
A NON-LINEAR QUANTITATIVE EVALUATION APPROACH 
FOR DISPARITY ESTIMATION 

Pareto Dominance Applied in Stereo Vision 

Ivan Cabezas and Maria Trujillo 
School of Systems Engineering and Computer Sciences, Universidad del Valle, Ciudadela Universitaria, Cali, Colombia 

Keywords: Computer vision, Stereo correspondence, Disparity estimation, Pareto dominance, Pareto optimal set. 

Abstract: Performance evaluation of vision algorithms is a necessary step during a research process. It may supports 
inter and intra technique comparisons. A fair evaluation process requires of a methodology. Disparity 
estimation evaluation involves multiple aspects. However, conventional approaches rely on the use of a 
single value as an indicator of comparative performance. In this paper a non-linear quantitative evaluation 
approach for disparity estimation is introduced. It is supported by Pareto dominance and Pareto optimal set 
concepts. The proposed approach allows different evaluation scenarios, and offers advantages over 
traditional evaluation approaches. The experimental validation is conducted using ground truth data. 
Innovative results obtained by applying the proposed approach are presented and discussed. 

1 INTRODUCTION 

A quantitative evaluation of disparity estimation 
avoids the subjectivity of visual inspection on 
results. State-of-the-art on quantitative evaluation 
approaches can be divided into estimation errors –
using ground truth– based and prediction error 
based. Estimation errors based are knows as ground 
truth based approaches since they relies on 
measuring errors by comparing disparity estimations 
against ground truth data. The methodology for 
evaluating quantitatively disparity estimation 
proposed at Middlebury (Scharstein and Szeliski, 
2002, 2003) is a standard. Moreover, they have 
made available, to the research community, ground 
truth data along with a methodology for evaluating 
stereo algorithms. The methodology is based on 
percentages of estimation errors –bad matched 
pixels–, which are measured based on ground truth 
data, formed by a set of real images with different 
geometric characteristics, error threshold ߜ, and 
evaluation criteria. Percentage errors are compared 
and ranked. The overall performance is expressed in 
a single value: an average ranking over all error 
criteria. It is possible to determine a set of top 
performer algorithms based on this ranking. 
Nevertheless, the cardinality of this set is a free 
parameter. 

Other authors (Kostliva et al., 2007; Neilson and 
Yang, 2008) have also discussed about ground truth 
based evaluation approaches. Kostliva et al. pointed 
out that Middlebury’s methodology is focused on 
dense stereo algorithms, assuming a uniform 
behaviour of algorithms under evaluation with 
respect to an imagery test bed. They propose an 
evaluation methodology based on Receiver 
Operating Characteristic –ROC– and focus on 
studying changes on results accuracy –error rate– 
and density –sparsity rate– in relation to different 
parameter settings. However, the ROC curve and 
others measures, defined upon it, are computed on 
just one stereo image. The evaluation turns 
probabilistic when the imagery test bed involves 
more than one stereo image. Moreover, Kostliva et 
al. approach requires a weight setting in relation to 
the importance of each stereo image present in the 
test bed. 

In (Neilson and Yang, 2008) is stated that an 
evaluation approach based on applying algorithms 
just to a few stereo images and declare the technique 
with the lowest error rate as superior lacks of 
statistical significance. Consequently, the declared 
superiority of a particular algorithm turns out to be 
unreliable. Moreover, they emphasise that error 
measures from different stereo images, or from 
different error criteria, should not be combined. 
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They propose a ground truth based evaluation 
methodology using a statistical significance test 
combined with a greedy clustering to rank stereo 
algorithms. In this way, algorithms of statistically 
similar performance are assigned to the same rank. 

On the other hand, a prediction error evaluation 
approach can be used in the lack of disparity ground 
truth data. It relies on measuring prediction errors of 
a rendered view against a real image (Szeliski, 1999; 
Szeliski and Zabih, 2000). There are two alternatives 
to generate such a view: forward and inverse 
predictions. However, in both cases, error measures 
will reflect not only quality of disparity estimation 
but also quality of a rendered view. Moreover, this 
evaluation approach is related to specific application 
domains on which the output is a rendered view and 
there are human observers as final users. In this 
scenario, the capability of bringing a visual comfort 
sensation to observers turns out to be more 
important than the accuracy of the estimation.  

The prediction error evaluation approach 
proposed in (Leclerc et al., 2000) relies on 
measuring 3D reconstruction errors computed 
independently from multiple views. That approach 
defines a self-consistency property as a 3D 
triangulation agreement. However, a precise 
estimation of intrinsic and extrinsic camera 
parameters is assumed. Moreover, a stereo algorithm 
may be self-consistent but inaccurate, since self-
consistency is a necessary but not a sufficient 
condition (Szeliski and Zabih, 2000). 

Summarising, both evaluation approaches are 
based on linear functions and rely on the use of a 
single value as an indicator of comparative 
performance. However, realistic camera models as 
well as image formation process are of non-linear 
nature. This fact rise concerns about validity –or 
convenience– of performing a linear evaluation in a 
non-linear process. 

In this paper a non-linear quantitative evaluation 
approach is introduced. It is formalised based on 
Pareto dominance relation and Pareto optimal set 
(Veldhuizen and Lamont, 1999). It can be used with 
or without disparity ground truth data, also by 
integrating ground truth and rendered views. An 
advantage of the proposed approach relies on that it 
allows a clear and concise interpretation of 
evaluation results. The experimental evaluation 
shows alternative compositions of Middlebury’s top 
performer algorithms set under different evaluation 
scenarios. 

The paper is structured as follows. Section 2 
contains a general description of an evaluation 
methodology. In Section 3 the proposed approach is 

formalised. Experimental evaluation is presented 
and discussed in Section 4. Final remarks and future 
work are stated in Section 5. 

2 QUANTITATIVE EVALUATION 

A quantitative evaluation methodology for disparity 
estimation may involve different elements such, as: 
an imagery test bed, a set of error measures, a set of 
error criteria, and an evaluation model. It is depicted 
in Figure 1. The evaluation model is a relevant 
element, and is the focus of the proposed approach. 
Some of the elements involved in an evaluation 
methodology are briefly described below. 

 

Figure 1: Process diagram of an evaluation methodology 
for disparity estimation. 

2.1 Imagery Test Bed 

In ground truth based approaches, an imagery test 
bed is a set of stereo images –ܫ௦௧௘௥௘௢– and disparity 
ground truth data –ܦ௧௥௨௘. Where ܦ௧௥௨௘ contains high 
accuracy disparity information. In prediction error 
based approaches, an imagery test bed is a set of real 
images –ܫ௧௥௨௘. 

It should be highlighted that, the selection of test 
bed images is not a trivial step during the evaluation 
process. Aspects such as, image content, image 
quality, or test bed cardinality, have an impact on the 
performance of algorithms under evaluation. 
(Hirschmüller and Scharstein, 2009). For instance, if 
the test bed is too short, algorithm parameters may 
be specifically tuned to obtain a superior 
performance. However, this superiority lacks of a 
real significance. On the other hand, different 
applications domains are related to different image 
content, and in a same domain may exist several 
image acquisition conditions. 
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2.2 Error Measures 

A quantitative evaluation relies on measuring errors. 
Equation 1 illustrates an error function that measures 
differences between –ܫ௧௥௨௘ – a ground truth disparity 
map, and –ܦ௘௦௧௜௠௔௧௘ௗ – an estimated disparity map. 
(௘௦௧௜௠௔௧௘ௗܦݔ௧௥௨௘ܦ) :݁   → ℝ (1)
 

A commonly used error measure is the bad matched 
pixels average. It is computed according to the 
binary variable in Equation 2, and gathered using 
Equation 3. 

(௫,௬)ߝ  =  ൜1  ݂݅ |ܦ௧௥௨௘ (ݔ, (ݕ − ,ݔ) ௘௦௧௜௠௔௧௘ௗܦ |(ݕ > ,ݔ) ௧௥௨௘ܦ| ݂݅  0ߜ (ݕ − ,ݔ) ௘௦௧௜௠௔௧௘ௗܦ |(ݕ ≤ ߜ (2)
ܤ  =  1ܰ  ෍ (௫,௬)(௫,௬)ߝ , (3)
 

where ܰ is the total number of pixels and ߜ ߳ ℝ is a 
disparity error threshold. 

Equation 4 illustrates an error function that 
measures prediction errors. 

(௘௦௧௜௠௔௧௘ௗܫݔ௧௥௨௘ܫ) :݂  → ℝ, (4)
 

where  ܫ௧௥௨௘ is a real image, and ܫ௘௦௧௜௠௔௧௘ௗ is a 
rendered view. 

The most commonly used error measures, in this 
case, are the mean square error –ܧܵܯ–, the root of 
the mean square error –ܴܧܵܯ–, and the pick signal 
to noise ratio –ܴܲܵܰ. 

ܧܵܯ  = 1ܰ  ෍ ,ݔ) ௧௥௨௘ܫ|) (ݕ − ,ݔ) ௘௦௧௜௠௔௧௘ௗܫ  ଶ,(௫,௬)(|(ݕ  (5)
ܧܵܯܴ  = ඨ1ܰ  ෍ ,ݔ) ௧௥௨௘ܫ|) (ݕ − ,ݔ) ௘௦௧௜௠௔௧௘ௗܫ  ଶ(௫,௬)(|(ݕ , (6)

 ܴܲܵܰ = 10 logଵ଴ (2஻ − 1)ଶܧܵܯ  , (7)
 

where B is the number of bits used for representing 
image data. 

A high ܴܲܵܰ is commonly associated with a 
small percentage of bad matched pixels. However, 
this relation is ambiguous (Stankiewicz and Wegner, 
2008). 

A main drawback of the above error measures is 
that they do not truly quantify the perceived visual 
quality by a human observer. On the other hand, 
perceptual error measures, based on human visual 
system are computationally expensive (Zheng-Xiang 
and Zhi-Fang, 2010). 

Moreover, in real applications, different domains 
have different levels of tolerance to disparity 
estimation errors. 

2.3 Error Criteria 

Error criteria –ܴ௖௥௜௧௘௥௜௔ – is a set of regions defined 
over ܫ௦௧௘௥௘௢. Error measures are gathered for each 
error criterion. In this way, an error criterion 
provides a link among image content, error measures 
and estimated disparities. Error criteria support 
algorithms performance analysis, since they allow 
results of evaluations on specific –problematic or 
challenging– image regions. Error criteria 
commonly used are: non-occluded regions –݊ܿܿ݋݊݋–, the entire image –݈݈ܽ–, and depth 
discontinuity regions –݀݅ܿݏ–, from Middlebury’s 
methodology. Analogously, in our scenario, an error 
vector ݒ can be described as a set of values 
measured on 〈݊ܿܿ݋݊݋, ݈݈ܽ,  .〈ܿݏ݅݀
3 EVALUATION MODEL 

An evaluation model allows a quantitative 
comparison of stereo algorithms. Equation 8 
illustrates conventional –ground truth based– linear 
disparity estimation evaluation models. 
 ݃: (௖௥௜௧௘௥௜௔ܴݔ௧௥௨௘ܦݔ௘௦௧௜௠௔௧௘ௗܦ) → ℝ, (8)
 

where ℝ is a real value obtained by a linear 
combination of error measure values. 

Our evaluation model for disparity estimation is 
supported by the concepts of Pareto dominance and 
Pareto optimal set (Veldhuizen and Lamont, 1999). 
Consequently, it is of non-linear nature.  

3.1 Proposed Evaluation Model 

The proposed model considers the following 
assumptions: i) error criteria measures are 
incommensurables, and ii) all the test bed images 
and considered error measures have a common 
importance. 

For the sake of simplicity, our model is described 
in the context of ground truth data. An extension to 
incorporate rendered views is straight forward. The 
evaluation model is formulated using the following 
notation. 

Let Iୱ୲ୣ୰ୣ୭ be a set of stereo images used for 
evaluation purposes. Let ܦ௘௦௧௜௠௔௧௘ௗ be a set of 
disparity maps calculated by ܣ, taking  ܫ௦௧௘௥௘௢ as 
input. Let ܣ =  ൛ܽ ∈ :ܽ│ܣ (௦௧௘௥௘௢ܫ)  ௘௦௧௜௠௔௧௘ௗൟ be a non-empty set of stereo algorithmsܦ→
under evaluation. Let ܦ௧௥௨௘ be a set of ground truth 
disparity maps related to ܫ௦௧௘௥௘௢. Let  ܴ௖௥௜௧௘௥௜௔ be a 
set of regions of interest in ܫ௦௧௘௥௘௢. Let ݒ and ݒ∗ be 
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error value vectors. Let “≺” be the symbol that 
denotes the Pareto dominance relation. Let ܲܣ =൛ݒ ∈ :ℎ│ܣܲ (௖௥௜௧௘௥௜௔ܴݔ௧௥௨௘ܦݔ௘௦௧௜௠௔௧௘ௗܦ) →  ൟ be a setݒ
of error value vectors measured for a set ܣ, by 
comparing ܦ௘௦௧௜௠௔௧௘ௗ against ܦ௧௥௨௘, according 
to ܴ௖௥௜௧௘௥௜௔. Let ܲܣܲ│∗ܣ∗ ⊆  be a proper subset ,ܣܲ 
of ܲܣ –a Pareto optimal set–, subject to: 
∗ܣܲ  =  ൛ݒ∗ ∈ ݒ∄│ܣܲ ∈ ܣܲ ∶ ≻ ݒ .ൟ∗ݒ  (9)
 

Let ܣ∗ be a proper subset of ܣ ,ܣ∗ ⊆  :such as ,ܣ 
∗ܣ   =൛ܽ ∈ :ℎ│ܣ (௖௥௜௧௘௥௜௔ܴݔ௧௥௨௘ܦݔ(௦௧௘௥௘௢ܫ)ܽ) → .ൟ∗ܣܲ (10)
 

Thus, the proposed evaluation model can be 
formulated as follows: 
 ݉: →(௖௥௜௧௘௥௜௔ܴݔ௧௥௨௘ܦݔ௘௦௧௜௠௔௧௘ௗܦݔܣݔ௦௧௘௥௘௢ܫ) ∗ܣ  (11) 

3.2 Interpretation of Results 

The interpretation of results, in the proposed model, 
is based on the cardinality of ܣ∗ –which, by 
definition, cannot be an empty set. 
 

If |ܣ∗| = 1, then exists a stereo algorithm capable of 
produce a superior performance. 

 

Otherwise, if |ܣ∗| > 1, then exists a set of stereo 
algorithms of comparable performance. 

 

Additionally, the performance of algorithms 
belonging to ܣ∗ is superior to the performance of 
those algorithms belonging to ܣ\ܣ∗. 

All the above judgements are stated in regard 
to ܫ௦௧௘௥௘௢, by applying ܣ and consideringܴ௖௥௜௧௘௥௜௔. 
Consequently a change in the composition of any of 
these sets implies a change in the composition of ܣ∗. 

3.3 Alternative Evaluation Goals 

The above model is formulated in the case of an 
inter-technique evaluation goal. However, in an 
intra-technique evaluation goal, the set ܣ is 
composed by the same stereo algorithm executed 
under a set of conceptually different parameters. On 
the other hand, if the aim of the evaluation is to 
estimate iteratively clusters of stereo algorithms with 
a similar performance, then after each ܣ∗ 
computation, the set ܣ is updated to ܣ\ܣ∗, and ܣ∗ is 
computed once again, until reaching an empty set. 

4 EVALUATION RESULTS 

The  validation  of the proposed approach is conduc- 

ted using Middlebury’s data, and contrasted to 
Middlebury’s ranking, which are available online 
(Scharstein, 2011). Stereo algorithms are identified 
based on the names which appear on the online 
ranking. The top fifteen stereo algorithms according 
to Middlebury’s ranking are listed in Table 1. Three 
evaluation scenarios are considered for the sake of 
validating the proposed approach. Differences 
among them rely on the configurations of ܣ 
and ܴ௖௥௜௧௘௥௜௔. As error measure, bad matched pixels 
are computed with ߜ equals to 1,0. 

Table 1: Top fifteen performer stereo algorithms using 
Middlebury’s evaluation. 

 Middlebury 
Algorithm Avg. Rank Rank 
ADCensus 5,3 1 

AdaptingBP 6,6 2 
CoopRegion 6,7 3 
DoubleBP  9,1 4 

RDP 9.7 5 
OutlierConf  10,2 6 

SubPixDoubleBP 13,6 7 
SurfaceStereo  14,3 8 

WarpMat 15,9 9 
ObjectStereo 16,2 10 
Undr+OvrSeg  21,0 11 

GC+SegmBorder  21,5 12 
GlobalGCP 22,1 13 
CostFilter 22,4 14 

AdaptOvrSegBP  23,3 15 

4.1 Dense Disparity Map Evaluation 

Let ܫ௦௧௘௥௘௢ be the set of test bed images, denoted by 
extension as  ሼܾܶܽݑ݇ݑݏ, ,ݏݑܸ݊݁ ,ݕ݀݀݁ܶ  ,௔௟௟ be the set of stereo algorithms under evaluationܣ ሽ. Letݏ݁݊݋ܥ
composed by all the stereo algorithms reported on 
the online Middlebury’s evaluation site (Scharstein, 
2011). Let ܴ௖௥௜௧௘௥௜௔ିௗ௘௡௦௘ be a set of image regions, 
denoted by extension as ሼ݊ܿܿ݋݊݋, ݈݈ܽ,  ௗ௘௡௦௘ be error vectors of theݒ ሽ. Letܿݏ݅݀
form 〈݊ܿܿ݋݊݋, ݈݈ܽ,   .〈ܿݏ݅݀

Table 2 illustrates the sixteen stereo algorithms 
belonging to ܣ௔௟௟∗ , after applying the proposed model 
to ܣ௔௟௟, under this evaluation scenario. These 
algorithms have a comparable performance among 
them, and superior performance to those algorithms 
belonging to ܣ௔௟௟\ܣ௔௟௟∗ , in regard to ܫ௦௧௘௥௘௢, and 
considered ܴ௖௥௜௧௘௥௜௔ିௗ௘௡௦௘. It should be highlighted 
that some of the algorithms listed in Table 2 are not 
present in Table 1. It can be appreciated also, that ܣ௔௟௟∗  includes stereo algorithms with different values 
of Middlebury’s average ranking among them, and 
ranked in distant positions. These differences in 
evaluation  results,  between  the  proposed approach  
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and Middlebury’s approach, can be explained based 
on the assumptions of our model. 

Table 2: Stereo algorithms belonging to Aall
∗ , in regard to ܫ௦௧௘௥௘௢, by applying ܣ௔௟௟, and considering ܴ௖௥௜௧௘௥௜௔ିௗ௘௡௦௘. 

 Middlebury 
Algorithm Avg. Rank Rank 
ADCensus 5,3 1 

AdaptingBP 6,6 2 
CoopRegion 6,7 3 
DoubleBP  9,1 4 

RDP 9.7 5 
OutlierConf  10,2 6 

SubPixDoubleBP 13,6 7 
SurfaceStereo  14,3 8 

WarpMat 15,9 9 
ObjectStereo 16,2 10 
Undr+OvrSeg  21,0 11 

GC+SegmBorder  21,5 12 
GlobalGCP 22,1 13 

AdaptOvrSegBP  23,3 15 
P-LinearS 23,6 16 

PUTv3 38,8 37 

4.2 Semi-dense Disparity Map 
Evaluation 

Let ܴ௖௥௜௧௘௥௜௔ି௦௘௠௜_ௗ௘௡௦௘ be a set of image regions, 
denoted by extension as ሼ݊ܿܿ݋݊݋,  ௦௘௠௜_ௗ௘௡௦௘ be error vectors of theݒ ሽ. Letܿݏ݅݀
form 〈݊ܿܿ݋݊݋,  In this way, this scenario is .〈ܿݏ݅݀
related to a semi-dense disparity map evaluation. 
Table 3 illustrates the thirteen stereo algorithms 
belonging to ܣ௔௟௟∗ , after applying the proposed model 
to ܣ௔௟௟, under this evaluation scenario. It can be 
appreciated that some of the algorithms present in 
Table 3 are not present in Table 1, and vice versa. 

Table 3: Stereo algorithms belonging to Aall
∗ , in regard to ܫ௦௧௘௥௘௢, by applying ܣ௔௟௟, and considering ܴ௖௥௜௧௘௥௜௔ି௦௘௠௜_ௗ௘௡௦௘. 

 Middlebury 
Algorithm Avg. Rank Rank 
ADCensus 5,3 1 

AdaptingBP 6,6 2 
CoopRegion 6,7 3 
DoubleBP  9,1 4 

RDP 9.7 5 
OutlierConf  10,2 6 

SubPixDoubleBP 13,6 7 
SurfaceStereo  14,3 8 
ObjectStereo 16,2 10 
Undr+OvrSeg  21,0 11 

AdaptOvrSegBP  23,3 15 
P-LinearS 23,6 16 

PUTv3 38,8 37 

Table 4: Stereo algorithms belonging to Alocal
∗ , in regard to ܫ௦௧௘௥௘௢, by applying ܣ௟௢௖௔௟, and considering ܴ௖௥௜௧௘௥௜௔ି௦௘௠௜_ௗ௘௡௦௘. 

 Middlebury 
Algorithm Avg. Rank Rank 
GeoSup 25,5 18 

AdaptDispCalib 28,4 22 
DistinctSM 32,3 28 

LocallyConsist  24,0 32 
CostAggr+occ  35,3 34 

GradAdaptWeight 40,1 38 
AdaptWeight 41,6 40 

4.3 Local Stereo Algorithms 
and Semi-dense Disparity Map 
Evaluation 

Let ܣ௟௢௖௔௟ be the set composed by the stereo 
algorithms reported on Middlebury’s evaluation site, 
which can be considered as local algorithms 
following the taxonomy of (Scharstein and Szeliski, 
2002). Table 4 illustrates the seven local stereo 
algorithms belonging to ܣ௟௢௖௔௟∗ , after applying the 
proposed model to ܣ௟௢௖௔௟, under this evaluation 
scenario. The result of this evaluation scenario 
contradicts a conventional approach interpretation, 
on which the GeoSup algorithm is the most accurate 
among local stereo algorithms –due to its superior 
ranking according to Middlebury’s evaluation 
methodology. 

5 FINAL REMARKS 
AND FUTURE WORK 

Disparity estimation evaluation involves multiple 
and different aspects. However, conventional 
disparity evaluation approaches use a single value as 
an indicator of performance. The evaluation model 
proposed in this paper is based on Pareto dominance 
and Pareto optimal set. The main contribution of this 
approach consists in avoiding a subjective 
interpretation of the quantitative comparison of 
stereo algorithms. Under our approach, two or more 
algorithms have a comparable performance, when 
their results are not better, neither worst, since their 
associated error value vectors are incomparable, 
under a Pareto dominance criterion. On the other 
hand, a superior performance is related to the 
existence of an algorithm capable of produce results 
that minimize, comparatively and simultaneously, all 
the error measure functions. 

As innovative aspect, the introduced approach 
produces significantly different results in 

VISAPP 2011 - International Conference on Computer Vision Theory and Applications

708



 

comparison to Middlebury’s evaluation 
methodology. 

As future work, authors are planning to explore 
two main concerns. First, conduct an enhancement 
of the evaluation model by considering tolerances in 
regard to the comparison of error value vectors. 
Second, define variations of the model in order to 
capture different conditions between inter and intra 
technique stereo algorithms evaluation. 

REFERENCES 

Hirschmüller, H. & Scharstein, D., 2009. Evaluation of 
Stereo Matching Costs on Images with Radiometric 
Differences. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 31(9). IEEE Computer 
Society, pp. 1582-1599. 

Kostliva, J., Cech, J. & Sara, R., 2007. Feasibility 
Boundary in Dense and Semi-Dense Stereo Matching. 
In Computer Vision and Pattern Recognition. 
Minneapolis, MN, USA. IEEE Computer Society, pp. 
1-8. 

Leclerc, Y. G., Luong, Q. & Fua, P., 2000. Measuring the 
Self-Consistency of Stereo Algorithms. In European 
Conference on Computer Vision-Part I.  Springer-
Verlag, pp. 282-298. 

Neilson, D. & Yang, Y., 2008. Evaluation of 
Constructable Match Cost Measures for Stereo 
Correspondence using Cluster Ranking. In Computer 
Vision and Pattern Recognition. Anchorage, AK, 
USA. IEEE Computer Society, pp. 1-8. 

Scharstein, D., 2011. Middlebury Stereo Evaluation - 
Version 2. Retrieved January 28, 2011,  from: 
http://vision.middlebury.edu/stereo/eval/. 

Scharstein, D. & Szeliski, R., 2002. A Taxonomy and 
Evaluation of Dense Two-Frame Stereo 
Correspondence Algorithms. International Journal of 
Computer Vision, Volume 47, pp. 7-42. 

Scharstein, D. & Szeliski, R., 2003. High-accuracy Stereo 
Depth Maps using Structured Light. In Computer 
Vision and Pattern Recognition. Madison, WI, USA. 
IEEE Computer Society, pp. I-195-I-202. 

Stankiewicz, O. & Wegner, K., 2008. Depth Map 
Estimation Software Version 3, ISO/IEC MPEG 
meeting M15540. 

Szeliski, R., 1999. Prediction Error as a Quality Metric for 
Motion and Stereo. In International Conference on 
Computer Vision, Volume 2.  Kekyra, Greece. IEEE 
Computer Society, pp. 781-788. 

Szeliski, R. & Zabih, R., 2000. An Experimental 
Comparison of Stereo Algorithms. In Proceedings of 
the International Workshop on Vision Algorithms. 
Springer-Verlag, pp. 1-19. 

Van Veldhuizen, D. A. & Lamont, G. B., 1999. 
Multiobjective Evolutionary Algorithm Test Suites. In 
ACM symposium on Applied computing. San Antonio, 
TX, USA. ACM, pp. 351-357. 

Zheng-Xiang, X. & Zhi-Fang, W., 2010. Color Image 
Quality Assessment Based on Image Quality 
Parameters Perceived by Human Vision System. In 
International Conference on Multimedia Technology. 
Ningbo, China. IEEE Computer Society, pp. 1-8. 

A NON-LINEAR QUANTITATIVE EVALUATION APPROACH FOR DISPARITY ESTIMATION - Pareto Dominance
Applied in Stereo Vision

709


