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Abstract: Due to advances in technology, sensors in resource constrained wireless sensor networks are now capable of 
continuously monitoring and collecting high fidelity data. However, all the data cannot be trusted since data 
can be corrupted due to several reasons such as unreliable, faulty wireless sensors or harsh ambient 
conditions. Further, due to bandwidth constraints that limit the amount of data being transmitted in sensor 
networks, it is important that only the high priority, accurate data is transmitted. In this paper, we propose a 
data selection model that makes two significant contributions. First, it provides a way to determine the 
confidence in or reliability of the data values and second, it determines which subset of data is of the highest 
quality or of most interest given the state of the network system and its current available bandwidth. Our 
model is comprised of two phases. In Phase I we determine the reliability of each input data stream using a 
Bayesian network. In Phase II, we use a 0-1 Knapsack optimization approach to choose the optimal subset 
of data. An evaluation of our best data selection model reveals that it eliminates erroneous data and 
accurately determines the subset of data with the highest quality when compared with conventional 
algorithms. 

1 INTRODUCTION 

There is an increasing demand for high fidelity, 
continuous data sampling from resource constrained 
wireless sensor network environments. For instance, 
real-time applications that monitor environments, 
such as an active volcano, employ wireless sensor 
networks to continuously monitor, collect and 
analyze data under extreme environmental 
conditions such as snow, wind, rain or ice. Ideally, 
we should be able to collect and transmit all this data 
continuously. However, in the real world, this is not 
feasible since the continuously sampled data is of 
such high frequency and resolution that it can 
quickly consume all the available bandwidth and 
drop data packets during transmission. Additionally, 
due to sensor malfunctions and harsh environmental 
conditions, the quality of data cannot be trusted at all 
times. Thus, it is imperative that only the high 
quality data is transmitted over the network, and the 
remaining  data  is  transmitted  only  if  bandwidth  

space permits. The quality of data for any wireless 
sensor network deployment is an important issue 
that has ramifications in network management and is 
of significance to the user. Dynamic scheduling 
algorithms, such as Tiny-DWFQ (Peterson et al., 
2008), are complementary to this work and may be 
utilized to assign priorities to the data to ensure that 
high quality data would be made available to the end 
users. 

This paper presents a two-phase, best data 
selection model that determines the best subset of 
data to select from a given set of input data streams 
in a sensor network. Phase I identifies reliable data 
from different input data streams, while Phase II 
selects the best data subset for delivery to the end 
user given the network bandwidth. We applied our 
model to the data collected by a volcanic monitoring 
sensor network (called OASIS) deployed at Mount 
St. Helens, an active volcano site. The sensors in 
OASIS collect and transmit hi-fidelity data in real 
time which may be prone to errors and hence 
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provides an ideal framework for the evaluation for 
our model. Our results reveal that our model 
determines the most appropriate subset of data with 
high accuracy. 

The rest of the paper is organized as follows. 
Section 2 discusses the motivations for and 
contributions of the project. To elucidate our setup, 
we present relevant background information in 
Section 3. Details of each phase of our model 
including our solutions to relevant challenging 
issues they posed are discussed in Section 4. We 
present our analysis and evaluation of the proposed 
system in Section 5 and make concluding remarks in 
Section 6. 

2 MOTIVATIONS 
AND CONTRIBUTIONS 

Our motivation for developing the optimal data 
selection model was due to the lack of an acceptable 
existing solution. Our investigation revealed that 
amongst the researchers who addressed optimal data 
selection, there were three common shortcomings 
that degraded the overall performance of the system. 
In this section, we discuss each of these 
shortcomings and how we address them in our 
optimal data selection model. Our solution enables 
us to achieve an overall enhanced accuracy. 

2.1 Improving Data Confidence 
and Assignment 

The first issue we observed in the existing solutions 
was the method in which the data confidence levels 
(reliabilities) were assigned. We define the data 
confidence level as the assurance or belief that the 
data value we obtained is correct when compared to 
the true value. It is a measure of the reliability of the 
data and is a crucial parameter in several studies. 

In previous work for optimal data selection in 
wireless sensor networks, the user assigned a 
confidence level to each type of data or each 
individual parameter using either expert knowledge 
(Lee and Meier, 2007) (Kumar, et al., 2003) or a 
very simplistic metric such as ranking or thresholds 
(Ahmen et al., 2005) (Bettini et al., 2007). While 
both expert knowledge and user-defined threshold 
values have an impact on the confidence level of the 
data, we believe that these methods are only reliable 
in extremely simplistic situations and environments. 
For example, if the threshold method was used to 
determine the “hotness” inside a building, a 

threshold of 75°F would be reasonable, given the 
criteria. However, in several sophisticated scenarios, 
such as our volcanic activity monitoring scenario, 
numerous factors and complex conditions affect the 
data values continuously and using non-adaptive 
threshold values to assign data confidence levels can 
produce inaccurate results. Hence, we developed an 
adaptive optimized confidence level mechanism 
using a Bayesian Network as shown in Figure 1. The 
Bayesian Network minimizes the effects of users’ 
(expert) knowledge imperfections and allows us to 
render a dynamic confidence level to each data flow. 
Our Bayesian network uses both expert knowledge 
and node data as the input parameters. Using this 
input, the Bayesian network is able to determine the 
confidence level of the node’s data. This is further 
discussed in detail in Section IV. Before passing the 
raw data into the Bayesian network we first run it 
through a tremor detection algorithm. The tremor 
detection algorithm is the industry standard that is 
used for determining the possibility of seismic 
activity. 

2.2 Dynamic Confidence Assignments 

Existing confidence value assignments mechanisms 
are generally static and do not change through the 
lifetime of the network (Bettini et al., 2009). We 
believe that it is unrealistic to assume that the 
reliability of sensors and their readings do not 
change (possibly drastically) throughout the lifetime 
of the network. For example, let us assume that 
shortly after deployment, node X recorded accurate 
seismic data and was assigned a corresponding 
confidence level of 98%. However, a minor eruption 
(or rock fall) caused severe damage to the antenna 
for node X, resulting in bad readings. In this 
scenario, it would be damaging to the network to 
continue to represent node X’s seismic reading with 
a confidence level of 98%. 

To adapt to the continually changing state of the 
network, we designed our confidence level 
assignment to be dynamic, where the Bayesian 
network re-computes the confidence level for each 
data stream after a certain, application specific, time 
period (say every 5 minutes). The user can also 
execute a re-computation if necessary. 

The dynamic confidence assignment also reduces 
the impact of any errors that result from the user’s 
input to the system. While we do not believe that the 
user knowledge or a threshold should be the sole 
criteria for determining the confidence level, to 
some degree this information must be inserted into 
the model. Thus, we use this information as a 

DATA RELIABILITY AND DATA SELECTION IN REAL TIME HIGH FIDELITY SENSOR NETWORKS

43



 

starting point and continually update and adjust the 
confidence level to minimize any errors in these 
values. The Bayesian Network allows us to render a 
dynamic confidence level to each data flow. We 
choose to use a Bayesian network for two reasons. 
First, it has an inherent ability to minimize 
inaccuracies within the system. For example, if one 
of the parameters, say y has an initial probability of 
q, any errors in the assignment of q are minimized 
by the other variables and their relationships within 
the network. This property of Bayesian networks can 
be seen in the ability of the user to assign equal, 
random or normalized probabilities to variables to 
which an initial probability is unknown. 

 
Figure 1: Adaptive Optimized Confidence Level. 

Secondly, Bayesian networks do not require all 
the possible outcomes to be expressed. In order to 
express all outcomes, extensive knowledge of all 
possible actions that may occur must be known. This 
is fine for a very controlled and simplistic scenario; 
however our real world volcanic scenario makes this 
assumption impractical, if not impossible. 

2.3 Optimal Subset Selection 

In our investigation of the current context modelling 
techniques developed for wireless sensor networks, 
it appears that none of them address the optimal 
subset selection problem. Optimal subset selection 

has been studied and proven to be beneficial in many 
other areas of research since it allows one to inject 
the best possible subset of data in the network to 
maximize one’s return. 

In order to choose the optimal subset of data, we 
utilized a 0-1 Knapsack approach. This enabled us to 
maximize the return (in our case value or priority of 
the data) while minimizing the cost (in our case cost 
of transmission in terms of bandwidth). This ensures 
that data with a low confidence (say 5%) does not 
degrade the network performance as it could in the 
general models. It should be noted that cluster data 
is used as an input to the Bayesian network, as 
shown in Figure 2, in order to both provide a way to 
validate the data of closely placed nodes 
(geographically) and to be able to provide a way to 
identify areas of activity. A cluster is a group of 
neighboring sensor nodes whose data are correlated 
to determine the occurrence of an event (such as a 
tremor in the context of volcano monitoring). 

The quality of the data which is the output of 
Phase I, the current data priority and the network 
bandwidth are input to Phase II. The current data 
priority is an adaptive measure of the importance of 
a specific data type. Like the seismic data reliability, 
the seismic data priority is also derived from Phase 
I. The Bayesian network does not directly determine 
the occurrence of a tremor. However, the occurrence 
of a tremor directly affects the rest of the network 
that it was a part of. We choose to utilize this in 
order to assign a seismic data priority to each data 
flow. This allowed us to give more importance to 
nodes in area(s) where we believe activity (seismic 
tremor) is occurring. This is very important as we 
are not just interested in the most reliable data but 
rather in the most important, reliable data.  Thus we 
combine (through a summation) the seismic data 
reliability and the seismic data priority into one 
entity, the confidence parameter, vi. This is 
discussed in detail in Section 4. 

 
Figure 2: Optimal Data Selection. 
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3 BACKGROUND 
INFORMATION 

3.1 OASIS 

In this section, we provide an overview of the 
Optimized Autonomous Space In-Situ Sensor-web 
(OASIS) (Song et al., 2008), which provides the 
testbed for the design and development of our data 
selection model. While volcanic sensor-webs used in 
previous studies were deployed only for a few 
weeks, OASIS is the first volcanic monitoring 
sensor network deployment which has been 
deployed for over a year at the volcano site at Mount 
St. Helens. The OASIS wireless sensor network is 
composed of several Imote2 sensor nodes deployed 
on Mount St. Helens. Each node is attached to a 
seismic sensor, an infrasonic sensor, and a lightning 
sensor. To withstand the harsh weather consisting of 
snow, ice, wind and rain, these sensors are housed in 
a mechanical structure that resembles a “spider” 
which is designed by the earth scientists at the U.S. 
Geological Survey (USGS, 2009). Multiple car 
batteries provide power to all the components 
housed in the “spider”. These sturdy “spiders” can 
be lowered at desired locations on the mountain by 
helicopters. Once the sensors are placed on the 
mountain they are able to self-configure and 
autonomously determine both the node bandwidth 
and power allocations. 

OASIS is the first system of its kind that 
integrates both ground components (sensors and 
control center) and space components (satellite) and 
maintains a continuous feedback loop between them. 
The feedback loop enables the network to be 
accurate, sensitive and robust. For instance, events 
overlooked by sensors in a specific area on the 
ground can be detected by the satellite which in turn, 
can increase the priority of the corresponding 
sensors on the ground. Further, if volcanic activity 
occurs on a section of the mountain, it reconfigures 
the network and re-tasks the satellite to monitor the 
area of interest. The high fidelity data is acquired by 
the satellite and sent back to the command and 
control center. The ground network ingests the data 
and re-organizes as needed. 

We used the sensor network in OASIS as the 
framework for the design and development of our 
optimal data selection component. 

3.2 Experimental Setup 

Before we discuss our model further it is necessary 
to  describe  the  experimental  scenario  we  used so  

that we can use it as reference in the remainder of 
this work. 

 

 
Figure 3: Experimental Test bed showing the placement of 
nodes on Mt. St. Helens. 

Our test-bed scenario originated from the real 
sensor node deployment on Mount St. Helens.  We 
choose to use both real data streams from Mount St. 
Helen’s as well as simulated data streams. Due to 
lack of recent volcanic activity, we periodically 
injected the real data with values to simulate specific 
seismic tremor scenarios. The test bed used for all of 
our analysis is shown below in Figure 3 in which the 
locations of the sensors are marked with a yellow 
pin and labeled with a number. 

The nodes are grouped into four clusters based 
on their geographical location. Cluster 1 contains 
four nodes: 9, 11, 12, and 14.  Cluster 2 contains 
four nodes: 8 13, 15, and 16.  Cluster 3 contains five 
nodes 1, 2, 3, 10, and 17, and finally, Cluster 4 
contains three nodes: 4, 5, and 6. 

4 DATA SELECTION MODEL 

Our modeling framework is composed of two 
phases. Phase I uses an intelligent method for 
determining an appropriate confidence parameter for 
each data type. In Phase II, we determine the optimal 
subset of the data types and the data sources. This 
section explains each of these phases in detail. 

4.1 Phase I: Bayesian Network 

Our goal in Phase I is to determine a confidence 
level or reliability for each of the sensor’s data 
streams. A data stream is a particular type of data 
generated at a particular node. Thus, seismic data 
from node X might have a different confidence level 
than seismic data from node Y. The reliability of 
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each data stream is determined from the correlation 
of each stream and the relationships between nodes 
within the same cluster. This information, as well as 
expert knowledge, is input into our Bayesian 
network as shown in Figure 4. 

To determine the reliability, the baseline 
reliability needs to be established first. This section 
first explains how the baseline reliability is derived 
using cross correlations. Next, it explains the 
significance of the data from the nodes within a 
cluster and how it can be utilized to determine 
reliability. It then explains how knowledge from the 
experts can be included in our model. Finally, it 
discusses the construction of our Bayesian network 
using the cross correlations and the expert 
knowledge as input. 

4.1.1 Baseline Reliability 
using Cross Correlation 

While it is possible to test the reliability of the 
sensors in our lab to determine the baseline 
reliability we encounter three major problems with 
this approach.   

First, it is very difficult to simulate volcanic 
activity (or other real-world situations) realistically 
in the lab. To accomplish this you need to accurately 
vary both the intensity and the frequency of the 
volcanic activity in a reasonable manner. 

Second, the reliability of a sensor in the field is 
drastically different than its reliability in the lab due 
to the large amount of variability that is injected into 
the situation on the mountain. For example, as the 
environment changes, such as when the ash 
coverage occurs or a rock falls close to the node 
blocking its line of sight to its nearest neighbour, the 
baseline reliability of the nodes change accordingly. 
However, this degradation cannot be uniformly 
applied to the sensors as it depends on its precise 
location and its relative positions to the other nodes. 
Likewise, our experimentation shows that the lab 
can have some negative effects that are not 
experienced in the field. For example, within the lab 
located on a University campus we noticed extreme 
interference in the communication of the nodes from 
the high volume of Internet traffic on campus, which 
resulted in sub-optimal performance. We did not 
experience this same problem in the field as there 
was no wireless activity on the volcano apart from 
our transmissions. 

Thus, we developed a dynamic baseline 
reliability framework that uses cross correlation to 
determine the reliability of each individual node’s 
seismic sensor to detect the occurrence of a tremor. 

Our tremor detection algorithm uses an industry 
standard cross correlation detection algorithm to 
indicate the occurrence of a tremor. For cross 
correlation, it is necessary to use the seismic sensor 
readings from at least two nearby sensors. Due to the 
limited number of sensors deployed in OASIS, we 
only considered two sensors at a time when we used 
the tremor detection algorithm.  In order to use cross 
correlation to determine the occurrence of a tremor, 
we employed a standard two-party cross. 

(1)

Equation 1: Cross Correlation.

 Note that x(i) and y(i) are the ith  seismic sensor 
readings from sensors X and Y, d is the distance 
between sensors X and Y, and mx and my are the 
mean seismic values for sensors X and Y. 

The cross correlation does not provide a 
definitive answer to whether a tremor occurred at 
sensor X. Instead it indicates the occurrence of a 
tremor if the correlation between nodes is high. It is 
a common practice to use cross correlation to 
determine how well two sensors seismic values 
correlate. While not ideal, this is satisfactory 
because of the ability of the Bayesian Network to 
minimize inaccuracies and it is the most reliable 
method currently employed by seismologists. 
Additionally, in our real-world deployment this 
provided us with a much more accurate 
representation than a normal or random distribution 
which are both commonly acceptable distributions to 
be used as baseline reliabilities with Bayesian 
Networks. 

Instead of using the cross correlation algorithm 
to determine the correlation of individual sensor 
nodes as isolated entities (just using two sensors), 
we chose to utilize the relationships between the 
data collected from a geographically located group 
or cluster of nodes. This allows us to take advantage 
of these clusters’ relationships in order to gain a 
more accurate representation of the network’s 
behavior. 

4.1.2 Cluster Data 

After consulting with domain experts we discovered 
that significant seismic activity was not isolated to 
one specific sensor but was felt by a group of 
neighboring sensors. Thus, if one sensor collected 
readings indicative of a tremor but it was not 

∑∑

∑
−−−

−−−
=

ii

i

mydiymxix

mydiymxix
dr

22 ))(())((

)))((*))(((
)(

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

46



 

detected by any of its neighbor’s sensors then it was 
likely erroneous. In order to capture this 
characteristic in our model, we chose to implement 
our Bayesian network so that it included inter-node 
correlations, which is referred to as cluster 
correlations and are the correlations between nodes 
in a cluster and intra-node correlations, which is 
referred to as node correlations and are the 
correlations between different data streams of a 
node. We utilize this in order to impart additional 
knowledge to our model regarding neighboring 
cluster nodes. 

Because of this and our efforts to incorporate the 
entire cluster’s characteristics, we ran the tremor 
detection algorithm on every pair of nodes within 
each cluster. For example, for Cluster 3, which is 
composed of nodes 1, 2, 3, 10, and 17, we had 10 
node correlations: {1,2}{1,3}{1,10}{1,17}{2,3} 
{2,10}{2,17}{3,10}{3,17} and {10,17}. 

Once this was done we needed a way to 
consolidate this into one descriptive cross 
correlation for each node. Our first thought was to 
take the average of the cross correlations for each 
node. After further examination, we determined that 
this was not a reliable means of describing the cross 
correlation of the nodes. Earth Scientists determined 
that high threshold of 90% or more corresponds to a 
“high correlation”. Thus, if even one node within a 
cluster had a low correlation it would bring the 
average of the other nodes below the 90% threshold 
resulting in an inaccurate description of the other 
nodes as having a “low correlation”. Therefore, we 
could not use a simple average to determine the 
correlation for each node. 

Instead, we chose to use a voting scheme. For 
each node we determined the number of other nodes 
within its cluster with which it had a cross 
correlation greater than or equal to 90% and 
regarded this as a positive vote. All of the nodes 
within the cluster with which the node had a cross 
correlation less than 90% were considered a negative 
vote. If the number of positive votes was greater 
than or equal to the number of negative votes then 
the cluster was considered to have a high correlation. 
Otherwise, the cluster was assigned a low 
correlation. This voting scheme did not allow the 
bad data from one node to skew the results from the 
rest of the nodes in its cluster. 

Next we will discuss the role of the Earth 
Scientists’ expert knowledge in our Bayesian 
network. 

 
 
 

Table 1: Default Probability Cluster Correlations. 

Nodes’ correlation 
values 

Probability of cluster 
correlation 

High Low 

3-node 
cluster

All 3 high 100% 0% 
All 3 low 0% 100% 

2 high and 1 low 70% 30% 
1 high and 2 low 10% 90% 

4-node 
cluster

All 4 high 100% 0% 
All 4 low 0% 100% 

3 high and 1 low 90% 10% 
1 high and 3 low 10% 90% 
2 high and 2 low 70% 30% 

5-node 
cluster

All 5 high 100% 0% 
All 5 low 0% 100% 

4 high and 1 low 98% 2% 
1 high and 4 low 10% 90% 
3 high and 2 low 90% 10% 
2 high and 3 low 70% 30% 

4.1.3 Expert Knowledge 

In our optimal data selection model we used expert 
knowledge as one input into our Bayesian network. 
This was done through the use of a “user’s profile”. 
The user profile is created using expert knowledge 
and can be modified as necessary. 

The purpose of the user profile is to determine 
the relationships between every node’s (within the 
cluster) seismic sensor correlation values. This 
information is input into the Bayesian network in the 
form of Conditional Probability Tables (CPT). For 
consistency we designed a default user profile for 
each cluster scenario as shown below in Tables 1. 
Table 1 denotes the default probability cluster 
correlation given the nodes’ correlation values for 
different cluster sizes (3, 4, and 5 nodes per cluster). 

In addition to the CPTs discussed above, expert 
knowledge is also used to impart knowledge into 
two more CPTs that are used for all networks 
regardless of their size. The first one is for the 
individual node’s seismic sensor correlation. If a 
tremor occurs, the probability of the seismic sensor 
correlation is set to 98% (high) and 2% (low), 
respectively. Similarly, if a tremor does not occur 
the probability of the seismic sensor correlation is 
set to 2% (high) and 98% (low), respectively. The 
final CPT is for the individual node’s seismic data 
reliability. If the node’s seismic correlation and its 
cluster correlation agrees (either high or low) then 
the reliability is set to 100% (reliable) and 0% 
(unreliable), respectively. This means regardless of 
what activity is detected, if it is the same then we 
deem the  node reliable. If the node’s sensor correla- 
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Figure 4: Bayesian Network Example. 

tion and the cluster correlation disagree then the 
reliability is set to 2% (reliable) and 98% 
(unreliable). 

4.1.4 Bayesian Network 

In our Bayesian network, the existence of a tremor at 
a particular cluster is depicted in the center of the 
network labeled as ClusterYTremor, where ‘Y’ 
denotes the node number. Figure 4 shows an 
example Bayesian Network for node 3. It should be 
noted that in this phase we do not attempt to 
determine whether a tremor has occurred. However, 
the existence of a tremor is a factor that influences 
the seismic sensor correlation and the cluster 
correlations which ultimately determine the seismic 
reliability of the data. Hence, ClusterYTremor lies at 
the center of our network. It should be noted that we 
did not need to input whether or not a tremor was 
occurring into our Bayesian network as it was not 
assumed that this was known. Instead it was 
assumed that there was an equal probability of a 
tremor occurring or not occurring. Once some 
known data, specifically seismic data correlations, 
were input into the Bayesian network, it would 
automatically adjust the probability of a tremor 
occurring.  In addition to the ClusterYTremor nodes 
in our Bayesian networks, there are other nodes: 
NYSeismicSensorCorrelation, where Y is the sensor 
N’s node number. Similar to the ClusterYTremor 

nodes the value of the ClusterYCorrelation is not 
definitively known.  However, unlike the 
ClusterYTremor node, the probability of the 
ClusterYCorrelation is not 50/50.  Because we had 
additional knowledge about the cluster correlation 
we could impart this knowledge into the Bayesian 
network in the form a correlation table.  

We imparted this knowledge into the table in the 
form of probabilities. The final nodes in our 
Bayesian networks are labelled 
NYSeismicDataReliabiliy, where Y is the nodes 
number (N2SeismicDataReliability). This was 
represented by a percentage of the confidence that 
we had in node Y’s seismic data and it was 
computed and returned as the result of executing our 
Bayesian network. 

Once we determine the data reliability for all the 
data streams, we use it as input into Phase II in order 
to obtain an optimal data subset. 

4.2 Phase II Knapsack Optimization 

Phase II of our optimal data selection model uses the 
data reliabilities assigned in Phase I and the 
available bandwidth as input (refer Figure 5). In 
OASIS, our resource constrained wireless sensor 
network bandwidth was a limiting factor which had 
to be conserved. As mentioned above, we had 16 
sensor nodes, each of which were attached to 
multiple, continuously sampling high fidelity 
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sensors. Each sensor node had a seismic, an 
infrasonic, and a lightning sensor which were 
sampled at a 100Hz, 100Hz, and 10Hz, respectively. 
Due to the large amount of data being continuously 
sampled and the limited bandwidth that was being 
shared between the 16 nodes, it was not possible for 
all of the data from all of the nodes to be transmitted 
in real-time. The network bandwidth problem was 
exasperated by the funnelling of data to a sink point 
for transmission to an access point. Therefore, we 
had to determine at any specific point in time which 
was the “best” data to be sent. To decide what the 
“best” data was, we needed to use the confidence 
parameters determined by the Bayesian network and 
optimize the bandwidth using a 0-1 Knapsack 
approach, as shown in Figure 5, and discussed 
thoroughly in the remainder of this section. 

We used the confidence parameters because they 
allowed us to reflect our belief in the correctness or 
accuracy of the data in our decision. For example, if 
some of the data had a confidence parameter of 15% 
we would probably not have wanted to use our 
valuable bandwidth to transmit such unreliable data. 
The reason that we needed to optimize the 
bandwidth and not just “fill up” all of the bandwidth 
with the highest priority data was due to the 
bandwidth sharing and funnelling effect of the 
network topology of our sensor network. Further, we 
need to minimize the bandwidth usage (by not 
transmitting unreliable data) while maximizing the 
return (high priority packets). 

 
Figure 5: Knapsack Optimization. 

In general, the knapsack optimization technique 
originated from the class of problems using fixed 
sized knapsack in which the user wants to carry the 
most valuable items while minimizing the weight 
that they had to bear. The 0-1 knapsack problem is 
the most common type of knapsack problem in 

which the number of each item is limited to either 0 
or 1. Generally speaking, in a bounded knapsack 
problem this number does not have to be limited to 
one but may be any integer less than y, as specified 
by the user. However, for our scenario each data 
stream was unique, we never had duplicates of the 
same data stream so it followed that we would use 
the 0-1 knapsack approach. 

Let us first define a value vi and a weight wi to be 
associated with each of the data streams. Further, we 
also had to assign a maximum weight, MW which 
the entire network could not exceed. In our scenario, 
the value, vi, of each item was the confidence 
parameter. The weight, wi, associated with each data 
stream was the cost of transmission in terms of 
bandwidth. Finally, MW was the limiting bandwidth 
available within the network. Our goal, which was to 
minimize the weight wi while maximizing the value 
received vi, is defined formally below in Equation 2 
and Equation 3. Note, ji is the number of each of the 
data streams which in our scenario was restricted to 
0 or 1. 

}1,0{∈∀j  
(2)

Equation 2: Weight Maximizing. 

}1,0{∈∀j  
(3)

Note that for n items if we were to use a brute 
force technique and compute all possible 
combinations of the n data steams then this would 
require 2n combinations to be computed. Thus, this 
brute force approach has a computational 
complexity, which is NP-complete. However, we 
use a pseudo-polynomial time dynamic 
programming solution, which reduces the 
complexity to O(nW), which for known inputs is 
weakly NP-complete and can be computed. 

We input the confidence parameter and the 
available bandwidth into the 0-1 knapsack 
optimization algorithm. The output of this algorithm 
is the optimum data subset. More specifically this is 
a decision regarding the data, some subset i of our 
total data set z, that would optimize our resources by 
minimizing the cost while maximizing the return. 
Thus, in choosing several items, say b items, we had 
a choice, we could either add another item, say b+1, 
or we could just have b items. If adding the 
additional b+1 item would cause the total weight of 
the subset, say wsb, to exceed the maximum weight 
MW then item b+1 could not be added. However, if 
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adding item b did not cause MW to be exceeded then 
b+1 could be added. We chose to add item b+1 if 
adding it would increase the confidence of the subset 
(if vsb+1 > vsb), otherwise (if vsb+1 <= vsb ) we 
excluded it. It should be noted that the algorithm 
only determines the maximum confidence that can 
be achieved. It does not tell us which items attain 
that confidence. In order to get the items we had to 
additionally “mark” each item that should be 
included. The items that should be included are the 
ones that increase the overall confidence of the 
subset (this is denoted vsb+1 > vsb). The 
implementation is discussed in detail in (Peterson, 
2010). 

5 EXPERIMENTS AND RESULTS 

To provide input to Phase I, we emulated a 
continuously changing stream of seismic data which 
encompassed the different scenarios that we 
expected to see on a volcano. We used 4 different 
experimental setups. The first two experiments 
consisted of real sensor data (with added tremor 
points) while the second two experiments consisted 
of random data with randomly occurring tremors and 
random data with exponentially occurring tremors, 
respectively. We divided each of the four 
experiments into six time periods (for a total of 24 
time periods), where each period represented a 
specific scenario. It was important to use well 
controlled data streams in which we knew which 
sensors data streams contained bad or erroneous data 
to be able to definitively state if the algorithms used 
in the evaluations were accurately determining the 
reliability. 

In the experiments that will be described next, 
we use the results from Phase I as input to Phase II 
(as depicted in our model) and let the results for the 
optimal data selection from both phases be 
compared with other schemes, including schemes 
that use various threshold values (expert knowledge) 
or averaging for data selection. 

We used the number of high priority nodes 
selected (i.e., the number of high priority, high 
reliable data selected) as the metric to measure the 
accuracy of our algorithm. In general, our algorithm 
selected more optimum nodes than the other 
algorithms. We did this by selecting the nodes with 
lower bandwidth requirements. Additionally our 
algorithm also included additional nodes because we 
continued to include nodes in the optimized subset 
until we consumed all the remaining bandwidth. 

In the previous section, we stated that we used  

the individual data streams reliability parameters 
from the Bayesian network. However, in our 
discussion of the Knapsack implementation we said 
that the value vi, of each data stream was the 
confidence parameter. This confidence parameter is 
a combination of both the reliability parameter and 
the seismic data priority of each data stream both of 
which are derived from Phase I. We choose to utilize 
this in order to assign a seismic data priority to each 
data flow. This allowed us to give more importance 
to nodes in area(s) where we believed activity 
(seismic tremor) was occurring. This was very 
important as we were not just interested in the most 
reliable data but rather the most significant reliable 
data. Thus, we simply combined (through a 
summation) the seismic data reliability and the 
seismic data priority into one entity, the confidence 
parameter, vi. We implemented our algorithm in 
MATLAB. 

5.1 Experiment Scenarios 

In order to evaluate our algorithm, we compared it 
with three other commonly used algorithms (Ahmen 
et al., 2005) (Bettini et al., 2007). The first algorithm 
(referred to as Threshold) used a threshold of 90% as 
advised by the Earth Scientists. However, as 
discussed in Phase I, a single low value will result in 
an average below 90% for the entire cluster. Thus, 
we also evaluated using a low threshold of 75% to 
accommodate this (referred to as Low Threshold). In 
addition we also tested it using the median of all 
data values, excluding all values below the median 
(referred to as Median). This is a simplified version 
of our voting algorithm (from Phase I). We also 
made the assumption that all of the algorithms start 
selecting the nodes numerically beginning with the 
lowest number (for consistency). 

As previously stated, our first experiment 
consisted of real seismic data “injected” with 
seismic tremor points as well as faulty data. We 
performed and collected the results for all four 
experiments, each having six periods for a total of 
96 different results. The trace scenarios for Periods I 
– VI are as follows. 

 Period I: Tremor detectable by all nodes 
 Period II: Tremor detectable by all clusters 

 Nodes 8 and 17 produce some erroneous data. 
 Period III: Tremor detectable by all clusters 

 Nodes 1, 6, 11, 16 some erroneous data 
 Period IV: Tremor detectable by Clusters 3 & 4 

 Nodes 1,2,3,10,17 
 Nodes 4,5,6 

 Period V: Tremor detectable by Clusters 3 and 4 
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 Nodes 1, 2, 3, 10, 17 (4 good, 1 bad) 
 Nodes 4, 5, 6 (all good nodes) 
 Nodes 8, 17 some erroneous data 

 Period VI: Tremor detectable by Clusters 3 and 4 
 Nodes 1, 2, 3, 10, 17 (4 good, 1 bad) 
 Nodes 4, 5, 6 (2 good, 1 bad) 
 Clusters 1 and 2 cannot detect tremor and also 

each have one node with some erroneous data. 
 Nodes 1, 6, 11, 15 erroneous 

5.2 Results 

For all of the experiments we represented the 16 
nodes with their id number in matrix M = [1, 2, 3, 4, 
5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The weights 
of the nodes correspond to the bandwidth that was 
required to transmit the data from that node to the 
sink node (in number of hops) and was given by 
weights = [2, 2, 2, 1, 1, 1, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2]. 
The SeismicDataReliabilty and the 
SeismicDataPriority (both resulting from the 
Bayesian network in Phase I) were each represented 
in a matrix. In the interest of space we will not 
display all of the SeismicDataReliabilty and the 
SeismicDataPriority matrices. As an example the 
matrices for Experiment I, Phase III are: 
SeismicDataReliability = [3.96, 98, 98, 70.6, 70.6, 
31.4, 90.2, 90.2, 98, 11.8, 90.2, 90.2, 90.2, 90.2, 
11.8, 98] 
SeismicDataPriority = [0, 100, 100, 100, 100, 0, 
100, 100, 100, 0, 100, 100, 100, 100, 0, 100]. These 
two matrices were added together to get the resulting 
confidence parameter that is used as input into the 
algorithms. Confidence parameter = [3.96, 198, 198, 
170.6, 170.6, 31.4, 190.2, 190.2, 198, 11.8, 190.2, 
190.2, 190.2, 190.2, 11.8, 198]. 
We used two measures to evaluate the algorithms: 
accuracy (explained below) and the percentage of 
the optimal data selected.  It should be noted that in 
our volcanic monitoring scenario all the data is not 
treated equal.  Rather, some of the data can be 
categorized as good or error free data, while other 
data is referred to as bad or erroneous data. 
Additionally, the good data must further be 
categorized as good data which is generated from a 
node that is physically located in an area of activity, 
and hence has a higher priority or good data that is 
generated from a node that is in a non-active area 
and has a lower priority. We must adhere to these 
distinctions to correctly measure the accuracy of the 
algorithms. 

We designed a point system to measure the 
accuracy of the algorithms such that it reflects the 
information related to the type of data selected by 

the algorithm. The accuracy of the algorithm is 
initially set to 0. Each algorithm is then assigned 
points based on the type of node it includes in the 
optimal data subset. For each node in the optimal 
subset that is erroneous we add “-1” to its current 
accuracy. Each good node that is included in the 
optimal subset “+1” or “+2” is added to the accuracy 
for low priority and the high priority nodes, 
respectively. 

Figures 6 – 9 show the accuracy of all the 
algorithms for time periods I – VI under different 
network bandwidths. The available bandwidth refers 
to the space available to transmit the data. Thus, 
high bandwidth indicates that 83% of the data is 
allowed to be transmitted, while medium high, 
medium, and low can handle 53%, 26%, and 13% of 
allowable data, respectively. In Period I of Figures 6 
– 8, all four algorithms performed equally. This was 
as expected as this time period contained no activity 
and had no erroneous data; rather it was used as a 
validity test. When the available bandwidth was low, 
Figure 9, we performed better due to our 
optimization of the nodes and their associated 
bandwidth requirements. In all four figures you can 
see that in relation to the other algorithms, ours 
showed the most improvement in Periods III, V, and 
VI. This is because those were the time period that 
contained some erroneous data. Additionally, you 
can see that the increase in the amount of accuracy 
points that our algorithm gains versus the other 
algorithms is inversely related to the available 
bandwidth. Thus, while our algorithm never 
performed worse than the competition, it displays 
the most gains when the bandwidth resources are 
restricted and erroneous data is present. 

The second metric that we used to evaluate our 
optimum data selection algorithm was a measure of 
the percentage of the optimal data that was chosen. 
By optimal data, we refer to all of the data that does 
not contain errors. In order to compute the 
percentage, as shown in Figures 10 – 13, we took the 
ratio of the total number of good nodes that were 
selected in the optimum data set to the total number 
of nodes that were in the entire sample. From the 
results it is evident that the percentage of increase is 
directly proportional to the available bandwidth. 
Thus, it is expected that when the bandwidth is 
limited, the total number of nodes selected is also 
reduced. However we can refer to the relative gain 
between algorithms in order to compare their results. 

As demonstrated in Figure 10, when the 
bandwidth is limited, our algorithm outperformed 
others in all cases. Again, it is demonstrated in all of 
the  figures  that  we  showed  the  greatest  improve- 
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Figure 6: Accuracy for High Bandwidth. 

 
Figure 7: Accuracy for Medium High Bandwidth. 

 
Figure 8: Accuracy for Medium Bandwidth. 

 
Figure 9: Accuracy for Low Bandwidth. 

 
Figure 10: Good Data Selected High Bandwidth. 

ments in the periods where there was erroneous data 
present. This is particularly important because this 
algorithm is not necessary if none of the data was 

erroneous or if the bandwidth was such that all of 
the data could be select.  Rather it is when the 
bandwidth is restricted and the data is not all good 
that we require optimization of the subset selection 
algorithm. 

 

Figure 11: Good Data Selected Medium High Bandwidth. 

 
Figure 12: Good Data Selected Medium Bandwidth. 

 
Figure 13: Good Data Selected Low Bandwidth. 

6 CONCLUSIONS 
AND FUTURE WORK 

Optimal data selection has become an important 
issue in environment monitoring, where high-
fidelity, continuous data samples are used. We 
designed, implemented, and tested our optimal data 
selection model system for wireless sensor networks. 
Our model is composed of two phases: one to 
identify the confidence in the data and second to 
optimize the selection of the data based on its 
reliability and availability of network bandwidth. 
Our analysis showed that when compared to other 
algorithms, our optimal data selection model was 
able to significantly outperform existing algorithms. 
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While we implemented and tested our algorithm 
in a volcanic monitoring scenario, our work is not 
constrained to this arena. The proposed optimal data 
selection model is ideally suited to many resource 
constrained wireless sensor networks where data 
quality and data selection are important. Further, we 
are extending this optimal data selection model into 
a larger context modeling framework that also 
determines when a tremor occurs, as opposed to 
other events such as a rock falling, and its location. 
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