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Abstract: We present the design and evaluation of the framework of a Mixed-Initiative Intelligent Tutoring System 
that augments existing tutoring systems by integrating two interactive modes: instructor-student, and 
intelligent tutor-student. These interactive modes are intended to support students in well- and ill-defined 
problem solving. In this paper we discuss the use of the Learning from Demonstration approach to derive 
the solution paths and the appropriate tutorial actions in response to observed student behavior and 
instructor intervention in the cybersecurity domain. Our method aims to discover large portions of domain 
and tutoring knowledge from instructors’ interactions with students at run time. We describe the use of a 
Weighted Markov Model approach for data representation for sequential data. Our experimental results 
indicate that the proposed technique is useful for data sets of sequences. 

1 INTRODUCTION 

Intelligent Tutoring Systems (ITSs) have helped 
students learn how to solve problems in various 
domains (e.g., medicine, physics, and mathematics) 
since the early 1980’s. ITSs are computer-based 
experts that provide customized instruction to help 
students while solving a problem (Psotka, et al., 
1998). A challenging goal for any ITS is to learn 
enough adequate domain-specific knowledge and 
tutorial actions from experts to support students in 
education. Developers of ITSs gather this knowledge 
by interviewing experts and/or tracking their 
problem solving steps primarily at design time.  

For the ITS to properly scaffold students, 
developers must consider the problem-structure 
continuum. Some problems students encounter 
within a domain can be very well-defined. These 
types of problems are mainly characterized by a 
limited number of correct answers and a systematic 
solution path. Therefore, gathering experts’ 
knowledge at ITS design time is a suitable approach. 
At the other end of the problem-structure continuum 
are ill-defined problems. Fields that exemplify these 

problem types are referred to as ill-defined domains 
(e.g., law and architecture). A compilation of 
problems found within ill-defined domains 
summarized by Lynch, et al. (2006) follows: 

 initial steps to solve a problem can vary, 
 multiple solutions and solution paths exist, 
 right answers are context and time dependent, 
 systematic solution methods do not exist, and 

In these domains, acquiring relevant and 
sufficient expert knowledge to design ITSs is 
extremely costly. Fournier-Viger, et al. (2008, p.46) 
state that “for many ill-defined domains, the domain 
knowledge is hard to define explicitly” when 
developing an ITS. In fact, even when experts can 
provide a large amount of domain knowledge, the 
possibility of new points of view or evidence that 
may challenge previous conclusions exists. Hence, 
for an ITS to effectively aid students in ill-defined 
problem solving, gathering comprehensive domain 
knowledge during design time, or inferring new 
knowledge and the appropriate feedback at run time 
for novel situations is difficult. Therefore, 
participation of instructors during the tutoring 
process beyond design time should be considered.  
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To develop and refine tutorial actions at system 
run time, two challenges must be addressed: (1) the 
ITS must learn comprehensive domain knowledge 
and tutorial actions from instructor-student 
interactions; and (2), the ITS must select the most 
effective tutorial action when requested to do so. 
The selection of the tutorial action depends on the 
state estimation by the ITS, which is subject to 
possible errors. Each selected tutorial action is 
therefore subject to a level of confidence of the ITS 
as to its appropriateness. 

We present a Mixed-Initiative ITS framework 
where the intelligent tutor can either initiate 
interaction or request for instructor interaction with 
students. We describe how the ITS’s knowledge-
base and tutoring actions can be built at run time 
from instructor-student interactions. The ITS will 
observe the instructor, and make use of Learning 
from Demonstration (LfD) techniques to derive 
tutorial actions in response to observed student 
solution paths and instructor interventions. The ITS 
will automatically determine confidence levels based 
on predetermined thresholds before initiating 
tutoring actions. If the threshold has not been met, 
the ITS will forward the student history to the 
instructor and record the instructor’s response as 
additional demonstration. 

2 RELATED WORK  

2.1 Data-Based Knowledge Learning 

Recently, a number of ITS developers have been 
building ITS knowledge-bases (domain and tutoring) 
through observation of student activity. Nkambou, et 
al. (2007) describe an ITS that builds a behavior 
graph (BG) from student activity. BGs are used to 
represent all possible correct and incorrect paths a 
student can take while solving a problem. Bernardini 
and Conati (2010) identify common interaction 
behaviors from logged students’ data within an 
exploratory learning environment. 

Remarkably little attention has been given to the 
observation of the human tutor during the ITS 
tutoring process. We integrate observations from 
both students and instructors at run time. This is 
particularly important when the ITS’s knowledge 
base is not good enough to associate current tutorial 
actions to new or unexpected student behavior. 

2.2 Learning from Demonstration  

Computer learning techniques based on

demonstrations are identified using different terms. 
The most commonly used term within the ITS 
community is Programming by Demonstration 
(PbD). PbD refers to nonprogrammers developing 
computer applications from demonstrations of what 
actions are appropriate for the system. 

SimStudent (Simulated Student) is a PbD-based 
ITS. This ITS allows an instructor to construct a 
graphic interface for a specific problem, and then 
use the interface to demonstrate successful problem 
solving. The ITS induces production rules (a set of 
conditions) from demonstrations that replicate the 
instructor’s performance. Recently, SimStudent 
developers evaluated a new training method in 
which the author gives SimStudent problems to 
solve, and then it applies existing knowledge to 
solve the problem (Matsuda, et al., 2008). If 
SimStudent encounters knowledge gaps, it asks for 
instructor help. The instructor then teaches the ITS 
by demonstrating a correct step. Developing 
accurate student models is difficult and in many 
cases unreliable. Instead, we leverage existing usage 
data to identify more authentic student 
misconceptions and novel states. 

Additional ITSs using PbD approaches exist 
(Aleven, et al., 2009). However, these 
demonstrations come only from the ITS’s authors. 
Furthermore, problem solving demonstrations are 
mainly implemented at design time.  

2.3 Mixed-Initiative Interaction 

Mixed-Initiative interaction aims to provide an 
effective multi-agent (human or computer) 
collaboration to perform a task. Hearst, et al. (1999, 
p.14) describe Mixed-Initiative interaction as “a 
flexible interaction strategy, where each agent can 
contribute to the task what it does best.”  

Initially, ITSs using this approach were 
conversation-based systems that allowed students or 
ITSs to direct the conversation to perform a learning 
task (Freedman, 1997). There are also Mixed-
Initiative ITSs within educational games. The ITS 
interacts with a student to elect who will direct 
gameplay (Caine and Cohen, 2007). Hubal and 
Guinn (2001) presented a Mixed-Initiative virtual 
training environment based on agents that simulate 
realistic interactions for students.  

Even though their Mixed-Initiative is primarily 
based on agent-student interaction, these researchers 
also introduced the importance of instructor 
participation. They consider the intelligent virtual 
tutor as an instructor’s helper, assisting students 
when the instructor is unavailable. While recent 
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studies regarding ITSs using a Mixed-Initiative 
approach have focused on the ITS-student 
interaction, we expand this approach by integrating 
the instructor into the tutoring process. 

3 MIXED-INITIATIVE ITS 
FRAMEWORK 

We propose a more flexible and intelligent 
interaction framework, where the ITS and human-
tutor interact contributing to the tutoring task what 
each does best. In this section we discuss the 
solutions used in order to implement our approach.  

3.1 Building Comprehensive Domain 
Knowledge and Tutorial Actions 

The ITS’s domain knowledge and tutoring actions 
can be built at run time by using LfD techniques. 
LfD can be used to derive a policy from a set of 
labeled data to autonomously classify and respond 
with tutorial actions for students. Argall, et al. 
(2009) describe the formal LfD problem as a world 
consisting of states S ( i.e., the student solution 
paths) and actions A ( i.e., tutorial actions). The 
learning algorithm develops a policy p : S→A that 
selects the “appropriate” action in response to the 
observed world state.  

The policy construction is defined by (a) how 
demonstrations are collected and when they are 
used, and (b) how the policy is derived from the 
observed demonstrations. The use of demonstrations 
can happen in batch fashion, where the policy is 
derived after all demonstrations have been collected, 
or in on-line fashion, where the policy is refined as 
more demonstrations are available (See Figure 1). 

The policy is constructed as a function 
(f():S→A) from the available demonstrations (e.g., a 
history of student activity and its required tutorial 
action.) The goal is to identify and generalize 
mappings from student activities to tutorial actions. 

3.2 ITS Knowledge Confidence Level  

Policy derivation relies greatly on classification of 
student activities and tutorial actions. Since such 
classifications are error prone, the effectiveness of 
the ITS relies heavily on its ability to assess and 
improve the confidence in individual classification 
results. We use confidence-driven LfD to trigger 
requests for classification from the instructor 
whenever the classification results indicate low 

confidence (Chernova and Veloso, 2007). Whenever 
the confidence level resulting from a classification 
falls below a given threshold, the ITS will contact 
the human instructor for a demonstrative tutorial 
action. This action is (a) forwarded to the student 
and (b) added to the ITS’s knowledge base and used 
to further refine future classifications. 

 
Figure 1: Mixed-Initiative ITS Learning Process. 

4 LEARNING DOMAIN 

We tested the proposed framework in the Web 
Access Exercise System (WAES), a case-based 
instructional system that provides training in well- 
and ill-defined cybersecurity problems (Cifuentes, et 
al., 2009). In a typical real-world cybersecurity 
scenario, practitioners create an organizational 
security plan that includes a set of security 
requirements. Then, they select and configure a set 
of security services (e.g. firewalls, and VPN servers) 
that will protect the organization’s information. 

This domain exposes students to ill-defined 
situations. For example, one possible solution may 
use any number of the security services mentioned 
previously and then customize them to fit a specific 
organization’s security requirements. In addition, as 
the number of security requirements increases, the 
possibility of incorrectly applying sequences of 
configuration rules increases; resulting in a 
multitude of correct, partially correct, or incorrect 
configuration paths. 

4.1 Data Representation 

Modeling dynamic behaviors characterized by ill-
defined problems is not always feasible by using 
traditional machine learning approaches such as 
feature vectors. In particular, for our chosen domain, 
we encountered multiple versions and lengths of 
solution paths from each student. The conversion of 
this  sequential  data to vector structures would lead 
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to loss of relevant information.  
We implemented a Weighted Markov Model 

(WMM) approach as the primary clustering and 
classification method for the available sequential 
data. We define a WMM as a set of Markov Models 
(MMs) that, in addition to computing the transition 
probabilities, computes weight values in order to 
provide better classification predictions. In a regular 
Markov Model, there are n distinct states 
S={s1,s2,…,sn}, a vector of initial state probabilities 
B={b1,b2,…,bn}, and a transition probability matrix 
A={asi,asj}. We add an initial-state-weights vector 
WB={wb1,wb2,…, wbn} and a transition-weights 
matrix WA={wasi, wasj}. 

We construct a set of MMs from student input as 
follows: We structure input into so-called 
configuration sequences (CSs), which in turn consist 
of individual configuration rules (CRs). An example 
illustrating CSs from three students is shown in 
Table 1: Student one has two CSs with three CRs 
respectively, while students two and three each only 
have one CS. We further parse a CR into a sequence 
of parameters. For instance, the rule “iptables -A 
FORWARD -j DROP” has three parameters 
(“iptables”, “-A FORWARD”, and “-j DROP”). 
Table 1 also displays examples of different 
configuration behaviors within each CS (e.g., order 
of parameters and rules, use of an alias, and/or use 
of abbreviations), semantic and syntactic 
misconceptions, and parameters functionality type 
(e.g. informative, resetting, and configuration). A 
vocabulary catalog is generated from the CSs. The 
vocabulary includes all of the configuration 
parameters used by students. Parameters are labeled 
with the corresponding functionality type. We 
automatically label the parameters by using the 
responses from network devices to the command 
entries. Finally, CSs are represented as string 

sequences to build the intended WMMs (See list of 
CSs in Figure 2). 

 
Figure 2: Configuration sequences and their tutorial 
actions. Rules in bold represent configuration rules. 

4.2 Weighted Markov Models 

Figure 2 shows a set of 20 CSs that have been 
reviewed by an expert and assigned a tutorial action. 
Only five different tutorial actions (e.g. T3 = “Deny-
All rule must be the last rule in your configuration”) 
were needed for the entire set of CSs. We expect this 
to be typical, with a small set of tutorial actions 
addressing multiple CSs. Figure 3 represents the set 
of MMs generated from data in Figure 2. Each 
model represents a tutorial action. Figure 4 shows 
the transition weights of the MMs based on the 
average occurrence within the entire dataset. Based 
on the expert’s classification of the twenty CSs, five 
clusters were generated. Then we computed the 
associated matrices and vectors based on the CSs. 
The vector of initial state probabilities (B) and the 
transition probabilities matrix (A) for each model 
were computed using equations (1) and (2). 

bsi = ఉ(ୱi)∑ ఉ(ୱm)ೖ೘సభ      (1)

asi,sj = ఙ(ୱi,ୱj)∑ ఙ(ୱi,ୱm)ೖ೘సభ       (2)

Table 1: Frequent behaviors and misconceptions faced in configuration-rules. 

Student-ID Configuration-Rules Configuration behaviors 
 iptables –flush reset configuration command 

1 iptables –L Informative command 
 iptables -A FORWARD -p tcp --dport http -j ACCEPT  
 iptables –F different/correct command 

1 iptables -A FORWARD -j DROP different/incorrect rules order 
 iptables -A FORWARD --dport http –p tcp -j ACCEPT different parameters order 
 iptables -A FORWARD -p tcp --dport httt -j ACCEPT incorrect parameter name 

2 iptables -A FORWARD -p tcp --dport ftp -j ACCEPT incorrect parameter value 
 iptables –F different/correct command 

3 iptables -A FORWARD -p tcp --dport 80 -j ACCEPT different/correct parameter value 
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Figure 3: Set of Markov Models with Transition 
Probability Distributions. 

 
Figure 4: Set of Markov Models with Transition Weights 
based on State-Transition Frequency (e.g. State-Transition 
3=>5 has 8 occurrences in the entire dataset. 1 in T2 
(w=.125), 2 in T3 (w=.250), and 5 in T4 (w=.625). 

We denote by β(si) the number of initial states 
within a model that match the State si, and k is the 
number of states within the model. The term σ(si,sj) 
denotes the number of transitions from State i to 
State j. To compute the initial-state weights vector 
(WB) and the transition weights matrix (WA) for 
each of the models we used the following equations 
(l denotes the number of WMMs): 

wbsi = ఉ(ୱi)∑ ௐெெ(೘) {ఉ(ୱi)}೗೘సభ  (3)

  
wasi,sj = ఙ(ୱi,ୱj)∑ ௐெெ(೘) {ఙ(ୱi,ୱj)}೗೘సభ  (4)

4.3 Knowledge Confidence Level 

A new CS as entered by a student is classified by 
determining the greatest similarity between the new 
CS and the existing WMMs. We say that a WMM 
represents a CS when the model is able to generate 
that particular CS. Similarly, we say that the WMM 
partially represent a CS if it can only generate a sub-
sequence of the CS. Similarity is determined by first 
identifying those WMMs that are able to completely 
or partially represent the new CS, and by then 
selecting the one with the highest likelihood. This 
measure is computed by multiplying the transition 
probability and positive weight values from each 
state transition within the new CS by using Equation 
(5). This probability value represents the confidence 
level returned by the classification policy. 

When none of the current models is able to 
completely represent the new CS, those models that 

best represent the new CS are considered (partial 
representation). This partial classification approach 
is only considered when the number of supported 
rule-transitions in the new CS is greater than 50%; 
otherwise the ITS will automatically determine its 
tutoring confidence level to be 0.  

 WMM௡ୀଵ..௟(௡) =(bs1*wbs1)∏ (ܽsi, si + 1 ∗ ,siܽݓ si + 1)௞ିଵ௜ୀଵ ,s1ܾݓ ∀(5) ,siܽݓ si + 1 > 0 

In Equation (5), l represents the number of 
WMMs within the classification policy, si represents 
the observed states (CR) within the new CS, bs1 and 
wbs1 are the initial state probability and weight 
values for the first state in the CS respectively, and k 
is the number of observed states within the new CS. 

5 FRAMEWORK EVALUATION 

For the evaluation of our Mixed-Initiative ITS 
framework we used data collected from several 
cybersecurity classes that used WAES.  

5.1 Participants and Implementation 

Data was obtained from 20 community college 
students. Most of the students had medium to 
advanced computer skills and were asked to 
configure network devices. In addition, one expert in 
cybersecurity participated in the development of the 
tutorial actions and evaluation of the ITS framework 
performance. 

Demonstration data consisted of students’ CSs 
labeled with experts’ tutoring actions. A total of 100 
CSs consisting of more than 700 CRs were gathered. 
From these CSs we obtained more than 130 different 
CRs, and 100 different configuration parameters. 
About two-thirds of the available data was used for 
training. The remaining data was used for testing the 
framework. We used training data to build the set of 
MMs as a batch learning process; representing the 
initial learned classification policy. Then, the ITS 
framework used this policy to classify new CSs and 
to generate the appropriate tutorial action. 

We implemented a non-intrusive evaluation of 
the ITS framework into the WAES architecture. 
Since the ITS framework is not tightly integrated 
into the WAES, these analyses can be performed 
off-line. We are able to “replay” student activities 
and associated ITS feedback and fine tune ITS 
framework elements to optimize effectiveness. 
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5.2 ITS Framework Effectiveness 

To determine whether the ITS is “learning”, we 
measured the precision and accuracy of the 
classification policy used to drive the feedback from 
the ITS. Precision refers to the capability of the ITS 
to classify students’ configurations with similar 
misconceptions within the same cluster.  Accuracy is 
the degree of veracity of the ITS’s tutorial responses. 
(i.e., how close a recommended ITS tutorial action is 
to the one recommended by a human expert).  
 In our context, precision represents the ability 
of the ITS to learn comprehensive domain 
knowledge and tutorial actions from instructor-
student interactions. The accuracy, on the other 
hand, captures the ITS’s ability to use the learned 
domain. We measured the bias of the ITS by having 
a domain expert grade each ITS tutorial action 
selection based on correctness. In addition, when the 
ITS requested for expert help, we analyzed whether 
an existing tutorial action could have been used.  

5.2.1 Precision of the Framework 

From the training data we obtained eight different 
tutorial actions from the expert. A unique tutorial 
action was assigned to each CS. Based on this 
categorization we built eight WMMs. Equation (5) 
was used to compute the WMMs’ probability values 
for each CS within the testing data. Then, CSs were 
classified within the WMMs by considering the 
highest probability value, this value represented the 
ITS confidence level.  
 In the classification process we observed that 
45% of the new CSs were completely represented by 
one or more WMMs. 100% of the completely 
represented CSs were classified correctly. An 
additional 30% were not completely represented, but 
sufficiently supported (at least 50%) by one or more 
WMMs. The remaining 25% could not be classified 
with sufficiently high confidence by the ITS. Of the 
30% that were sufficiently supported, 75% were 
correctly classified. Another 25% were incorrectly 
classified by the ITS. 

The precision outcomes for each of the three 
identifications mentioned previously are shown in 
Figure 6. These outcomes demonstrate that the use 
of WMMs as the classification policy allows us to 
classify new CSs previously learned properly, even 
when we noticed that the sequence of CRs was not 
to identical to those in the training data. For CSs 
including partially new CRs, the precision of the 
classification was considered acceptable by the 
expert. The expert determined that 90% of the CSs 

with representation lower than 50% corresponded to 
CSs consisting of new completely correct or 
incorrect configurations. However, improvement of 
the classification algorithms for partially represented 
CSs is needed. We expect to reduce incorrect 
classifications of partially represented CSs by 
adjusting the estimation of the weight values within 
the WMMs in order to eliminate probable 
overweighting situations.  

 
Figure 6: Precision outcomes per type of identification. 

5.2.2 Accuracy of the Framework 

Once a new CS has been classified in a specific 
WMM, the ITS determines its confidence level by 
comparing the probability value obtained from the 
selected WMM and the previously specified 
threshold. In this study we used a multiple-threshold 
approach. The number of CSs and rule-transitions 
within each WMM are different. Also, because most 
of the transition-probability and transition-weight 
values were lower than 1, the final estimation of the 
confidence level is a function of the length of the 
CSs based on the number of rule-transitions within a 
new CS. Therefore, we used a separate threshold 
value for each WMM. Using separate thresholds 
provided more precise control over each WMM.  

For this experiment we used a straightforward 
threshold estimation approach. Initially, threshold 
values were computed by reclassifying CSs within 
the training data in their assigned WMMs. We 
selected the lowest probability-value returned by the 
reclassification process within each WMM as the 
threshold value. Then, we set stricter thresholds to 
decrease the classification errors for partially 
represented CSs. This allowed the ITS framework to 
add more CSs to the set of unknown classifications, 
rather than recommending a tutorial action for a new 
CS with a low confidence level. The above threshold 
approach gave us an increase of correct 
classification from 75% to 85% for partially 
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represented CSs. However, this approach decreased 
correct classification by 12% for completely 
represented CSs. These results indicate that, 
different threshold values must be considered for 
classification of new CSs that are completely and 
partially represented. In addition, new methods for 
dynamic threshold estimations are going to be 
implemented in order to allow the ITS to adjust the 
threshold values at run time. 

6 CONCLUSIONS 

We have presented a novel Mixed-Initiative ITS 
framework using an LfD approach. We trained the 
ITS domain knowledge and tutoring actions from 
data of human instructor-students interaction. We 
tested the proposed framework using data from the 
cybersecurity domain. A WMM approach was used 
to represent sequential data. We determined that an 
ITS using the proposed framework can build 
comprehensive domain knowledge and appropriate 
tutorial actions based on human instructor-students 
interaction. We also found that the ITS can estimate 
its knowledge confidence level in order to initiate 
interaction with students and scaffold them based on 
learned knowledge, or submit a help request asking 
the instructor to lead the tutoring process. 

Our Mixed-Initiative framework extends the 
knowledge base that currently exists in the ITS field 
by: presenting a way to integrate instructors into the 
tutoring loop; and, continuously improving an ITS’s 
domain knowledge. By implementing these features 
we support developers of intelligent tutors in 
addressing ill-defined domains that are very 
dynamic. The use of students’ data to generate the 
ITS’s knowledge-base will help in the identification 
of unexpected situations, as well as contextualize the 
domain knowledge to specific audiences. By adding 
two interactive modes to support cognitive 
processes, we help to leave outliers and 
pedagogically interesting situations to the instructor 
to handle and routine situations to the ITS. 
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