
ENHANCING XML-CACHE EFFICIENCY
BY XML COMPRESSION

Stefan Böttcher, Lars Fernhomberg and Rita Hartel
Univeristy of Paderborn, Computer Science, Fürstenallee 11, 33102 Paderborn, Germany

Keywords: XML databases, Caching, Compression.

Abstract: Whenever a client with limited resources frequently has to retrieve large parts of a huge XML document
that is stored on a remote web server, data exchange from the server to the client in combination with re-
stricted bandwidth may become a serious bottleneck. We present an approach that combines the advantages
of caching with the advantages of query-capable and updatable XML compression. We provide a perfor-
mance evaluation that demonstrates that the combination of the two techniques – caching and compression –
yields a benefit in terms of less data volume to be transferred as well as in terms of a reduced answer time
for the user. The performance evaluation demonstrates that combining both technique yields an even strong-
er benefit than each technique alone.

1 INTRODUCTION

1.1 Motivation

In the last years, more and more standards for data
exchange have evolved that are based on the flexible
hierarchical data format XML. Examples for such
data formats are SEPA (Single European Payment
Area) for the financial sector or OTA (OpenTravel
Alliance) for the flight sector.

Whereas previously, the clients that participated
in internet-based applications got stronger resources,
now a reverse development can be observed. More
and more small mobile devices (like e.g. PDAs and
smartphones) that come with restricted internal re-
sources and restricted connection bandwidth partici-
pate in web applications.

Therefore, we consider scenarios, in which client
applications need to access huge XML documents
that are provided on remote web servers, and where
the data transfer volume or the data transfer time
from the server to the client is a bottleneck.

To overcome this bottleneck, there exist two dif-
ferent technologies: caching previously downloaded
data on the one hand and compressing transferred
data on the other hand.

A seamless integration of both techniques on the
client side is a challenging task as compression
combines similar structured data whereas caching
isolates data in the cache.

Our approach combines both techniques as fol-
lows: we compress the data on the web server and
process and transfer them in the compressed format
to the client. On the client side, the data is then
cached in compressed format, such that it can be
used for answering not only identical but also simi-
lar queries without access to the web server.

1.2 Contributions

This paper proposes an approach for integrating
caching and compression in order to reduce data
transfer volume and time and that combines the
following properties:
- It compresses the structure and the constant data
of the XML document on server side.
- It transfers the data in a compressed way to the
client and thereby saves transfer volume and transfer
time.
- It transfers to the client only that part of the data
that is needed to answer the user query and that is
not yet stored within the compressed cached client
data.
- The compression technique used for compressing
the data can be exchanged. Our approach contains a
generic caching framework for compressed data that
generalizes the tasks that are common to all com-
pression techniques to be used, such that only a
simple interface has to be implemented by each

80 Böttcher S., Fernhomberg L. and Hartel R..
ENHANCING XML-CACHE EFFICIENCY BY XML COMPRESSION .
DOI: 10.5220/0003354300800087
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (WEBIST-2011), pages 80-87
ISBN: 978-989-8425-51-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

concrete compression technique before it can be
used.
- We provide a technique for integrating com-
pressed fragments on the client side into a single
compressed fragment without total decompression of
the cached fragments.

We have implemented our system with two different
compression techniques and comparatively evalu-
ated our system with querying uncompressed data
that is not kept in the cache, querying uncompressed,
cached data, and querying compressed data that is
not kept in the cache. Our results show that the com-
bination of caching and compression outperforms all
the other techniques in terms of transfer volume and
in terms of total query evaluation time considering
data rates of up to that of UMTS.

1.3 Problem Description

The problem investigated in this paper is how to
improve caching of answers to XPath queries in
client-server web information systems in the follow-
ing aspects: first, the overall data exchange volume
between the web information source and the client
shall be reduced, and second, the time needed by the
client to get the results of a query from a remote
server shall be reduced.

We follow the principle of compensation queries
(Mandhani & Suciu, 2005), i.e., we calculate com-
pensation queries from a given new query and old
queries, the results of which are already contained in
the cache. A compensation query of a query Q is a
query Q’ that, applied to the view V of the database
that is represented by the cache, calculates the same
query results as Q applied to the data on the server.
However, beyond the approach of (Mandhani &
Suciu, 2005), we consider a much broader subset of
XPath including the search or navigation along all
the XML forward axes. Thereby, our approach to
caching supports a significantly wider field of web
applications.

In the current approach, we do not consider, how
to handle updates of server data of which a copy is
stored in the client cache, but we expect that our
current concept does not prevent outdated caches to
be managed.

1.4 Paper Organization

This paper is organized as follows: In Section 2, we
explain the key ideas of the general solution, includ-
ing the compression techniques implemented in our
caching framework and the mechanisms used for
performing query evaluation on the compressed

XML representations. Section 3 describes our per-
formance evaluation and the evaluation results.
Section 4 describes related work, and Section 5
contains a summary and the conclusions.

2 THE CONCEPT

2.1 The Basic Idea

Our framework for caching compressed XML data
consists of a server and a client. The main idea of
our caching approach is that the server only sends
that data that is needed by the client to answer the
query and that is not already contained in the client’s
cache. The data is transferred to the client and stored
on the client in a compressed format. A second re-
quirement is that the server is stateless, i.e., that it
does not store the current state of the client’s caches,
as this would lead to a too large storage overhead on
the server side.

In order to transfer only new data that has not yet
been cached, the server has to find out whether or
not a query requires to access data not already stored
in the client’s cache. Therefore, the server contains
the compressed XML document and a query cache,
where itself stores results to previously answered
queries. When the server receives a query from any
client, it assigns an ID to the query (either a new
one, or it looks up the ID of the query if it was ans-
wered for another client before) and sends the ID of
the query together with the answers to the client. As
the server is stateless, i.e., it does not maintain any
state information on its clients, the client sends in
addition to the query to be answered a list of query
IDs that describe the queries already stored in its
cache. With the help of the query IDs and the global
server query cache, the server then can reconstruct
the content of the client’s cache. Finally, the server
computes the result R of the client’s query and trans-
fers the difference between the result R and the
client’s cache’s content, i.e., only these nodes of the
result that were not already contained in the cache,
to the client. In addition, the server stores the client’s
query, the ID assigned to the query and the result R
in its query cache.

When the client receives the answer to its query,
it integrates the compressed XML fragments into its
cache. It then can be sure, that applying its query to
its cache will yield the same result as applying this
query to the server document.

Figure 1 shows the application flow of the ap-
proach presented in this paper.

ENHANCING XML-CACHE EFFICIENCY BY XML COMPRESSION

81

Figure 1: Application flow of our caching approach.

In order to integrate the transferred data, we use
the updateable XML numbering scheme ORDPATH
(O'Neil, O'Neil, Pal, Cseri, Schaller, & Westbury,
2004) that allows for two nodes specified by their
ORDPATH ID to determine, in which XML axis
relation they are to each other, e.g., whether node A
is a following-sibling or a descendant of node B.
Depending on the concrete requirements, other XML
numbering schemes like DLN (Böhme & Rahm,
2004), or DDE (Xu, Ling, Wu, & Bao, 2009) could
be chosen.

2.2 XML Compression

Our caching approach is designed in such a way that
it can work with different XML compression tech-
niques. The requirements to these techniques are that
query evaluation and updates are possible on the
compressed data directly, i.e., without a prior de-
compression.

Tasks that are common for all compressed repre-
sentations of the XML document are isolated into a
generic part. Therefore, the compression techniques
being used for managing the client’s cache do only
have to implement a simple interface covering func-
tions like basic navigation via first-child, next-
sibling, and parent, as well as basic update functio-
nalities in order to integrate the new results into the
cache. Furthermore, the compression technique
being used at the server-side additionally has to
support computing the difference of two compressed
node lists (with node unique node IDs).

Currently, we have implemented two different
compression techniques within our caching frame-
work: Succinct compression and DAG compression.

2.2.1 Succinct XML Compression

Succinct XML compression is an XML compressor
that separates the XML constants from the XML

element names and the attribute names and from the
nesting of start tags and end tags, i.e. the compressed
document structure of an XML document consists of
the following parts:
1. A bit stream representing the tree structure of the
element nesting in the XML tree, without storing
any label information. In the bit stream, each start-
tag is represented by a ‘1’-bit and each end-tag is
represented by a ‘0’-bit.
2. Inverted element lists, containing a mapping of
element and attribute names to ‘1’-bit positions
within the bit stream.
3. Constant lists containing the text values and
attribute values

Succinct compression can handle unbounded input
streams and huge files and it allows query evaluation
and updates directly on the compressed data.

A variant of succinct compression has been pre-
sented in (Böttcher, Hartel, & Heinzemann,
Compressing XML Data Streams with DAG+BSBC,
2008).

2.2.2 DAG-based XML Compression

A variant of DAG-based XML compression has
been presented in (Buneman, Grohe, & Koch, 2003).

The constant data – i.e., text nodes and attribute
values – are separated from the XML structure – i.e.,
element and attribute nodes – and compressed sepa-
rately. Constant data is grouped according to their
parent element name and each group of constant
data is compressed via gzip.

DAG-based XML compression follows the con-
cept of sharing repeated sub-trees in the XML struc-
ture. Whenever a sub-tree occurs more than once
within the document tree structure, all but the first
occurrence are removed from the document tree and
are replaced by a pointer to the first occurrence.

The minimal DAG of an XML document tree
structure can be calculated by a single pre-order pass
through the document tree (e.g., by reading a linear
SAX stream) with the help of a hash table, where all
first occurrences of a sub-tree are stored.

As the DAG is stored in form of DAG nodes,
where each node contains an address, the node label
and pointers to its first-child and its next-sibling, the
DAG compression allows for a very efficient basic
navigation (similar to a DOM representation). In
contrast, it does not reach as strong compression
ratios as e.g. Succinct compression.

Besides query evaluation directly on the com-
pressed data, DAG-based XML compression allows
compressing unbounded and huge XML files as well
as updating the compressed data directly.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

82

2.3 Query Evaluation

The client and the server use an XPath evaluator
based on a reduced instruction set that has to be
provided by each compression technique. In order to
simplify the presentation, we assume a simplified
data model of an XML tree, where all nodes – no
matter whether they are element, attribute or text
nodes – are valid answers to the basic axes fc and ns:
- fc: Returns the first-child of the current context
node ccn
- ns: Returns the next-sibling of the current con-
text node ccn
- label: Returns the label of the current context
node ccn if ccn is an element, the attribute name if
ccn represents an attribute, the text value if ccn
represents a text node, or an attribute value, if ccn
represents an attribute value.
- parent: Returns the parent of the current context
node ccn.
- node type: Returns the node type (i.e., either
element, attribute or text node) of the current context
node

We then use a technique like e.g. the one presented
in (Böttcher & Steinmetz, Evaluating XPath Queries
on XML Data Streams, 2007) to evaluate XPath path
queries on the compressed XML representation
providing the reduced instruction set. Based on such
a generic XPath evaluation technique, our approach
allows to evaluate XPath queries containing the axes
self, child, descendant, descendant-or-self, follow-
ing-sibling, following, attribute and text as well as
predicate filters with logical expressions containing
comparisons of paths to constants. If additionally the
backward axes ancestor, ancestor-or-self, preceding-
sibling and preceding-sibling are required, this can
be provided by a preprocessing step described in
(Olteanu, Meuss, Furche, & Bry, 2002).

3 EVALUATIONS

3.1 Performance Evaluation
Environment

To evaluate the performance of the idea, a prototype
has been developed and was tested using the XMark
benchmark (Schmidt, Waas, Kersten, Carey,
Manolescu, & Busse, 2002). The prototype uses
Java 6 Update 18 and was optimized for compres-
sion efficiency.

Each benchmark was performed ten times to ac-
count for external effects like operating system in-

fluences. The system used for the benchmarks was
equipped with an AMD Phenom 9950 (Quad Core,
each core runs with 2.6 GHz) and 4 GB main memo-
ry and running Windows 7 (64 Bit). Despite having
a multi core processor, the prototype is single-
threaded and does not use the complete system ca-
pacity.

The benchmarks were performed on different
XML documents, generated with increasing XMark
scale factors, to determine the effect of different
document sizes on the prototype. Table 1 shows the
XMark scale factors being used and the resulting
XML document size.

The generated documents were queried with a set
of 22 different XPath queries that produce a mix of
cache hits and cache misses. Queries 1-10 are close-
ly related to the “XPath-A” benchmark of XPath-
Mark (Franceschet, 2005) and are modified to over-
come limitations in the used XPath evaluator. Que-
ries 11-22 are selected to give an impression of (par-
tial) cache-hits and cache-misses.

Table 1: Used XMark scale factors.

XMark scale factor XML document size
0.000 ~ 35 kB
0.001 ~ 154 kB
0.002 ~ 275 kB
0.004 ~ 597 kB
0.008 ~ 1.178 kB
0.016 ~ 2.476 kB
0.032 ~ 4.899 kB
0.064 ~ 9.514 kB

3.2 Performance Results

Figure 3 shows the behavior of the prototype for each
measured combination (Uncompressed, DAG or
Succinct storage with or without cache) with grow-
ing document size. When the scale factor doubles,
the transmitted data for each graph also doubles,
meaning that the total amount of transmitted data
scales linearly with the input data.

With an active cache, less data has to be trans-
mitted in all cases. The additional use of compres-
sion techniques reduces the transferred data even
further. Comparing the total data that is transferred
(queries and query results including the compressed
structure and the compressed constants of the XML
representation), the best case scenario (Succinct
compression with active cache) uses only about 16%
of the data volume being used by worst case scena-
rio (no compression and no cache).

The following performance analysis is based on
benchmark results of the XML document that was

ENHANCING XML-CACHE EFFICIENCY BY XML COMPRESSION

83

generated using a scale factor of 0.064, unless oth-
erwise noted. The results are consistent through all
tested XML documents.

Figure 2: Total transmitted data.

Figure 2 shows an aggregation of the total trans-
mitted data of all 22 queries. The measured value
consists of the data transmitted to the server (query
information) and the result of the server (XML
fragment and numbering information). For each
compression technique, we measured twice with an
activated and with a deactivated cache.

Figure 4 shows the simulation of a real world
scenario, considering different data rates on the
channel between client and server, where the overall
query evaluation time is calculated consisting of
- transferring data from client to server,
- evaluating query on server side,
- transferring data from server to client,
- integrating data into client’s cache, and
- evaluating the query on the client’s cache,

The left-most group of results in Figure 4:,denoted as
framework duration, is given as a lower bound for
comparison purposes and includes only the time
needed to evaluate the query on the server, to build
the query difference on the server, to integrate the
data into the client’s cache and to evaluate the query
on the client’s cache, i.e. without the time needed to
transfer data from server to client and from client to
server.

Figure 4 shows that using the combination of
caching and succinct compression consumes less
time than using caching or compression alone up to
a channel speed of about 128 kbit/s. Independent of
the available data rate, the combination of caching
and succinct compression transfers less data than
using caching or compression alone. Using the com-
bination of caching and DAG compression delivers
speed improvements of up to 384 kbit/s, in compari-
son to using caching or using compression alone.
Furthermore, in terms of total time, using caching
only for uncompressed data outperforms the imme-
diate query evaluation on the server up to a data rate
of about 2 Mbit/s.

A breakdown of the total duration into each sub-
task (computing XPath result on client and server,
identification of missing nodes on the client, integra-
tion of missing nodes in the client cache and data
transfer from client to server and from server to
client) shows that the XPath evaluation on server
side as well as on the client side consumes the great-
est part of the time. Depending on the compression
algorithm, the client-side data integration can also
lead to noticeable runtimes, because it may require
renumbering or rearranging of existing data struc-
tures. The runtimes of all other operations are com-
paratively small and do not contribute much to the
total runtime.

Figure 3: Total aggregated sent data for growing documents.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

84

3.3 Evaluation Summary

Our evaluation has compared transferred data vo-
lume and evaluation time being used in different
combinations of caching and different compression
techniques in comparison to caching and compres-
sion alone and in comparison to the immediate query
evaluation on server site. Our evaluation has shown
that using the combination of caching and compres-
sion not only reduces the data volume that is trans-
ferred from client to server and from server to client,
but especially for data rates up to the data rate of
UMTS reduces the total time that is needed to an-
swer the query.

Clients with a limited bandwidth connection to
the server will benefit from using the compressed
XML cache as it is presented in this paper, whereas
clients that are connected to the server via a high-
speed connection might deactivate the cache and
might request the query results from the server di-
rectly.

Our evaluation was using an unlimited cache size
on the client side, thereby ignoring the following
further advantage of the combination of compression
and caching.

As the compressed data is significantly smaller
than the non-compressed data, a cache of a fixed
size can hold more XML data fragments in com-
pressed format than in non-compressed format.

Therefore, for limited cache size, we expect that
the number of cache misses is significantly smaller
for the combination of caching and XML compres-
sion than for caching only. In other words, if the
cache size is limited, this leads to even stronger
benefits of the combination of caching and XML
compression over caching only.

4 RELATED WORK

Although both, web data caching and XML com-
pression, contribute to a reduction of the data trans-
fer from server to client, the fields of web data cach-
ing and XML compression have mostly been inves-
tigated independently of each other.

There has been a lot of work in XML compres-
sion, some of which does not support query
processing on compressed data, e.g. (Liefke &
Suciu, 2000), and most of which support querying
compressed data, but not querying cached com-
pressed data, e.g. (Busatto, Lohrey, & Maneth,
2005), (Cheng & Ng, 2004), (Ng, Lam, Wood, &
Levene, 2006), (Skibinski & Swacha, 2007), (Zhang,
Kacholia, & Özsu, 2004).

Contributions to the field of caching range from
concepts of querying and maintaining incomplete
data, e.g. (Abiteboul, Segoufin, & Vianu, 2001),
over caching strategies for mobile web clients, e.g.

Figure 4: Aggregated total duration (framework duration and simulated transmission duration).

ENHANCING XML-CACHE EFFICIENCY BY XML COMPRESSION

85

(Böttcher & Türling, 2004), caching strategies for
distributed caching (Obermeier & Böttcher, 2008),
to caching strategies based on frequently accessed
tree patterns, e.g. (Yang, Lee, & Hsu, 2003). In
comparison, our approach allows for XPath queries
using filters and comparisons with constants even on
compressed cached XML.

Different approaches have been suggested for
checking whether an XML cache can be used for
answering an XPath query. On the one hand, there
are contributions, e.g. (Balmin, Özcan, Beyer,
Cochrane, & Pirahesh, 2004), (Mandhani & Suciu,
2005), (Xu & Özsoyoglu, 2005), that propose to
compute a compensation query. These approaches
can also be used on compressed XML data, but they
are NP-hard already for very small sub-classes of
XPath. On the other hand, containment tests and
intersection tests for tree pattern queries have been
proposed, and could in principle be used for decid-
ing whether a given XPath query can be executed on
the cached data locally. However, such intersection
tests and containment tests are NP-hard for rather
small subsets of XPath expressions (Benedikt,
Wenfei, & Geerts, 2005), (Hidders, 2003). In com-
parison, our approach uses a fast difference compu-
tation that can be done within a single scan through
the compressed XML file.

In contrast to (Böttcher & Hartel, CSC:
Supporting Queries on Compressed Cached XML,
2009), where the whole compressed structure was
loaded into the cache and only the text values
needed to answer the query was requested from the
server, our approach stores only that part of the
structure in its cache that was delivered from the
server in order to answer previous queries.

In comparison to all other approaches, our tech-
nique is to the best of our knowledge the only strate-
gy that combines the following advantages: it caches
compressed documents – whereas the compression
technique can be exchanged – and thereby reduces
data transfer volume and data transfer time in com-
parison to caching non-compressed XML data and in
comparison to transferring non-compressed or com-
pressed XML data without caching the results.

5 SUMMARY
AND CONCLUSIONS

Whenever the data exchange with XML-based in-
formation sources is a bottleneck, it is important to
reduce the amount of exchanged XML data. Our
approach combines two reduction techniques for

exchanged data, i.e. caching and XML compression.
Additionally, we have provided a performance
evaluation that shows that a significant reduction in
data transfer volume and transfer time can be
achieved by our approach in comparison to caching
only or to using only compression.

Altogether, our approach provides the following
advantages:
- It provides a technique to combine caching and
compression in such a way that any unnecessary
decompression of data is avoided. The document is
stored in a compressed format on the server, the
results are transferred in a compressed format from
server to client and all results are stored and inte-
grated in a compressed format in the client’s cache.
- The combination of compression and caching
yields a reduced data transfer volume in contrast to
each technique alone.
- Furthermore, the combination of compression
and caching yields a reduced data transfer time for
data rates up to that of UMTS in contrast to each
technique alone.
We assume it to be an interesting task to combine
our caching framework with other compression
techniques to find a compressions technique that is
most suitable in terms of strong compression capa-
bilities and fast query evaluation such that the bene-
fit in total evaluation time will be highest.

Finally, we assume that our approach will show
even stronger benefits if it is combined with real
world assumptions like a limited cache size.

REFERENCES

Abiteboul, S., Segoufin, L., & Vianu, V. (2001).
Representing and Querying XML with Incomplete
Information. Proceedings of the Twentieth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, May 21-23, 2001, Santa
Barbara, California, USA.

Balmin, A., Özcan, F., Beyer, K. S., Cochrane, R., &
Pirahesh, H. (2004). A Framework for Using
Materialized XPath Views in XML Query Processing.
(e)Proceedings of the Thirtieth International
Conference on Very Large Data Bases (pp. 60-71).
Toronto, Canada: Morgan Kaufmann.

Benedikt, M., Wenfei, F., & Geerts, F. (2005). XPath
satisfiability in the presence of DTDs. Proceedings of
the Twenty-fourth ACM SIGACT-SIGMOD-SIGART
(pp. 25-36). Baltimore, Maryland, USA: ACM.

Böhme, T., & Rahm, E. (2004). Supporting Efficient
Streaming and Insertion of XML Data in RDBMS. In
Z. Bellahsene, & P. McBrien (Ed.), DIWeb2004, Third

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

86

International Workshop on Data Integration over the
Web, (pp. 70-81). Riga, Latvia.

Böttcher, S., & Hartel, R. (2009). CSC: Supporting
Queries on Compressed Cached XML. In A.
Bouguettaya, & X. Lin (Ed.), Database Technologies
2009, Twentieth Australasian Database Conference
(ADC 2009) (pp. 153-160). Wellington, New Zealand:
CRPIT.

Böttcher, S., & Steinmetz, R. (2007). Evaluating XPath
Queries on XML Data Streams. Data Management.
Data, Data Everywhere, 24th British National
Conference on Databases, BNCOD 24 (pp. 101-113).
Glasgow, UK: Springer.

Böttcher, S., & Türling, A. (2004). Caching XML Data on
Mobile Web Clients. Proceedings of the International
Conference on Internet Computing, IC '04 (pp. 150-
156). Las Vegas, Nevada, USA: CSREA Press.

Böttcher, S., Hartel, R., & Heinzemann, C. (2008).
Compressing XML Data Streams with DAG+BSBC.
In J. Cordeiro, S. Hammoudi, & J. Filipe (Ed.), Web
Information Systems and Technologies, 4th
International Conference, WEBIST 2008, Revised
Selected Papers, Lecture Notes in Business
Information Processing (pp. 65-79). Funchal, Madeira,
Portugal: Springer.

Buneman, P., Grohe, M., & Koch, C. (2003). Path Queries
on Compressed XML. Proceedings of 29th
International Conference on Very Large Data Bases
(pp. 141-152). Berlin, Germany: Morgan Kaufmann.

Busatto, G., Lohrey, M., & Maneth, S. (2005). Efficient
Memory Representation of XML Documents.
Database Programming Languages, 10th
International Symposium, DBPL 2005 (pp. 199-216).
Trondheim, Norway: Springer.

Cheng, J., & Ng, W. (2004). XQzip: Querying
Compressed XML Using Structural Indexing.
Advances in Database Technology - EDBT 2004, 9th
International Conference on Extending Database
Technology (pp. 219-236). Heraklion, Crete, Greece:
Springer.

Franceschet, M. (2005). XPathMark: An XPath
Benchmark for the XMark Generated Data. In S.
Bressan, S. Ceri, E. Hunt, Z. G. Ives, Z. Bellahsene,
M. Rys, et al. (Ed.), Database and XML Technologies,
Third International XML Database Symposium, XSym
2005, (pp. 129-143). Trondheim, Norway.

Hidders, J. (2003). Satisfiability of XPath Expressions.
Database Programming Languages, 9th International
Workshop, DBPL 2003 (pp. 21-36). Potsdam,
Germany: Springer.

Liefke, H., & Suciu, D. (2000). XMILL: An Efficient
Compressor for XML Data. Proceedings of the 2000
ACM SIGMOD International Conference on
Management of Data (pp. 153-164). Dallas, Texas,
USA: ACM.

Mandhani, B., & Suciu, D. (2005). Query Caching and
View Selection for XML Databases. In K. Böhm, C.

S. Jensen, L. M. Haas, M. L. Kersten, P.-A. Larson, &
B. C. Ooi (Ed.), Proceedings of the 31st International
Conference on Very Large Data Bases (pp. 469-480).
Trondheim, Norway: ACM.

Ng, W., Lam, W. Y., Wood, P. T., & Levene, M. (2006).
XCQ: A queriable XML compression system. Knowl.
Inf. Syst. , 421-452.

Obermeier, S., & Böttcher, S. (2008). XML fragment
caching for large-scale mobile commerce applications.
Proceedings of the 10th International Conference on
Electronic Commerce, ICEC 2008 (p. 26). Innsbruck,
Austria: ACM.

Olteanu, D., Meuss, H., Furche, T., & Bry, F. (2002).
XPath: Looking Forward. In A. B. Chaudhri, R.
Unland, C. Djeraba, & W. Lindner (Ed.), XML-Based
Data Management and Multimedia Engineering -
EDBT 2002 Workshops, EDBT 2002 Workshops
XMLDM, MDDE, and YRWS (pp. 109-127). Prague,
Czech Republic: Springer.

O'Neil, P. E., O'Neil, E. J., Pal, S., Cseri, I., Schaller, G.,
& Westbury, N. (2004). ORDPATHs: Insert-Friendly
XML Node Labels. In G. Weikum, A. C. König, & S.
Deßloch (Ed.), Proceedings of the ACM SIGMOD
International Conference on Management of Data (pp.
903-908). Paris, France: ACM.

Schmidt, A., Waas, F., Kersten, M. L., Carey, M. J.,
Manolescu, I., & Busse, R. (2002). XMark: A
Benchmark for XML Data Management. VLDB 2002,
Proceedings of 28th International Conference on Very
Large Data Bases, (pp. 974-985). Hong Kong, China.

Skibinski, P., & Swacha, J. (2007). Combining Efficient
XML Compression with Query Processing. Advances
in Databases and Information Systems, 11th East
European Conference, ADBIS 2007 (pp. 330-342).
Varna, Bulgaria: Springer.

Xu, L., Ling, T. W., Wu, H., & Bao, Z. (2009). DDE:
from dewey to a fully dynamic XML labeling scheme.
In U. Cetintemel, S. B. Zdonik, D. Kossmann, & N.
Tatbul (Ed.), Proceedings of the ACM SIGMOD
International Conference on Management of Data,
SIGMOD 2009 (pp. 719-730). Providence, Rhode
Island, USA: ACM.

Xu, W., & Özsoyoglu, Z. M. (2005). Rewriting XPath
Queries Using Materialized Views. Proceedings of the
31st International Conference on Very Large Data
Bases (pp. 121-132). Trondheim, Norway: ACM.

Yang, L. H., Lee, M.-L., & Hsu, W. (2003). Efficient
Mining of XML Query Patterns for Caching.
Proceedings of 29th International Conference on Very
Large Data Bases (pp. 69-80). Berlin, Germany:
Morgan Kaufmann.

Zhang, N., Kacholia, V., & Özsu, M. T. (2004). A
Succinct Physical Storage Scheme for Efficient
Evaluation of Path Queries in XML. Proceedings of
the 20th International Conference on Data
Engineering, ICDE 2004 (pp. 54-65). Boston, MA,
USA: IEEE Computer Society.

ENHANCING XML-CACHE EFFICIENCY BY XML COMPRESSION

87

