as well as a normalized performance 
model. Experiments have been conducted to evaluate the effectiveness and efficiency of our approach, using 
TPC-H queries and PostgreSQL database in a simulated cloud environment. 

1 INTRODUCTION 

IaaS is an important cloud computing service 
paradigm provided by a few well-known IT 
companies such as Amazon, IBM, etc. IaaS depends 
largely on virtualization technology, enforcing 
simple and flexible management of computing 
resources. As a result, customers can get desirable 
resources as needed, and the IaaS provider charges 
the customers for the resources they use. This is 
coined as “pay-as-you-go”. Under such a charging 
mode, from the standpoint of IaaS customers, a few 
critical concerns about expenses paid for the service 
and obtained performance of their applications thus 
inevitably arise.   

Let’s consider such a scenario. An IaaS customer 
wants to run several database applications on a few 
VMs in an IaaS cloud environment. How to 

configure these VMs with reasonable physical 
computing resources is the first issue that the IaaS 
provider needs to solve. At the same time, the 
customer may also have a number of doubts and 
questions about the expenses to be paid for the 
resources, as well as the obtained applications’ 
performance.   

1) Is it possible to achieve the best performance 
within a budget limit?  

2) Is it possible to minimize the expenses while 
still guaranteeing the performance?  

3) Is it possible to make a compromise between 
expenses and performance?  

4) Is it possible to achieve a balanced 
performance when running different applications on 
different VMs under the premise of guaranteeing the 
overall performance? 

From the perspective of the IaaS provider, 
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proper answers to the above-mentioned questions 
apparently determine the acceptance of IaaS by its 
potential cloud customers.   

The aim of this paper is to provide a solution to 
address the above-mentioned questions. Based on a 
fine-grained charging model with respect to the 
usage of CPU and memory, along with a normalized 
performance model, we formalize the above-
mentioned problems into a multiple objective 
optimization problem, and solve it by means of a 
genetic algorithm.  

Considering that a customer may have a variety 
of applications or queries from the same application 
running on different VMs, a uniform and reasonable 
performance model is a challenge here. For example, 
an airline ticket database application supports not 
only OLTP queries like querying flight schedules, 
but also OLAP queries like mining association rules 
from the data. In this case, 1 minute may be too long 
for OLTP queries, but 1 hour is still acceptable for 
OLAP queries. Therefore, using the absolute 
execution time of queries to measure the 
performance of different types of queries isn’t 
reasonable, and may lead to skewed resource 
configuration. In this paper, we tackle this issue 
through normalization of execution time.  

 To evaluate the effectiveness and efficiency of 
our approach, we conduct some experiments by 
running a few typical TPC-H queries in a simulated 
IaaS cloud environment. The results are as follows: 

1) The performance model with execution time 
normalization can effectively avoid skewed 
resources configuration.  

2) The optimized resources configuration 
strategy given by our approach can get 20% even up 
to 30% performance improvement over the default 
configuration. 

3) The multiple objective optimization method 
can effectively save the expenses when the increase 
of computing resources contributes to little 
improvement of performance. It can also help 
balance the performance of applications running on 
different VMs with little drop of overall 
performance. 

4) Benefiting from our performance model for 
individual queries, our approach is quite adaptable to 
resource requirements of different applications. 

The contribution of the paper primarily lies in 
two aspects. 1) A weighted multiple objective 
optimization approach is proposed for flexible 
control of expenses and performance in an IaaS 
cloud environment, with an aim to meet a variety of 
requirements coming from different cloud 
customers. 2) A normalized performance model is 

built, taking different kinds of applications from a 
customer into account.   

The remainder of the paper is organized as 
follows. In Section 2, we review some closely 
related work and highlight the differences of our 
work from existing ones. In Section 3, we formalize 
the problem and present our solution. We describe 
our performance study in Section 4, and conclude 
the paper in Section 5. 

2 RELATED WORK 

Virtualization technology has received lots of 
attention in both industry and academia. IaaS is a 
typical application of virtualization in industry. In 
recent years, issues on resource and performance 
management and resource charging in virtualized 
environments become hot research topics in 
academia.  

Performance Management. Performance is a 
critical concern in virtualization for cloud customers. 
To deliver satisfactory application performance, 
tremendous efforts have been made, including 
performance management and application behavior 
analysis (Xiong et al., 2010), application 
performance isolation in a virtualized environment 
(Somani and Chaudhary, 2009), power and 
performance management in virtualized computing 
environments via lookahead control (Kusic et al., 
2009), automated control of multiple virtualized 
resources (Padala et al., 2009), proper resource 
configuration for virtual machines (Rao et al., 2009, 
Bu et al., 2010), balancing power and application 
performance for virtualized server clusters (Wang 
and Wang, 2009), control of resource allocation and 
power management in virtualized data centers 
(Urgaonkar et al., 2010). However, none of these 
work incorporated the cost or expenses for using 
resources in cloud environments, which is an 
important focus of this paper. 

There has also been some work on improving the 
performance of database applications in a virtualized 
environment through different methods, including 
on-demand provisioning of virtual machines 
(Shivam et al., 2007), and resource configuration of 
virtual machines (Soror et al., 2008). We also 
consider resource configuration in this study. 
However, we are oriented at a scalable cloud 
environment, while the work of Soror et al. (2008) is 
based on a fixed amount of physical resources 
shared by multiple VMs and their assumption that 
execution time of queries is linear in the inverse of 
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resource allocation level is limited to small 
adjustments in resource configuration.  

Resource Charging. The resource charging of IaaS, 
which is another important aspect the cloud 
customers care about, has become focus of some 
researchers in the last two years. 

Florescu and Kossmann (2009) emphasized the 
necessity of minimizing cost given performance 
requirements, and Henzinger et al. (2010) proposed 
a fine-grained charging model in a simulated cloud 
environment. The charging model generally refers to 
how IaaS providers charge for their services. 
Usually IaaS providers set the leasing price for each 
kind of computing resource, and customers pay for 
the resources configured for their VMs. The current 
charging model of IaaS is that providers offer and 
charge for fixed configured VMs. For example, 
Amazon EC2 offers 10 different kinds of resource 
configurations for VMs. If a customer’s application 
running on one VM, s/he needs to pay the amount 
corresponding to that VM of a fixed resource 
configuration.  Rogers et al. (2010) further presented 
a framework for minimizing the operational cost on 
Amazon EC2 within target QoS expectations. But 
this work assumed that each VM runs a single type 
of queries, and took operational cost as the sole 
optimization objective.  

Our work differs from the above-mentioned 
charging models in the following three aspects. First, 
we adopt a pay-as-you-go charging strategy, wherein 
customers can ask for a flexible (rather than fixed) 
amount of resources (i.e., CPU and memory) for 
personalized configuration as needed.  Second, we 
consider a more complex yet realistic query 
workload to be executed by a VM, considering that 
one VM may be assigned different types of queries 
in some real-world applications. Third, besides 
optimizing application performance and expenses, 
we also try to balance performance across different 
VMs, since one customer may have more than one 
VM to run their business. To this end, we set up a 
multiple objective optimization model, aiming to 
optimize performance, minimize expenses, and 
balance application performance across different 
VMs.  

3 MODELING AND SOLUTION 

In this section, we present our approach to formalize 
and solve the problems mentioned above. First, we 
obtain a performance model for individual queries 
by fitting sample data. Then we build a uniform 

performance model for workloads through 
normalization of execution time. After that, the 
problem of performance and expenses control is 
turned into a weighted multiple objective 
optimization problem. At last, we present some 
details of the genetic algorithm implemented to 
solve the problem. 

3.1 Preliminaries 

Suppose an IaaS customer has N query workloads to 
be running on the same number of VMs. A workload 
on a VM is composed of one or more (i.e. mixed) 
types of queries. In another word, one workload 
corresponds to one special VM, and may contain 
various types of queries. For each workload, assume 
the percentage of each type of queries is given, 
which can be obtained in practice by sampling and 
statistic.  

Let Wi denote the workload running on the i th 
VM ( 1 i N≤ ≤ ). To model mixed queries in a 
workload, let Qij be the j th type of queries in Wi 

and let pij denote the percentage of Qij in Wi 
(1 ij n≤ ≤ ); let ni be the number of query types in 
Wi. To express the resource configuration of VMs, 
let ci be the CPU capacity of the i th VM, e.g. 1GHz, 
and let mi be the memory size of the i th VM, e.g. 
1GB.  

3.2 Performance Model for Individual 
Queries 

To establish relationship between expenses and 
performance, we need a mapping function from 
computing resources (CPU, memory) to the 
execution time of queries, i.e. performance model 
for queries. We can obtain the mapping function by 
fitting some sample data. And there are two sources 
of the sample data; one is the estimates of DBMS 
query optimizer (Soror et al., 2008), the other is the 
real experiment data. In order to ensure the accuracy 
of the data, we have adopted the real experiment 
data obtained by running TPC-H queries on VMs 
with different resources configuration. By 
leveraging nonlinear surface fitting functions of the 
numeric analysis software Origin 8.0 over the 
sample data, we found the Rational2D function 
fitted the data well, with the R2 value reaching 0.99. 
R2 is an indicator of the goodness of fit, and a R2 
value close to 1 indicates that the fit is a good one. 
The fitting algorithm in Rational2D function is 
based on LMA (Levenberg-Marquardt Algorithm 
(More, 1978)), a robust iterative algorithm effective 
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to nonlinear fitting problems. The standard form of 
the Rational2D function is as follows: 

2 3
0 1 2 3 4

2 3 2
5 6 7 8 91
ij ij i ij i ij i ij i

ij
ij i ij i ij i ij i ij i

A A x A y A y A y
t

A x A x A x A y A y
+ × + × + × + ×

=
+ × + × + × + × + ×

 (1) 

where ijt is the execution time of ijq ; 1i ix c= , 
wherein ci is the CPU capacity of the i th VM; 

1i iy m= , wherein mi is the memory size of the i th 
VM; ijkA ( 0 9k≤ ≤ ) is the coefficient obtained by 
fitting the sample data. 

 
Figure 1: The fitted result for Q13. 

 
Figure 2: The fitted result for Q21. 

Figure 1 and 2 show the fitted results for two 
typical types of query, Q13 and Q21, which are 
respectively a CPU-intensive and a memory-
intensive query from TPC-H benchmark. The 
execution time of CPU-intensive queries is mainly 
influenced by CPU capacity, while that of memory-
intensive queries is mainly influenced by memory 
size. 

 

3.3 Performance Model for Workloads 

After obtaining the mapping function, we need an 
expression to formalize the performance of each 
workload. At first, we consider using the expected 
execution  time  of  queries  in  a  workload, which is 

1

in

i ij ij
j

T p t
=

= ×∑  (2) 

where Ti is the expected execution time of queries in 
Wi , which is taken as the execution time of Wi. 
However, sometimes this may lead to unreasonable 
resources configuration. For example, the workload 
on a VM instance contains two different types of 
queries, one is CPU intensive and the other is 
memory intensive; the order of magnitude of the 
execution time of the former is 1ms, and that of the 
later is 1000ms. Besides, the CPU-intensive query 
accounts for 90% of the workload, and the memory-
intensive one 10%. Obviously, the former plays a 
dominant role in this workload, so the right way to 
improve the performance of the workload should be 
giving it more CPU capacity. In order to satisfy most 
query requests, we hope to pay 90% of our 
optimization effort on the CPU-intensive query. 
However, if using formula (2), the result of 90% 
multiplying by 1, 0.9 is much less than 100, that of 
10% multiplying by 1000. In this case, the memory-
intensive query will be mistaken for the dominator 
of the workload, which will lead to incorrect 
resources configuration. That is to say, difference of 
the order of magnitude of the execution time may 
lead to undesirable and even wrong configuration 
strategies. So it’s necessary to normalize the 
execution time of different types of queries.  

Formula (3) shows our normalization method, 
multiplying the execution time by a normalization 
factor λ . Formula (4) is the expression of the 
normalization factor; the denominator is the average 
execution time of the standard type of queries 
selected beforehand, and the numerator is that of 
other queries. The average execution time of each 
type of queries can be obtained from sample data, 
and the ratio is taken as the normalization factor to 
eliminate the undesirable influence of different order 
of magnitude of the execution time. In following 
sections, unless otherwise specified, any execution 
time is the normalization time with average 
execution time ratio.  

ij ij ijt tλ′ = ×  (3) 
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ij s ijt tλ =  (4) 

ijt ′ is the normalization result of ijt  (1 ij n≤ ≤ ); ijλ is 

the normalization factor of ijt  (1 ij n≤ ≤ ); st  is the 
average execution time of the standard type of 
queries selected beforehand; ijt is the average 
execution time of ijq . Then the normalization result 
of iT  is formed as: 

1

in

i ij ij ij
j

T p tλ
=

= × ×∑  (5) 

3.4 Multiple Objective Optimization 

Based on the information above, three objective 
functions are formed as: 

1
1

: min
N

cpu i mem i
i

obj price c price m
=

× + ×∑  (6) 

2
1 1 1

: min min
inN N

i ij ij ij
i i j

obj T p tλ
= = =

= × ×∑ ∑∑  (7) 

3

1

: min{max{ }}

                           min{max{ }}
i

i
n

ij ij ij
j

obj T

p tλ
=

=

× ×∑
 (8) 

where pricecpu is the leasing price of CPU, e.g. 
0.02$/GHz·hour; pricemem is the leasing price of 
memory, e.g. 0.01$/GB·hour. Formula (6) aims at 
minimizing the total expenses per leasing interval. 
Formula (7) aims at minimizing the total execution 
time of all the workloads, i.e., optimizing overall 
performance. And formula (8) minimizes the 
maximal execution time of different workloads, 
aiming at balancing the performance of different 
workloads. And the constraints of the problem are as 
follows: 

1

1
in

ij
j

p
=

=∑  (9) 

ijij qt bound≤  (10) 

1

N

cpu i mem i
i

price c price m budget
=

× + × ≤∑  (11) 

 
Formula (9) ensures the percentage of each type 

of queries in a workload adds up to 1. Formula (10) 
ensures the execution time of each type of queries 
against exceeding their respective bound, and 
formula (11) ensures the total expenses against

exceeding the budget limit. 
At last, we transform the multiple objective 

optimization problem to a single objective 
optimization problem using linear weighting method. 
The new objective function is 

3

0
1

: min i i
i

obj w obj
=

×∑  (12) 

where wi, 1 3i≤ ≤ , are respectively the weights 
of three original objective functions.  

3.5 Algorithm 

Then we design and implement a genetic algorithm 
by C++ language to solve the problem. Primary 
algorithm codes are as follows. 
 
Input: 

the number of generations: G 
the size of population: P 
the number of query types: Q 
the number of workloads (VMs): N 
the percentage of queries in each workload: pij 
the performance model for queries: Rational2D 
the normalization factor of execution time: λij 
the weight of each objective function: wi 

Output: 
the resource configuration of each VM: ci, mi 

 
Function 1: Main function 
Begin 

Initialization; 
foreach k from 1 to G do 
Selection; 
Crossover; 
Mutation; 
Evaluation; 

End 

Function 2 is used to initializing the population, 
and the chromosomes consist of ci and mi randomly 
generated. 
Function 2: Initialization 
Begin 

foreach k from 1 to P do 
foreach i from 1 to N do 
Chromki=random CPU capacity; 

foreach i from N+1 to 2N do 
Chromki=random memory size; 

Check constraints; 
foreach i from 1 to 2N do 
Chrom0i=Chrom1i; 

ObjFunctions; 
foreach j from 1 to 3 do 
Obj0j=Obj1j; 

End 
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Function 3 is used to compute the value of objective 
functions so as to evaluate the fitness of 
chromosomes. 
 
Function 3: ObjFunctions 
Begin 

foreach k from 1 to P do 
CPU=0; Memory=0; 
foreach i from 1 to N do 
xi=1/Chromki;CPU+=Chromki; 
yi=1/Chromk(i+N);Memory+=Chromk(i+N); 

Objk1=pricecpu*CPU +pricemem *Memory; 
Objk2=0; Objk3=0; 
foreach i from 1 to N do  
Ti=0; 
foreach j from 1 to Q do 
  if(pij!=0)  

tij=Rational2Dj(xi,yi); 
Ti=pij*λij*tij; 

Objk2+=Ti; 
if(Ti>Objk3) Objk3=Ti; 

Objk0=w1*Objk1+w2*Objk2+w3*Objk3; 
End 
 
Function 4 aims at evaluating the fitness of 
chromosomes after crossover and mutation. 
 
Function 4: Evaluation 
Begin 

ObjFunctions; 
foreach k from 1 to P do 
n=0; objmin=Objn0; 
foreach j from k+1 to P do 
if(objmin>Objj0) 
objmin=Objj0; 

  n=j; 
if(n!=0) 
foreach i from 1 to 2N do 
   swap Chromki and Chromni; 
foreach j from 1 to 3 do 
   swap Objkj and Objnj; 

End 

 
Since Selection, Crossover and Mutation are 

familiar to traditional genetic algorithm, the codes of 
them are not given here. The time complexity of the 
algorithm is O(GPNQ). And the results of our 
experiments show when P is set to 30 (an empirical 
value for genetic algorithm), the algorithm can give 
near-optimal configuration strategy with G reaching 
two or three orders of magnitude; and when N and Q 
are respectively less than 10 and 5, it takes less than 
1 second to perform the algorithm. 

4 EVALUATION EXPERIMENTS 

In this section, we show some experimental results 
obtained by running a few typical TPC-H queries in 
a simulated IaaS cloud environment. These 
experiments aim at evaluating the effectiveness of 
the normalized performance model, the performance 
improvement of the optimized configuration 
strategies given by our approach, the compromise 
between performance and expenses, the tradeoff of 
workloads on different VMs, and the adaptability  to 
resource requirements of workloads. 

4.1 Experimental Settings 

Experimental Environment. We use two identical 
computers to construct a simulated cloud 
environment, each with one 2.5GHz Intel Xeon 
Quad-Core processor and 5GB of memory. 
XenServer is used for virtualization. XenServer is a 
product based on Xen, a powerful open source 
industry standard for virtualization. Amazon EC2 is 
exactly based on Xen virtualization solution. 
CentOS-5.4-x86_64 is used as the operation system 
of VMs. 

Charging Model. The absolute leasing prices of 
CPU and memory won’t influence the evaluation, 
but the ratio between them should be reasonable. In 
our experiments, we determine their leasing price 
with the ratio corresponding to their actual market 
price ratio. We have investigated the market prices 
of CPU and memory, and the price ratio is 
approximately 2:1. In the following experiments, the 
leasing prices of CPU and memory are respectively 
set to 0.02$/GHz·hour and 0.01$/GB·hour. 

Basic Metric for Performance Improvement. 
Generally, execution time can reflect the 
performance directly. Therefore, we use the 
execution time of a workload to measure its 
performance, and the total execution time of all the 
workloads to measure the overall performance. Then 
we define a default resources configuration strategy, 
that is, to average the given budget for all VMs, and 
for each instance, the memory size is 1.872 times as 
CPU capacity. We obtain this default strategy from 
the configuration of the standard VM instances from 
Amazon EC2. Table 1 shows the CPU and memory 
configuration of three standard VM instances from 
Amazon EC2. We run a linear regression on the data 
to get the default configuration ratio between CPU 
and memory. Figure 3 shows the perfect regression 
result with the R2 value reaching 0.999. Then 
formula (13) shows the basic evaluation equation.  
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Table 2: The configuration strategies with and without execution time normalization. 

Budget($) Workload 
Strategy with execution time 
normalization Strategy without execution time normalization 

CPU (GHz)  Memory (GB)   CPU (GHz)  Memory (GB)  

0.04 W1 0.7  0.5  0.6  1.3  
W2 0.8  0.5  0.5  0.5  

0.06 W1 1.2  0.6  1.1  1.9  
W2 1.2  0.5  0.7  0.5  

0.08 W1 1.6  1.0  1.5  2.1  
W2 1.6  0.5  1.1  0.5  

 

Tdefault and Toptimal are respectively the execution time 
under default and optimized configuration.  

default optimal

default

T T
improvement

T
−

=  (13) 

Table 1: The CPU and memory configuration of three 
standard VM instances from Amazon EC2. 

Type of  VM instances CPU (GHz)   Memory (GB)  
Small 1 1.7 
Large 4 7.5 

Extra large 8 15 

 
Figure 3: The regression result for the CPU and memory 
configuration of VM instances from Amazon EC2. 

4.2 Verifying the Necessity and 
Effectiveness of Execution Time 
Normalization 

Since the difference of the order of magnitude of the 
execution time may lead to undesirable and even 
wrong configuration strategy, we have brought in 
the normalization factor to terminate this undesirable 
influence. To verify the necessity and effectiveness 
of normalization factor, we select three types of 
TPC-H queries, Q11, Q21 and Q6 to conduct this 
experiment. Q11 and Q21 are respectively CPU 
intensive and memory intensive, and Q6 isn’t very 
sensitive to CPU or memory. Besides, Q11 and Q6 

have the same order of magnitude, and Q21 has 
nearly two orders higher than them.  

We start two VMs with two different workloads 
respectively running on them. W1 consists of Q11 
and Q21 with 9:1 quantity ratio, and W2 is composed 
of Q11 and Q6 with 9:1 quantity ratio. So both 
workloads are CPU intensive because Q11 plays a 
dominant role in them, and the correct configuration 
strategy is to give more CPU capacity to both VMs.  

Table 2 shows the configuration strategies given 
by two approaches with and without execution time 
normalization under different budget constraints. 
From the table, it can be seen that the strategy with 
time normalization is correct, giving priority to CPU 
configuration for both VMs. In contrast, the strategy 
without time normalization, giving priority to 
memory configuration for W1, doesn’t correspond to 
the actual demand. 

4.3 Evaluating the Basic Performance 
of Our Approach 

In this section, we focus on evaluating the 
effectiveness of our approach to combination of 
workloads with different natures. We use three 
typical combinations of workloads to test the 
improvement of overall performance.  
Case1: The experiment in the previous section is a 
typical case, for both workloads are CPU intensive. 
Figure 4 shows the total execution time respectively 
under default configuration strategy mentioned 
above and optimized configuration strategy given by 
our approach. It can be seen that the improvement is 
significant, reaching 20% even up to 30%. 
Case2: Then we design another typical case using 
Q6, Q21 and Q13. Q6 and Q21 have been 
introduced in the previous section, and Q13 is 
almost an absolutely CPU-intensive query, 
extremely insensitive to memory. Similar to the 
previous experiment, we run two different 
workloads on two VMs respectively. W1 consists of 
Q6   and   Q21  with  1:9  quantity  ratio,  and  W2  is  
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Figure 4: Optimization result for Case1. 

composed of Q6 and Q13 with 1:9 quantity ratio. So 
W1 is typically memory intensive while W2 is 
typically CPU intensive. Figure 5 shows the result of 
this experiment. It can be seen that the improvement 
is satisfying, over 20% even exceeding 30%.  

 
Figure 5: Optimization result for Case2. 

 
Figure 6: Optimization result for Case3 with different 
percentage of Q6 in W2. 

Case3: Next, let’s look at the third typical case. We 
just make some changes based on Case2, turning the 
quantity ratio into 9:1 for W1, and : (10 )n n−  for W2, 
from 1n =  to 9n = . As a result, W1 isn’t very 
sensitive to CPU or memory because Q6 becomes 
the dominator, while W2’s sensitivity to CPU 
decreases as n  increases. Figure 6 shows the result 
of this experiment. It can be seen that the 
improvement drops significantly as the percentage 
of Q6 in W2 increases.  

From these experiments, it can be concluded that 
our approach can lead to significant performance 
improvement when the combination of workloads is 
sensitive to resources, or else the improvement isn’t 
very apparent.  

4.4 Verifying the Effectiveness of 
Compromising Performance and 
Expenses 

Formula (12) in section 3 shows us the aggregating 
objective function using linear weighting method, 
and wi ( 1 3i≤ ≤ ), the weights of three original 
objective functions, can be adjusted as needed. If the 
customers only care about one aspect of them, they 
just need to set the weights of other objective 
functions to zero. In this experiment, we focus on 
the expenses and the overall performance under 
different budget constraints.  

We start three VMs with three different 
workloads respectively running on them. To verify 
the applicability of our approach, all the workloads 
consist of Q6, Q21 and Q13, three different types of 
queries (c.f. section 5.2, 5.3) with random instead of 
controlled quantity ratio. For comparison, firstly w1 
and w3 in formula (12) are set to 0, and w2 is set to 1. 
In this case, the only objective is minimizing the 
total execution time of the workloads, i.e. optimizing 
the overall performance. 

 
Figure 7: Execution time and expenses when ignoring 
cost-performance ratio. 
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Figure 7 shows the expenses and total execution 
time under different budget constraints, ignoring 
cost-performance ratio. It can be seen that, when the 
budget increases beyond a certain value, the total 
execution time decreases very slowly, but the 
expenses increase as usual. This is because when 
resources reach a certain level, the performance 
nearly reaches saturation point. Under this 
circumstance, single objective optimization can’t 
give a fine configuration strategy. It’s necessary to 
adjust the ratio between the weights of objective 
functions to obtain more reasonable strategies. 
Figure 8 shows some new results by adjusting w1 
and w2, and the tradeoff between performance and 
expenses is significant. Especially when the budget 
is relatively higher, our approach can save the 
expenses significantly, with little drop of 
performance. 

 
Figure 8: Execution time and expenses when considering 
cost-performance ratio. Time1-3 are three execution time 
curves under different ratios between w1 and w2, and 
Expenses1-3 are corresponding expenses curves. 

4.5 Verifying the Effectiveness of 
Balancing the Performance of 
Different Workloads 

In the previous experiment, the tradeoff between 
performance and expenses can be achieved by 
adjusting the ratio between w1 and w2. Analogously, 
if the customers hope to balance the performance of 
different workloads, they just need to increase the 
value of w3, i.e. the weight of the third objective 
function. 

We start two VMs with two different workloads 
respectively running on them. W1 consists of Q21 
and Q13 with 1:9 quantity ratio, while W2 is 
composed of Q21 and Q13 with 9:1 quantity ratio. 
So W1 is typically CPU intensive while W2 is

typically memory intensive.  
Table 3 shows the experimental results with 

different ratios between w2 and w3. From the table it 
can be seen that, as the value of w3:w2 increases, the 
performance tradeoff between the two workloads 
become more significant. At the same time, the 
impact on the overall performance is limited, 
because the increase of total execution time is not 
apparent.  

Table 3: Performance tradeoff of workloads under 
different ratios between w3 and w2. 

w3:w2 
Execution time with normalization 
W1 W2 Total 

0:1 60.05 29.55 89.60 
1:1 53.12 39.36 92.48 
9:1 49.30 49.29 98.59 

4.6 Verifying the Adaptability to 
Resource Requirements of 
Workloads 

The purpose of this experiment is to verify the 
adaptability of our approach to resource 
requirements of workloads. Q13 and Q21 are 
selected to design this experiment, which are 
respectively CPU intensive and memory intensive. 
We run two workloads on two VMs. As the control 
group, W1 is composed of Q13 and Q21 with fixed 
quantity ratio, 5:5. W2 is composed of Q13 and Q21 
with varying quantity ratio : (10 )n n− , from 1n =  
to 9n = . Therefore, as n increases from 1 to 9, W2 
changes from a memory-intensive workload to a 
CPU-intensive workload, and the correct 
configuration strategy is to give it more CPU and 
less memory. 

 
Figure 9: CPU and memory configuration strategies for W2 
corresponding to different percentage of Q13 in W2. 
CPU1-3 are three CPU configuration curves under low, 
middle and high budget constraints, and Memory1-3 are 
corresponding Memory configuration curves. 
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Figure 9 shows the configuration strategies for 
W2 given by our approach under low, middle and 
high budget constraints. From this figure we can see 
that our approach is adaptive enough to resource 
requirements of workloads.  

5 CONCLUSIONS 

In this paper, we propose an approach for flexible 
control of performance and expenses in IaaS cloud 
environments with different requirements of 
customers. We focus on the workloads with mixed 
types of queries in database applications. Based on a 
fine-grained charging model and a normalized 
performance model, we build a model of multiple 
objective optimization, which covers different 
aspects cloud customers care about, such as 
expenses, performance, the compromise between 
performance and expenses, the performance tradeoff 
of applications on different VMs, etc. Under this 
model, these complicated problems are turned into 
an optimization problem, which can be addressed by 
a genetic algorithm we have implemented. And from 
the results of some experiments, it can be seen that 
the effectiveness of our approach is significant. 

There is also some work to do in the future, such 
as building a more comprehensive charging model 
considering I/O performance and network bandwidth, 
and exploring more delicate performance model 
considering database concurrency control. 
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