ADABOOST GPU-BASED CLASSIFIER
FOR DIRECT VOLUME RENDERING

Oscar Amoros?, Sergio Escalera? and Anna Puig®
1Barcelona Supercomputing Center - CNS, K2M Building, ¢/ Jordi Girona, 29 08034 Barcelona, Spain
2UB-Computer Vision Center, Campus UAB, Edifici O, 08193, Bellaterra, Barcelona, Spain
3WAI-MOBIBIO Research Groups, University of Barcelona, Avda.Corts Catalanes, 585, 08007 Barcelona, Spain

Keywords:

Abstract:

Volume rendering, High-performance Computing and parallel rendering, Rendering hardware.

In volume visualization, the voxel visibility and materials are carried out through an interactive editing of

Transfer Function. In this paper, we present a two-level GPU-based labeling method that computes in times
of rendering a set of labeled structures using the Adaboost machine learning classifier. In a pre-processing
step, Adaboost trains a binary classifier from a pre-labeled dataset and, in each sample, takes into account a
set of features. This binary classifier is a weighted combination of weak classifiers, which can be expressed as
simple decision functions estimated on a single feature values. Then, at the testing stage, each weak classifier
is independently applied on the features of a set of unlabeled samples. We propose an alternative represen-
tation of these classifiers that allow a GPU-based parallelizated testing stage embedded into the visualization
pipeline. The empirical results confirm the OpenCL-based classification of biomedical datasets as a tough
problem where an opportunity for further research emerges.

1 INTRODUCTION

The definition of the visibility and the optical proper-
ties at each volume sample is a tough and non intuitive
user guided process. It is often performed through
the user definition of Transfer Functions (TF). Selec-
tion of regions is defined indirectly by assigning to
zero the opacity since totally transparent samples do
not contribute to the final image. The use of TFs al-
lows to store them as look-up tables (LUT), directly
indexed by the intensity data values during the vi-
sualization, which significantly speeds up rendering
and it is easy to implement in GPUs. In previous
works, the transfer function is broken into two sepa-
rated steps (Cerquides et al., 2006): the Classification
Function (CF) and the optical properties assignment.
The Classification Function determines at each point
inside the voxel model at which specific structure the
point belongs. Next, the optical properties assignment
is a simple mapping that assigns to each structure a
set of optical properties. In this approach, we focus
on the definition and the improvement of the Classifi-
cation Function and its integration into the rendering
process. The main advantage of the classification ap-
proach is that, since a part of the classification can be

Amoros O., Escalera S. and Puig A..

ADABOOST GPU-BASED CLASSIFIER FOR DIRECT VOLUME RENDERING.

DOI: 10.5220/0003369902150219

carried on a pre-process, before rendering, it can use
more accurate and computationally expensive classi-
fication methods than transfer functions mappings.

Specifically, we use a learning-based classifica-
tion method that splits into two steps: learning and
testing. In the learning step, given a set of train-
ing examples, each marked by an end-user as belong-
ing to one of the set of the labels or categories, the
Adaboost-based Machine Learning training algorithm
builds a model, or classifier, that predicts whether a
new voxel falls into one category or the other. In the
testing stage, the classifier is used to classify a new
voxel description. Thus, the learning step is done in
a pre-process stage, though the testing step is inte-
grated on-the-fly into the GPU-based rendering. In
the rendering step, at each voxel value, the classifier
is applied to obtain a label. We propose a GPGPU
strategy to apply the classifier, interpret the voxels as
the set of objects to classify, and their property values,
derivatives and positions as the attributes or features
to evaluate. We apply a well-known learning method
to a sub-sampled set of already classified voxels and
next we classify a set of voxel models in a GPU-based
testing step. Our goal is three-fold:

to define a voxel classification method based on a

215

In Proceedings of the International Conference on Computer Graphics Theory and Applications (GRAPP-2011), pages 215-219

ISBN: 978-989-8425-45-4

Copyright ¢ 2011 SCITEPRESS (Science and Technology Publications, Lda.)

GRAPP 2011 - International Conference on Computer Graphics Theory and Applications

powerful machine learning approach,

to define a GPGPU-based testing stage of the pro-
posed classification method integrated to the final
rendering,

to analyze the performance of our method com-
paring five different implementations with differ-
ent public data sets on different hardware.

2 ADABOOST CLASSIFIER

In this paper, we focus on the Discrete version of Ad-
aboost, which has shown robust results in real ap-
plications (Friedman et al., 1998). Given a set of N
training samples (x1;y1);: (Xn;Yn), With x; a vector
valued feature and y; = 1 or 1, we define F(X) =

Mes fm(X) where each fr(x) is a classifier produc-
ing values 1 and cy, are constants; the correspond-
ing prediction is sign(F (x)): The Adaboost procedure
trains the classifiers fy(x) on weighted versions of
the training sample, giving higher weights to cases
that are currently misclassified. This is done for a se-
quence of weighted samples, and then the final clas-
sifier is defined to be a linear combination of the clas-
sifiers from each stage. For a good generalization of
F(x), each fy(x) is required to obtain a classification
prediction just better than random (Friedman et al.,
1998). Thus, the most common “weak classifier” fy
is the "decision stump”. Stumps are single-split trees
with only two terminal nodes. If the decision of the
stump obtains a performance inferior to 0.5 over 1, we
just need to change the polarity of the stump, assur-
ing a performance greater (or equal) to 0.5. Then, for
each f(x) we just need to compute a threshold value
and a polarity to take a binary decision, selecting that
one that minimizes the error based on the assigned
weights.

In Algorithm 1, we show the testing of the final de-
cision function F(x) = 'f'cf fm(X) using the Discrete
Adaboost algorithm with Decision Stump "weak clas-
sifier”. Each Decision Stump fy, fits a threshold Ty,
and a polarity Py, over the selected m-th feature. In
testing time, x™ corresponds to the value of the fea-
ture selected by f,(x) on a test sample x. Note that ¢y,
value is subtracted from F(X) if the hypothesis fm(X)
is not satisfied on the test sample. Otherwise, positive
values of ¢, are accumulated. Finally decision on x is
obtained by sign(F (x)).

We propose to define a new and equivalent repre-
sentation of ¢, and jxj that facilitate the paralleliza-
tion of the testing. We define the matrix Vy, (, of size
3 (jxj M), where jxj corresponds to the dimension-
ality of the feature space. First row of Vs _, codifies

216

the values cp, for the corresponding features that have
been considered during training. In this sense, each
position i of the first row of Vy_) contains the value
C for the feature mod(i;jxj) if mod(i;jxj) & O or jxj,
otherwise. The next value of ¢, for that feature is
found in position i+ jxj. The positions corresponding
to features not considered during training are set to
zero. The second and third rows of Vy y for column
i contains the values of Py, and Ty, for the correspond-
ing Decision Stump. Thus, each “weak classifier” is
codified in a channel of a 1D-Texture, respectively.
As our main goal is to have real time test-
ing, we deal with two main possibilities: a
GLSL-programmed method on the fragment shader
and an OpenCL/CUDA implementation using the
OpenCL/CUDA-GL integration. We choose OpenCL
for portability reasons. Using GLSL, the gradient cal-
culation habitually is computed on CPU because it’s
faster. Then the results are send to the GPU as shown
in Figure 1. The testing and visualization 'stages can
be computed into the fragment shader to obtain good
speedups. - Through OpenCL,. in contrast to GLSL,
we can control almost all the hardware so we can
solve the gradient problem faster in the GPU using
an adaptation of the Micikevicius algorithm (Micike-
vicius, 2009). Thus, the gradient calculation and the
classification steps can be computed into the GPU re-
ducing the PCle transfers and computing each step
faster. In the OpenGL side we use a 3D Texture Map
to visualize the models. The integration of OpenCL
and OpenGL allows to avoid sending the OpenCL la-
beled voxel model back to the Host and visualize it di-
rectly. The OpenGL layer loads the data to the graph-
ics card and then OpenCL obtains the ownership of
the data from the global memory, processes it and re-
turns ownership to OpenGL when finished.

3 GPGPU IMPLEMENTATION:
INTRODUCING WORK GROUP
SHARING

As shown in Figure 1, we propose two OpenCL ker-
nels: the gradient and the classification or testing ker-
nel.

Algorithm 1: Discrete Adaboost testing algorithm.
1: Given a test sample x
2. F(x)=0
3: Repeatform=1;2;:;M:
@ FO) =F()+cm(Pn X" <Pn Tm);
4: Output sign(F (x))

ADABOOST GPU-BASED CLASSIFIER FOR DIRECT VOLUME RENDERING

radient voxel'r

HOST

GPU DEVICE

eLeL e _> Display

Classification

/

/
/

Classification
kernel

OpenCL

Weak classifiers
L —

f ?
Gradient It i
Calculation '=D GLSL

Gradight voxel model

:‘l> OpenCL and GLSL

Figure 1: GPGPU implementation overview: GLSL and OpenCL approaches.

Next, we overview our proposed OpenCL classi-
fication kernel algorithm. The eight features consid-
ered for each sample by our binary classifier are: the
spatial location (x, y,z), the sampled value (v), and its
associated gradient value and magnitude (gx, gy, 9z,
jaj). Our binary classifier has a total of N possible ¢,
values, with N =3 M. We create a matrix of Work-
Groups (WG) that covers the x and y dimensions of
the dataset, whereas the component z is computed in a
loop. Each WG classifies one voxel. Inside each WG,
we define N 8 threads or Workltems (WI) where N
is a multiple of two. Each WI computes a single step
with the three weights weak classifiers and produces
avalue. These N 8 values will be reduced at the end
of the execution. This process parallelizes the step
3 of the Discrete Adaboost testing algorithm defined
in Algorithm 1. Finally, the sign of this computed
value (sign(F(x))) is used to obtain the label of the
processed voxels.

The way we are using threads and Global Memory
transfers follows what we call Work Group Sharing
(WGS), a short form of Work Group global memory
transfer sharing. Our WGS method is characterized
by:

Counter intuitive global memory use. A work
group reads minimum global memory data and
produces the result for a single voxel. Classify-
ing different voxels allows the work group to read
at maximum global memory bandwidth. It is as to
say that several work groups share a single global
memory transaction, but in fact we are using only
one WG.

To process n voxels we can use 240 threads se-
rializing n steps instead of using n threads seri-
alizing 240 steps each one. That gives a greater
number of threads and so forth better performance
(latency hiding) and scalability.

Local memory gets alleviated. We store n half
voxels instead of 240 for each workgroup.

In summary, finer grain parallelization, more local

memory and more registers available allow to extra
tune the code for faster execution.

4 SIMULATIONS AND RESULTS

In order to present the results, first, we define the data,
methods, hardware platform, and validation protocol.

Data. We used three datasets: the Thorax data
set represents a phantom human body; Foot and
Hand are CT scan of a human foot and a human
hand, respectively.

Methods. We use a Discrete Adaboost classifier
with 30 Decision Stumps and codified the testing
classifier in Matlab, C++, OpenMP, GSGL, and
OpenCL codes.

Hardware Platform. We used a Pentium Dual
Core 3.2 GHz with 3GB of RAM and equipped
with a NVIDIA Geforce 8800 GTX with 1 GB
of memory running a 64-bit Ubuntu Linux distri-
bution, a PC with a quad core Phenom2 x4 955
processor with 4GB of DDR3 memory equipped
with an NVDIA Geforce GTX470 with 1,28 GB
of memory. The viewport size is 700 650.

Validation Protocol. We compute the mean ex-
ecution time from 500 code runs. For accuracy
analysis, we performed stratified ten-fold cross-
validation.

The classification performance of the Adaboost-
GPU classifier on each individual dataset is analyzed
in Table 1. We defined different binary classification
problems of different complexity for the three medi-
cal volume datasets. Last column of the table shows
the number of weak classifiers required by the clas-
sifier in order to achieve the corresponding perfor-
mance. For the different binary problems we achieve
performances between 80% and 100% of accuracy.
These performances depend on the feature space and

217

GRAPP 2011 - International Conference on Computer Graphics Theory and Applications

Table 1: Testing step times in seconds of the different datasets. The different labellings to learn increases the number of weak
classifiers needed to test them. Testing times has been obtained running our OpenCL implementation on a GTX470 graphic

card.
[Dataset | Size [Features | Weak classifiers | Accuracy | Learning [Testing (GPU)]
Foot 128x128x128 | Bones and Soft tissue 1 99.95% 2.3s 0.0461s
Foot 128x128x128 Finger’s bone 8 99.89% 11.45s 0.1567s
Foot 128x128x128 Ankle’s muscle 7 99.21% 10.01s 0.1611s
Thorax | 400x400x400 | Vertebra and Column 3 99.01 3.2 0.7157s
Thorax | 400x400x400 Bone and lungs 30 84.15% 33.14s 1.9253s
Thorax | 400x400x400 Bone and liver 30 78.28% 32.8s 1.9154s
Hand 244x124x257 Bone 1 100% 2.8s 0.1653s

Table 2: Results and times in seconds of the integrated OpenCL GPU-based renderings in the GTX470 graphic card.

Foot

Thorax

0.1256s

0.1653s

1.9253s

its inter-class variability. Binary problems which con-
tain classes with a higher variability of appearance re-
quire more weak classifiers in order to achieve good
performance. This increment of weak classifiers also
implies an additional learning time. However, the
testing time of the GSGL approach basically depends
on the size of the data set and on the number of weak
classifiers learned in the training stage. We can con-
clude that there also exists a constant time in the load-
ing of data into GPU, and that the variability in the
testing times is non-significant.

In Table 2, we analyze the testing performance
for the different CPU-GPU implementations and
hardware. First of all, we have compared the time per-
formance of our GPU parallelized testing step in rela-
tion to the CPU-based implementations and the GLSL
approach. We show the averaged times of the five im-
plementations with the different sized datasets. Our
proposed OpenCL-based optimization has a speed up
of 89:91x over a C++ CPU-based algorithm and a
speed up of 8:01x over the GLSL GPU-based algo-
rithm. Finally, Table 3 shows the visualization of
the three datasets and the corresponding timings of
their visualizations, with the integrated in the render-
ing pipeline.

5 CONCLUSIONS

In this paper, we presented an alternative approach in
medical classification that allows a new representa-
tion of the Adaboost binary classifier. We also defined

218

Table 3: Testing step times in seconds of the different
datasets with the five implementations. GLSL and OpenCL
times has been obtained using the GTX470 graphic card.

[Dataset| Size [Matlab | CPU [OMP [GLSL [OpenCL |
Foot | 128x128x128 | 18.32s | 9.63s 8 | 1.32s | 0.12s
Hand | 244x124x257 | 67.29s 26s 20s. | 2.86s | 0.16s
Thorax | 400x400x400 | 114.28s | 33.76s | 25s | 4.41s 1.92s

a new GPU-based parallelized Adaboost testing stage
using a OpenCL implementation integrated to the ren-
dering pipeline. We used state-of-the-art features for
training and testing different datasets. The numerical
experiments based on large available data sets and the
performed comparisons with CPU-implementations
show promising results.

ACKNOWLEDGEMENTS

This work has been partially funded by the projects
TIN2008-02903, TIN2009-14404-C02, CON-
SOLIDER INGENIO CSD 2007-00018, by the
research centers CREB of the UPC and the IBEC
and under the grant SGR-2009-362 of the Generalitat
de Catalunya, and the CASE and Computer Science
departments of Barcelona Supercomputing Center.

ADABOOST GPU-BASED CLASSIFIER FOR DIRECT VOLUME RENDERING

REFERENCES

Cerquides, J., Lpez-Snchez, M., Ontan, S., Puertas, E.,
Puig, A., Pujol, O., and Tost, D. (2006). Classifica-
tion algorithms for biomedical volume datasets. LNAI
4177 Springer, pages 143-152.

Friedman, J., Hastie, T., and Tibshirani, R. (1998). Additive
logistic regression: a statistical view of boosting. In
The annals of statistics, volume 38, pages 337-374.

Micikevicius, P. (2009). 3d finite difference computation on
gpus using cuda. In General Purpose Processing on
Graphics Processing Units, GPGPU-2, pages 79-84,
New York, NY, USA. ACM.

219

