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Abstract: Because of the increasing design complexity of embedded microprocessors, pre–silicon verification in 
design stage is insufficient to eliminate bugs (electrical and functional) and nonconforming chip behaviour 
can still be found after the design is manufactured. Therefore, on–chip debug is becoming a key step both in 
the implementation flow for the purpose of identifying and fixing design errors that have escaped pre–
silicon verification and in software development. In this paper, we present a new method of using improved 
shadow scan architecture in the debug procedure which involves general–purpose registers in OpenSPARC 
T2 processor and illustrate the mechanism of this logic and function module. The proposed architecture is 
suitable for debugging work in practical embedded application, and provides more observability and 
controllability which can reduce the time of scanning specified register window to 1/16 at the most. 

1 INTRODUCTION 

In pre–silicon verification stage of embedded 
microprocessor development, design verification for 
checking the correct circuit behaviour can be 
performed mainly via simulation techniques using 
testbenches and formal verification using different 
levels of design abstraction. Due to simulation time 
and limited resources, exhaustive simulation to 
achieve 100% coverage with larger and complicated 
designs becomes impractical.     

Along with the bug escapes in the pre–silicon 
stage, the inaccuracies in modeling integrated 
circuits with process variation during the 
manufacturing process are the main reason why 
manufactured chips show operation misbehaviors or 
fail to meet specifications. As for the software, the 
development of software is becoming more and 
more complicated and expensive. Debugging work 
is a crucial stage in the development flow of 
software nowadays.   

Dramatic performance improvement of 
microprocessor systems affects on–chip debugging 
work in several ways: RISC based processors often 
make use of instruction level parallelism to enhance 
performance, which will lead to more complex CPU 
micro–architecture and brings more difficulty to 

access the internal processors states. Multi–core and 
multi–thread technique also makes the access 
inconvenient. But the urge of shorter development 
time requires more internal CPU states observable 
and controllable. Therefore, it is very important to 
provide high performance and flexible debug 
scheme to facilitate both hardware and software 
development. 

Traditional microprocessors use debug monitor 
program to access target processor. This solution is 
effective to some degree, but the drawbacks are also 
obvious: the debug monitor program occupies 
resources on the board, and it is intrusive to the 
target system.  

Another way of dealing with the debug problem 
is through hardware assisted on chip. The solution is 
implemented by inserting serial scan chains around 
the datapaths to allow data to be scanned out through 
JTAG interface. This approach makes debug 
features such as hardware breakpoint, instruction 
trace easy to implement. Therefore scan chains are 
widely used to support manufacturing test, post–
silicon debug and software debug. However, it 
requires halting the system to scan out responses 
from the CUD (Circuits Under Debug). Hence, there 
is a long time gap from the time when a bug is 
invoked to when it is visible.   
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Using shadow registers in the debug logic 
circuitry can overcome the disadvantages of 
debugging based on monitor program and the 
inserting serial scan chain method. Shadow register 
group is defined as a group of registers designed in 
the microcontroller’s debug module, and the 
registers will not intrude normal CPU operation. 
They are often used to provide a non–destructive 
scan out capability that preserves the existing system 
state after the scan dump. Many systems are fully 
scannable with non–destructive capability which is 
helpful for both test and debug. 

OpenSPARC T2 is a chip multi–threaded 
processor which has eight SPARC cores, each 
supporting concurrent execution of eight threads for 
64 threads total. Integer Register File (IRF) is an 
important part of the execution unit in SPARC core, 
but can only be accessed by serial scan chains, 
which makes the debug work ineffective. In this 
paper, we will provide a solution to the limitation 
mentioned above. In section II, we describe the logic 
unit related to debugging work in OpenSPARC T2. 
In section III, we illustrate the new on-chip debug 
architecture based on shadow scan technique. The 
logic architecture is applied in OpenSPARC T2 
microprocessor. However, the methodology is 
applicable to other processors. 

2 OPENSPARC T2 LOGIC UNIT 
RELATED  

2.1 Shadow Scan Architecture  

As stated in section I, scan chains are used to 
support manufacturing testing and can be reused for 
on–chip debug to increase debug capability. Scan 
dumps give high observability of internal signals and 
states after the occurrence of a triggering event. 
However, they require halting the system to scan out 
responses from the circuit–under–debug. This is 
time consuming as many scan dumps may be 
required.  Shadow registers and shadow scan logic 
are often used to provide a non–destructive scan out 
capability that preserves the existing system state.  

In OpenSPARC T2 microprocessor, each 
physical SPARC core supports the ability to capture 
a subset of each strand’s state for inspection via a 
shadow scan facility. The architecture is shown in 
Figure 1 (take SPARC core0 as an example). Each 
core shadow scan will be contained in a separate 
scan chain, with its own clock headers and controls 

coming from the TCU (Test Control Unit, the main 
test and debug support unit of OpenSPARC T2  

 
Figure1: The Shadow Scan Architecture. 

processor, which also controls the JTAG interface 
and TAP machine of the processor). If a core is 
disabled then its shadow scan contents will be 
excluded and the number of TCK clocks should be 
reduced to reflect the unavailable core(s). 
The shadow scan function is controlled via JTAG 
interface and invoked by JTAG commands. Eight 
private JTAG instructions are defined to support 
shadow scan operation of SPARC cores 
(TAP_SPCTHR0_SHSCAN ~ 
TAP_SPCTHR7_SHSCAN). The high five ordered 
bits of each instruction are the same, representing 
the shadow scan operation. While the three low 
ordered bits are different, and coded as strand ID, 
illustrating the state of which thread of that SPARC 
core needs to be captured. 

The TCU continually specifies a strand ID to 
each physical OpenSPARC T2 SPARC core. In 
response, the physical core atomically captures the 
state as described in Table I in a scan string. The 
TCU then accesses the scan string and capture it in a 
JTAG–visible register for presentation over the 
JTAG interface. 

2.2 Integer Register File 

An UltraSPARC 2007 architecture specification, 
processor should contain an array of general–
purpose registers. One set of 8 global registers is 
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Table 1: SPARC Shadow Scan State. 

Data Bits Field Remarks 

117:72 VA [47:2] 
Virtual address 

Of last instruction 
executed by that strand 

71 ibe HPSTATE.ibe 

70 cle PSTATE.cle 

69 tle PSTATE.tle 

68 tct PSTATE.tct 

67 hpriv HPSTATE.hpriv 

66 red HPSTATE.red 

65 pef PSTATE.pef 

64 am PSTATE.am 

63 priv PSTATE.priv 

62 ie PSTATE.ie 

61 tlz HPSTATE.tlz 

60:58 TL [2:0] TL 

57:12 TPC [47:2] TPC for the last trap 

11:3 TT [8:0] TT for the last trap 

2:0 TL_FOR_TT [2:0] TL for the last trap 

always visible. At any given time, a group of 24 
registers, known as a register window, is also 
visible. 

A register window comprises the 16 registers 
from the current 16–register group (referred to as 8 
in registers and 8 local registers), plus half of the 
registers from the next 16–register group (referred to 
as 8 out registers). The names in, local, and out 
originate from the fact that the out registers are 
typically used to pass parameters from (out of) a 
calling routine and that the called routine receives 
those parameters as its in registers. The window 
addressing is shown in Table II. 

Integer register file (IRF) and register 
management logic (RML) in the execution unit of 
OpenSPARC T2 core are the hardware 
implementation of general–purpose registers set 
mentioned above. 

Table 2: Windows Addressing. 

Windowed Register Address R Register Address 

in [0] – in [7] R [24] – R [31] 

local [0] – local [7] R [16] – R [23] 

out [0] – out [7] R [ 8 ] – R [15] 

global[0] – global [7] R [ 0 ] – R [7] 

RML is the logic control unit of IRF. The integer 
register file is a 32–entry x 72–bit structure, 
replicated four times for each thread. It has three 
single ended read ports and two dual ended write 
ports. The 32 entries are split into 16 I/O registers – 
eight local registers and eight global registers. The 
register file supports eight windows per thread. Each 
local register is made up of eight basic registers, one 
per window.  

In addition, each thread contains one active 
register, which has the contents of the current 
window. Each I/O register has four basic registers, 
which will be shared between even and odd 
windows, and one active register for each thread. 
The register file window structure is shown in 
Figure 2. 

 
Figure 2: The Register File Window Structure. 

3 IMPROVED DEBUG 
ARCHITECTURE 

The original way to deal with the SPARC core 
debug work, in which the IRF is involved, is using 
serial scan chains in the IRF to allow data to be 
scanned out through JTAG interface. That scan 
chain is part of the long serial scan chain of SPARC 
core and is not configurable, which means that in 
order to obtain the internal and states, we need not 
only to halting the system and stop the clock, which 
may lead to the loss of data integrity, but also to wait 
all the data on that chain to be dump out. 

To overcome the disadvantages mentioned above, 
the improvement we make can be summarized into 
three aspects: 

Adding new debug commands: Usually the 
public or private JTAG instructions used in 
debugging work are 8 bits long, but the new 
instruction form (called TAP_SPCIRF_SHSCAN) is 
twice the length of that. To decode these commands 
correctly, we spilt them into two parts (8 bits each) 
and change the decode module in TCU: When TCU 
receives the high 8 ordered bits of 
TAP_SPCIRF_SHSCAN instructions, it won’t 
change the TAP machine to Capture–DR state to 
capture date, but loop back to Capture–IR state 
instead, waiting the whole instruction to be captured. 
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The low five ordered bits of these instructions 
determine which entry is read on port [2/1/0] 
(because there are three reading ports under the 
control of RML). Bits [4:1] are used to index into 
one of sixteen wordlines. Decoding of 0 – 3 
represents accessing to global registers, 4 – 7 odd 
registers, 8 – 11 local registers, and 12–15 even 
registers. Bit [0] is used for MUX 2 selection of 72 
out of 144 columns. The two higher bits is read tid 
and determine which thread is made available to the 
read port. All ports see the same tid selection for 
reads. 

Reforming Shadow Scan Registers: The shadow 
scan register in each SPARC core is a 118 bits 
register which are split into two parts, working 
separately to increase the efficiency. We widen this 
registers and improve the control logic to make sure 
the date captured from IRF is kept in independent 
part of the register and – which is the most important 
– can be shifted out from shscan_in port to 
shscan_out port. 

 
Figure 3: The Datapath of Improved Shadow Logic with 
IRF. 

Adding new datapaths: First we connect the 
reading port of IRF with SSD module (the control 
logic of shadow scan procedure in SPARC core) to 
transfer the data to scan registers. In addition, we 
add datapath among TCU, RML, IRF, and reuse 
some RML logic module to make the read address, 
tid specified in instructions and enable signals 
known to IRF. The complete architecture of 
adjunction, as shown in Figure 3, works as the 
instructions direct and captures the information that 
users need in IRF into shadow registers which are 
visible over the JTAG interface. 

4 CONCLUSIONS 

In this paper, we have presented a method of using 
improved shadow scan architecture in the on-chip 
debug procedure in which IRF is involved. As we 
can see from Table III, the new architecture provides 
more controllability to processor users during 
debugging work, at a cost of acceptable hardware 
overhead. Moreover, the time that users spend on 
debug is cut distinctly without halting the system. 
The design has been verified on SPARC T2 
processor and is found working well and efficiently. 

Table 3: Comparison. 

 Original Improved 
Clock Stop √ Χ 
Time 

Consuming 
T T/16 (at 

the best*) 
Configurable Χ √ 

Extra Hardware 
Overhead 

Χ √ 

*: Without considering the time of decoding instruction 
and state transition of TAP state machine. 
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