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Abstract: Web services discovery represents a prominent step in the development process of B2B applications. In such
environment, the number of Web services as well as registries that are made available for use can be as many
as the large number of companies. Thus, the Web services discovery process will be time consuming. To
deal with this issue, one obvious solution is to group Web service registries into communities. However,
this solution can raise a managing issue since registries and communities are dynamic by nature. Our major
contribution in this paper is an approach for managing registries and communities to reconcile conflicts result
of the dynamic change aspect of Web service registries.

1 INTRODUCTION

Within a B2B context, we are interested in Web ser-
vice (WS) discovery in a distributed registry environ-
ment, where companies use WSs to achieve transac-
tions with their partners and offer online WSs. The
involved companies have to make their WSs accessi-
ble on the net and available for consultation through
WS registries. As a result, the number of WS reg-
istries can be very large. Therefore, WSs discovery
will be a cumbersome task. To deal with this prob-
lem and to address the large number of WS registries
and their poorly organized network, we propose to or-
ganize WS registries into communities. We define a
WS registry community as a set of registries offering
WSs providing similar functionalities. This organiza-
tion is based on a semantic model, that we callWeb
ServiceRegistryDescription (WSRD) (Sellami et al.,
2010a). WSRD descriptions rely on the descriptions
of the WSs belonging to a given registry and ”seman-
tically aggregate” the WSs functionalities.

In a distributed registry network, each registry is
then described by a WSRD description. According
to their descriptions, registries will be virtually struc-
tured into communities (Sellami et al., 2010b). This
solution reduces the search space for a service re-
quester in the discovery process. However, it may rai-

se other issues mainly related to community manage-
ment. Indeed, communities and their members (i.e.
WS registries) are dynamic by nature. In fact, a new
WS description can be published in a registry and oth-
ers can be unpublished at any time. In the same way, a
registry can join a community or leave it according to
its convenience. Therefore, management mechanisms
are necessary to monitor these changes and reconcile
potential conflicts.

In this context, we propose a graph-based ap-
proach for managing communities of WS registries
which consists in a set of algorithms and managing
operations. The managing operations are pre and
post-conditions checking triggers and potential ef-
fects for each step of community life-cycle. The al-
gorithms are rather defined for managing the registry
life-cycle steps. These algorithms and operations are
tested and validated using graph simulation.

This paper is organized as follows: in Section 2,
we start by a brief introduction of concepts of the
graph theory, we present our registry description
model, we provide our definition of registries com-
munities and present our approach for building such
communities. The graph based model, that we pro-
pose to facilitate the specification of managing oper-
ations, is presented in Section 3. In Section 4, we
define managing algorithms and operations for reg-
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istry and community life-cycles. The implementation
efforts are shown in Section 5. Finally, we conclude
our paper and we foresee some future works.

2 BACKGROUND

Since we model our WS registry community network
based on graph theory, we start by briefly introducing
graph prerequisites and some of the special types of
graphs playing prominent role in our work. Then, we
present the WSRD semantic model used to describe a
registry. Afterwards, we present our community def-
inition and architecture. Finally, we present our ap-
proach for building communities.

2.1 Background on Graph Theory

We define our distributed registry network based on
the notations and concepts offered by graph theory.
Indeed, graphs are highly flexible models for analyz-
ing a wide range of practical problems through a col-
lection of nodes and connections between them. A
given problem is then mathematically formalized with
a graphG, defined as a pair of setsG = (V,E). V is
the set of vertices (or nodes) andE is the edge set
representing the network connections. The number of
vertices|V | of the graphG is its order. WhenG is not
the only graph under consideration, the vertex- and
edge-sets are denoted respectivelyV (G) andE(G).

A graph can be either directed or undirected. In
the first case, each edge is an ordered pair of vertices.
In the second case, edges represent unordered pairs
of vertices. Both directed and undirected graphs may
be weighted by a weight functionw : E −→R assign-
ing a weight on each edge. A weighted graph is then
denotedG = (V,E,w).

2.1.1 Adjacency Matrix

The adjacency matrixAG of a given graphG = (V,E)
of ordern is ann× n matrixAG = (ai, j) where

ai, j =

{

1 if (i, j) ∈ E
0 otherwise

In a weighted graph, the adjacency matrix can be
used to store the weights of the edges (McConnell,
2008). Hence, the values of the adjacency matrix for
G would be defined as follows :

ai, j =







wi, j if (i, j) ∈ E
0 if i = j
∞ if (i, j) 6∈ E

2.1.2 Star Graph

Graphs are classified into different types according to
the nodes organization as well as the relationship be-
tween them. In this work, we use a particular type of
graphs, called star graphs. A star graph is a complete
bipartite graphK1,k or Kk,1.

A graphG is called bipartite (or bigraph) (Bondy
and Murty, 2007) if its vertex set can be divided into
two subsetsX andY such that every edge joins a ver-
tex in X to another inY . Such a graph is denoted
G = (X ,Y,E). A bigraph is complete if every vertex
in X is joined to every vertex inY . This is denoted
Kn,m with n, m respectively the cardinality ofX and
Y . If n = 1 or m = 1, G becomes a star graph.

2.1.3 Operations on Graphs

To simplify the management operations and algo-
rithms that we present in Section 4, we use some op-
erations defined in graph theory. Since graphs are de-
fined as pairs of vertex and edge-sets, we use the set-
theoretical terminology to define operations on and
between them. Among these operations, we remind
the addition/deletion of a vertex or an edge to/from a
graph and the complement of a graph.

The addition/deletion of a vertexv (resp. an
edge e) to/from a graphG = (V,E) yields to a
union/substraction of the vertex setV (G) and {v}
(resp. the edge setE(G) and{e}). We remind that the
deletion of a vertexv removes not only this vertex but
also all edges with this vertex as extremity. The result-
ing graph is then denotedG = (V\{v},E\{(u,v) ∈
E|u ∈V}). The complement of a graphG = (V,E) is
a graphG = (V,V ×V\E) with the same vertices as
G but with only those edges that are not inG. G∪G
represents a complete graph.

2.2 WSRD: Web Service Registry
Description

In our context, we are dealing with private registries,
not public ones, belonging to a specific company.
Thus, we assume that all the services advertised by a
registry are homogenous in term of their business do-
main and semantics. In addition, since those services
have the same provider, we suppose that they use the
same semantic description language. To describe the
functionalities of a WS registry, we proposed in pre-
vious works (Sellami et al., 2010a) to use a semantic
model. This description, that we callWeb Service
Registry Description (WSRD), results from the ag-
gregation of the different WSs functional descriptions
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advertised by a registry. The registry description com-
puting process doesn’t ask for any explicit knowledge
from a registry provider. It is implicitly created using
only as input the WSs descriptions of that registry and
no further information are required.

In Figure 1, we consider an example of a registry
advertising only two semantic WS descriptions writ-
ten in SAWSDL (Lausen and Farrell, 2007). We sup-
pose that the used ontology is composed of 7 con-
cepts. Computing the registry’s WSRD decription
goes beyond three steps: (1) extracting the annotat-
ing concepts, (2) constructing the clouds of potential
mean concepts and (3) reducing the clouds. In Fig-
ure 1, we show an ”intermediate” WSRD graph de-
scription result of the first step consisting in storing
the extracted concepts and the number of times they
were identified in the corresponding service descrip-
tion elements. The obtained WSRD ”intermediate”
graph is used in the second step for computing the
potential mean concepts of a WSRD description. A
mean concept(Cmean) is the ontological concept an-
notating a WSRD element. ACmean is computed on
the basis of the extracted concepts and can be seen
as the medium of these concepts. The third step con-
sists in reducing the cloud ofCmean in order to select
the median concept(s) which are the most similar to
the ones identified in the first step. We use the Weak
reduction technique (Sellami et al., 2010a) to deduce
the resulting WSRD description graph.

Figure 1: Concept extraction.

2.3 Communities of WS Registries

The Oxford dictionary defines a community as ”a
group of people living together in one place hold-
ing certain attitudes and interests in common”. In
the WSs research field, Benatallah et al. (Benatallah
et al., 2003) define a WS community as ”a collec-
tion of Web services with a common functionality al-
though different non-functional properties”. Zakaria
et al. (Maamar et al., 2007) consider a community as
”a means for providing a common description of a de-
sired functionality without explicitly referring to any
concrete Web service that will implement this func-
tionality at run-time”. In the same spirit, we define
a WS registry community as a set of registries offer-
ing WSs providing similar functionalities. So, a dis-
tributed registry network will be virtually structured
into communities and each registry belongs to at least
one community with a certain extent. We assign for
each registry a set of membership degrees indicating
its membership to the different communities. In each
community we associate to one registry the role of
leader and to the other members the role offollowers
(Figure 2). Theleader registry is the most represen-
tative registry of the community functionality. There-
fore, theleader plays a prominent role in managing
its community and its members. Obviously, aleader
for a communityc1 could be afollower for another
communityc2 and vice versa. Theleader-follower
relationship within a community indicates the level of
similarity between the functionalities offered by both
of them.

Figure 2: Architecture of WS registries communities.

2.4 Building WS Registry Communities

A WS registry community will bring together reg-
istries offering similar functionalities. Since a WS
registry generally offers services proposing different
functionalities, it is difficult to properly define in ad-
vance classes categorizing the functionalities of the
different registries. To organize WS registries into
communities, we used (Sellami et al., 2010b) aclus-
tering technique (where the different communities
will be deduced from the registry descriptions) rather
than a classification technique (where the different
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communities have to be defined in advance). When
using a dynamic clustering technique, the different
clusters (i.e. the WS registries communities) will be
identified from the given input data (i.e. the WSRD
descriptions) and each data point (i.e. WS registry)
will be assigned to one or many communities.

Since a registry can belong to different communi-
ties at the same time (Section 2.3), the use of an ex-
clusive clustering is inadequate for building registry
communities. Therefore, we proposed to use an over-
lapping clustering method to organize our distributed
registries into communities. Using such clustering
method, each data point (i.e. registry) represented
by its WSRD description may belong to two or more
communities with differentdegrees of membership.

Each WSRD descriptionx will be represented as
a vectorrx = [w1x,w2x, . . . ,wtx] where t is the total
number of concepts in the ontology used to annotate
the WSRD description. The weights of the different
wix = α×vinter f ace+β×voperation+δ×vinput +λ×vout put

• vinter f ace = [e1,e2, . . . ,et ] representing theCmean of the
resulting WSRD<interface>element.

• α, β, δ andλ are weights associated such asα+β+δ+
λ = 1.

A distance measure is used to establish the degrees
of membership of each WS registry, represented by
the vectorrx, to the different clusters. In this work,
we use the cosine similarity measure to establish the
similarity between two given vectorsr1 and r2 (for-
mula (1)).

cosine(r1,r2) =
r1 · r2

‖r1‖‖r2‖
(1)

To deduce the distance from the cosine similarity
function, we use formula (2).

distance(r1,r2) = 1− cosine(r1,r2) (2)
More details about our WS registries clustering

approach can be found in (Sellami et al., 2010b).

3 MODELING COMMUNITIES
OF WEB SERVICE REGISTRIES

Communities and WS registries operate within a dy-
namic environment where changes are mainly initi-
ated by service and registry providers. The service
provider can publish or delete a WS. Similarly, the
registry provider can register its WS registry or dis-
mantle it at any moment. To keep the consistency of
our communities network against these events, man-
agement operations are needed. To facilitate the spec-
ification of these operations, we model the WS reg-
istry community network based on graph theory. In
this section, we introduce our model representing a
WS registry, a community and a community network.

3.1 Modeling a Web Service Registry

In this work, we refer to each WSRD description of a
WS registry byf . A registry can belong to different
communities at the same time. Thus, we assign to
a registry a set of membership degrees that we call
MEM. This set contains its membership degrees to
each community in the network. Accordingly, a WS
registry is defined as follows:

Definition 1. A registry is defined as a tupler =
(id, f ,MEM) where:

• id is the registry identifier.

• f is a vector representing functionalities offered
by the advertised WSs withinr.

• MEM represents the registry membership degrees
to the different communities in the network. It
is defined as a binary relation onC× [0,1]. We
remind that a binary relation is a set of ordered
couples.MEM = {(c,d)|c ∈C,d ∈ [0,1]} where:

– C is the community set
– d is the membership degree of the registryr to

the communityc.

We define the domain and range ofMEM ⊆C× [0,1]
as:
dom(MEM) = {c|(c,d) ∈MEM for somed ∈ [0,1]}
ran(MEM) = {d|(c,d) ∈MEM for somec ∈C}

3.2 Modeling a Web Service Registry
Community

A community in our distributed registry environment
is mainly characterized by its mean functionalityf
which represents the average of community registries
functionalities. Registries can enter and leave a com-
munity almost at any time. Besides, we fix a thresh-
old th beyond of which a registry could belong to a
given community. As reported in section 2.3, we dis-
tinguish two kinds of registries (leader andfollower)
based on their role inside a community. Therefore,
the set of community members (nodes) can be divided
into a singletonL = {l} representing theleader and a
set Fl = { f li|i : 1..n} wheren is the number of the
community followers. Thus, the community nodes
are modelled as a star graphG where nodes are reg-
istries and each edge represents the functional simi-
larity between theleader and afollower f l, f l ∈ Fl.
The similarity between the functionalities offered by
the leader and afollower can be computed using the
cosine function (Section 2.4, formula (1)). Hence, we
define a community as follows:
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Definition 2. A community is a tuplec = (id, f ,G)
with:

• id is the community identifier.

• f is a vector representing the mean functionality
of the community c.

• G = (L,Fl,E,w) is an undirected weighted star
graph where:

– L is the communityleader: the registry having
the highest membership degree inside c.

– Fl is the set of communityfollowers
– E ⊆ L×Fl is the set of edges
– w : E −→ [0,1] is a weighting function repre-

senting the similarity between nodes.

3.3 Modeling the Community Network

So far, our distributed registry environment which is a
set of communities is modelled by a set of star graphs.
As the number of registries (nodes) can be very large
and a single registry can belong to many communi-
ties, the community management is a cumbersome
task. To deal with this problem and to have a global
view of the network, we define another graphCG,
called Community Graph, in which nodes represent
communities and edges are the relationships between
them. If two communities have at least one registry in
common, then there is an edge joining them. In this
case, we compute the distance between their vectorsf
representing their mean functionalities. The distance
can be computed using formula (2) of Section 2.4.
The distance measure will be the weight of the edge
relating these two communities. Our distributed reg-
istry network is then defined as follows:

Definition 3. The registry network is represented by
an undirected weighted graphCG = (C,E,w)

• C is a finite set of nodes. Each single node repre-
sents a registry community.

• E ⊆ C×C is the set of edges (representing the
relationships between communities).

• w : E −→ [0,1] is a weighting function represent-
ing the distance between two given nodes.

4 MANAGING COMMUNITIES

In the following, we define the necessary management
operations to handle WS registries and WS registry
communities during their life cycles.

4.1 The Registry Life-cycle

A registry life-cycle starts when a registry provider
decides toregister its WS registry in the network
(Figure 3 (1)). This registryjoins the network (2)
and thenjoins the adequate communitiesaccord-
ing to its offered functionalities (3). Since a service
provider canpublish (4) or delete (5) a WS within
this registry, its WSRD description can change and an
update of the registry functionalities (6) is needed.
In such scenario, a suitability check of the registry
membership should be done: If the registry member-
ship degree is lower than a certain thresholdth set by
the designer, itleaves the community(7) and joins
another one. Finally, the registry canleave the whole
network (8) if its provider decides todismantle it (9).
In the following, we detail the steps (2), (3) and (6) of
the registry life-cycle.

4.1.1 Joining the Network

When a new WS registryr joins our distributed reg-
istry environment, its WSRD description should be
computed. After that, the registry can be guided to the
adequate communities according to its set of mem-
bership degreesMEM. MEM is computed by the
CommunitySelection algorithm (Algorithm 1). This
algorithm takes as input the current registry’s WSRD
description and it is essentially based on the com-
putation of the membership degree as the inverse of
the distance between the community mean function-
ality c. f and the registry functionalitiesr. f (line 2).
This distance measure is computed according to for-
mula (2) (Section 2.4). This algorithm outputs the set
of membershipMEM containing the membership de-
grees of the current registry to the different communi-
ties in the network. Taking into account that the mem-
bership degree must be greater than the thresholdth
defined above (line 4), the registry will be guided to
the adequate communities (line 5). If all membership
degrees are lower thanth, a new community will be
created (Section 4.2.1).

Algorithm 1: CommunitySelection.

Require: r :registry
Ensure: r.MEM
1: for each communityc ∈C do
2: m←− 1/distance(c. f ,r. f )
3: r.MEM←− r.MEM∪{(c,m)}
4: if m > th then
5: V (c.G)←−V (c.G)∪{r}
6: end if
7: end for
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Figure 3: Communities management process.

4.1.2 Joining a Community

When a registry joins a community, it may have
a membership degree greater than the community
leader. In this case, theLeaderReselection algorithm
(Algorithm 2) should be applied. It checks either
or not the new registry will take the role ofleader
in one of the communities it belongs to (line 1, 5).
This is done through a simple comparison between
the new registry’s membership degree and the com-
munity leader’s one (line 5). If theleader’s member-
ship degree is still the greatest, then we only link the
current registry with the communityleader (line 6, 7).
Otherwise, we remove allfollowers-leader links (line
9,10,11), add theleader to thefollowers set (line 12),
the current registry takes theleader’s place (line 13)
and the communityfollowers will be linked to the new
communityleader (line 14,15,16).

4.1.3 Updating Registry Functionalities

We recall that the WSs advertised within a registry
frequently change (new WSs arrive, others leave).
Therefore, the registry functionalities have to be reg-
ularly updated. When a change occurs, the registry
can stay in the same community, leave or move from
a community to another. After a functionalities up-
date, a registry acceptance or denial in a community
happens according to theCommunityAcceptance al-
gorithm algorithm (Algorithm 3). By applying this
algorithm on a set of updated registries, the following
events can happen:

• E = E ′, i.e. no changes occur in the set of com-
munity members, whereE andE ′ are two sets of
members of a given communityc, respectively be-
fore and after updating registries functionalities.

Algorithm 2: LeaderReselection.

Require: r: registry
1: for all Communitiesc ∈ dom(r.MEM) do
2: Let{l}←− c.G.L
3: Letdr ∈ [0,1] such that(c,dr) ∈ r.MEM
4: Letdl ∈ [0,1] such that(c,dl) ∈ l.MEM
5: if dr > th anddl > dr then
6: c.G.Fl←− c.G.Fl∪{r}
7: E(c.G)←− E(c.G)∪{(r, l)}
8: else
9: for all f l ∈ c.G.Fl do

10: E(c.G)←− E(c.G)−{(l, f l)}
11: end for
12: c.G.Fl←− c.G.Fl∪{l}
13: c.G.L←− {r}
14: for all f l ∈ c.G.Fl do
15: E(c.G)←− E(c.G)∪{(r, f l)}
16: end for
17: end if
18: end for

• E ⊂ E ′, i.e. some new registries join the set of
community members. (Figure 3.[C1])

• E ′ ⊂ E, i.e. some registries leave the set of com-
munity members. (Figure 3.[C2])

• E * E ′andE ′ * E, i.e. some new registries join
the set of community members and some others
leave. (Figure 3.[C3])

4.2 The Community Life-cycle

The main steps describing a community life-cycle re-
volve around community creation, dismantling, merg-
ing and splitting. When the membership degrees of a
registry became lower than the thresholdth for all
existing communities, anew community will be cre-
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Algorithm 3: CommunityAcceptance.

Require: r:registry,c:community
Ensure: (accept/deny)
1: Letd ∈ [0,1] such that(c,d) ∈ r.MEM
2: d←− 1/distance(c. f ,r. f )
3: if d > th then
4: return accept
5: else
6: return deny
7: end if

ated (Figure 3(10)). Also, acommunity will be dis-
mantled (13) if it becomes empty. Throughout a reg-
istry life-cycle, we check the similarity inside and be-
tween communities to ensure the principle goal of
clustering: minimizing the similarity between clus-
ters whilemaximizing it within each cluster. To guar-
antee this goal, a community can bemerged (11) to
another one orsplit (12). In the following, we present
triggers and effects for each step.

4.2.1 Community Creation

A new communitycnew = (id, f ,G) is established
automatically, if the membership degrees of a reg-
istry to all the existing communities are lower than
the thresholdth. This situation necessarily implies
thatcnew provides a new functionality in the network.
This can happen when a new registry joins the net-
work (Section 4.1.2) or after an update of the reg-
istry’s functionalities (see Section 4.1.3). So thePre-
condition for a community creation is modeled as:
∀d ∈ ran(r.MEM),d < th

The registryr that triggered the community cre-
ation, will get the role ofleader for the new commu-
nity cnew. The community mean functionalitycnew. f
will be the same as the functionalityr. f proposed by
the registry. Afterwards, theFollowersSelection algo-
rithm (Algorithm 4) will be executed to recruitfol-
lowers for the new community. In this aim, the mem-
bership degrees of existing registries to the new com-
munity are computed. These different actions form
the Post-condition for a community creation and are
modeled as follows:cnew ∈V (CG)∧cnew.G.L= {r}∧
cnew. f = r. f ∧ cnew.G.Fl = FolowersSelection(cnew)

4.2.2 Community Dismantling

A community c is automatically dismantled; when
it becomes empty|V (c.G)| = 0 (all of its members
leave or no longer exist). This is the only condition
that triggers the disappearance of a community. This
Pre-condition is modeled as follows:c ∈ V (CG)∧
|V (c.G)|= 0.

After deleting a community, we must check the

Algorithm 4: FollowersSelection.

Require: cnew : community
Ensure: cnew.Fl : Follower Set
1: for all Communitiesc ∈C do
2: for all Registriesr ∈V (c.G) do
3: Let{l}←− cnew.G.L
4: m←− 1/distance(cnew. f ,r. f )
5: r.MEM←− r.MEM∪ (cnew,m)
6: if m > th then
7: cnew.G.Fl←− cnew.G.Fl∪{r}
8: E(cnew.G)←− E(cnew.G)∪{(l,r)}
9: end if

10: end for
11: end for
12: returncnew.Fl

Post-condition stating thatc is not the extremity of
any edge in the community graphCG: c 6∈ V (CG)∧
∀c1 ∈V (CG),(c,c1) 6∈ E(CG)

4.2.3 Merging Communities

The natural idea that first comes to mind when decid-
ing which communities to merge is closeness. Based
on the graphCG and assuming that(c1,c2) ∈ E(CG)
(Section 3.3), this issue can be specified as follows:
w(c1,c2) < ξ such thatξ ∈ [0,1] a threshold beyond
of which two communities can be merged.

However, the closeness is computed using a geo-
metrical distance without taking into account the reg-
istries dispersion. Thus, an exception can take place
when communties centers are close to each other but
not dense in the middle way between centers. i.e. few
registries in the intersection (Figure 4(a)) or commu-
nities are completely separated (Figure 4(b)). As a
consequence the closeness condition is necessary to
check the similarity between communities function-
alities but not sufficient.

(a) (b)

Figure 4: Distance between clusters centers (Zhang and
Shin, 2005).

Thus, we define the communities merging pre-
condition by adding another condition to the close-
ness one. This second condition checks if a com-
munity is included in another one. Our resulting
Pre-condition will be: c2 ∈ V (CG),∃c1|w(c1,c2) <
ξ∧V (c1.G) ⊂ V (c2.G). When this pre-condition is
satisfied for two communities, they will be merged
into a new one calledcmerg. The center ofcmerg is
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computed as the weighted average of both communi-
ties centersc1. f andc2. f :

cmerg. f =
c1. f × nb1+ c2. f × nb2

nb1+ nb2
(3)

Where:

• nb1 = #{r|(c1,d1)∈ r.MEM∧(c2,d2)∈ r.MEM∧
d1≥ d2}, the number of registries in the intersec-
tion of c1 andc2 and having a greater membership
degree toc1.

• nb2 = #{r|(c1,d1)∈ r.MEM∧(c2,d2)∈ r.MEM∧
d2≥ d1}, the number of registries in the intersec-
tion of c1 andc2 and having a greater membership
degree toc2.

Figure 5: Merging pre-condition.

As a consequence of the merging step, the com-
munitycmerg is added to the graphCG and both com-
munitiesc1 and c2 are deleted. Thereby, all edges
whose ends are one of these two communities are re-
moved too. ThisPost-condition is modeled as fol-
lows: V (CG) = (V (CG)−{c1,c2})∪{cmerg}

4.2.4 Splitting a Community

A community is automatically divided if it becomes
sparse. The community sparsity describes a non den-
sity in the center vicinity and a dispersion between
members (Figure 6). If this pre-condition is satisfied,
this issue can be observed as a graph partitionning
problem. Indeed, we consider a communityc rep-
resented with its undirected weighted star graphc.G
which represents the similarity relationship between
theleader and itsfollowers. c.G is the complement of
c.G (Section 2.1.3) and is also a weighted graph rep-
resenting similarity relationships betweenfollowers.
The weighted adjacency matrix of the complete graph
c.G∪c.G contains all similarity weights between each
pair of community members (Section 2.1.1). An algo-
rithm which suits well to our needs taking as input a
weighted adjacency matrix of an undirected weighted
graph is theMcut algorithm (Ding et al., 2001) which
proposes a graph partition method based on min-max
clustering principle: the similarity between two sub-
graphs is minimized while the similarity within each

subgraph is maximized. Figure 6 shows how this al-
gorithm is applied on a communityc that satisfied the
splitting pre-condition.

Figure 6: Splitting a community usingMcut algorithm.

5 IMPLEMENTATION

To test the feasibility of our approach, we simulate
WS registry communities using graphs. Indeed, we
implemented aCommunity Manager (Figure 7) based
on theJgraphtjava library (Jgrapht, 2003).

To validate the proposed algorithms and manag-
ing operations, we consider the following scenario:
We generate 700 SAWSDL descriptions using the se-
mantic description generator presented in (Chabeb
et al., 2010). These descriptions are organized into
7 registries such that each one contains 100 descrip-
tions. We compute the WSRD description of each
registry using theWSRDGen implemented in (Sell-
ami et al., 2010a). Each description is modeled with a
vector f = [w1,w2, ...w5] computed as shown in sec-
tion 2.4. These vectors represent the input of the clus-
tering method (Sellami et al., 2010b) which outputs
the mean functionality vectors{c. f |c ∈ C} and the
membership degrees of each registry to different com-
munities{r.MEM|r ∈ R}, with R the set of registries
in the network.

Figure 7: Community Manager.
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The vectorsr. f , c. f and r.MEM, such thatr ∈ R
andc ∈C, are saved in an XML file representing ini-
tialization data for ourCommunity Manager in order
to build the graphs modeling the communities and the
registries (Figure 7). In Frame 1, we present the graph
composed by the set of graphsc.G representing com-
munities. Theleader of each community is repre-
sented by a blue rectangle. In Frame 2, we represent
the graphCG representing our community network.

As reported in Section 4, the main triggers of dy-
namic changes are service and registry providers. In
the following, we introduce these changes to test man-
aging algorithms and operations.

Adding a Registry. In order to test Community-
Selection and LeaderReselection algorithms,
we add a new registry in the network repre-
sented by its vectorf =[0.234 0.314 0.048 0.181
0.534]. The Community Manager assigns an
identifier to this new registry(r8) and then
compute its membership degreesr8.MEM =

{(c1,0.1943),(c2,0.282),(c3,0.2759),(c4,0.2479)}.
MEM is compared withth = 0.1. The new
registry belongs to all the existing communities.
At this level, the LeaderReselection algorithm
assigns the role offollower for r8 in each com-
munity it belongs to. If we changeth to 0.3,
we notice that all membership degrees ofr8 to
the existing communities are lower thanth. In
this case, thecommunity Manager cheks the
community creation pre-condition and estab-
lishes automatically a new community by adding
a new vertex to theCG graph. Accordingly,
the FollowersSelection algorithm is executed
selectingfollowers for r8 which assumes the role
of leader in this new community.

Dismantling a Registry. The communityc3 is com-
posed by only two registries:r3 the leader and
r7 its follower (Figure 7). By dismantlingr3, the
LeaderReselection algorithm is applied assigning
r7 to be theleader. By dismantlingr7, thecom-
munity c3 is automaticaly dismantledsince the
dismantling pre-condition is satisfied.

Updating Registry Functionalities. The Commu-
nityAcceptance algorithm is tested through an
update of registry functionalitiesf . The update
is done if a service provider publish , unpublish
or modify a WS description advertised within
this registry. Using the updated graph of Frame
1 result of the addition ofr8 to the network
and assuming thatth = 0.1, we first update
r3’s functionalities. r3 leaves the communityc3
because its membership to this community is now
lower thanth. Actually, c3 is composed ofr7
and r8. We notice thatc3 is included inc1 , c2

andc4. The merging pre-condition is partially
satisfied. However, we must check that the
weights of edges whose ends arec3 and one of the
communitiesc1 , c2 andc4 are lower thanξ = 0.2
(Section 3.3).c2 satisfies this condition. Thereby,
c2 andc3 are merged into a new communityc5.

These scenarios show the feasibility and validity
of our algorithms as well as managing operations used
to handle registry and community life cycles. In fact,
they execute well and automatically call each other
after every change.

6 RELATED WORK

To enhance the WS discovery process in a private
registries network, we use a functionality-driven ap-
proach to organize them into communities. Such a
registry network organization needs to be regularly
managed to ensure the consistency of the communi-
ties. In this paper, we are interested in the manage-
ment phase of registry communities. As far as we
know, this work is the first attempt to manage commu-
nities of WSs registries. Indeed, several WS discov-
ery approaches in distributed registry environments
(Sellami et al., 2010c; Sivashanmugam et al., 2004;
Xu and Chen, 2007) structure their networks as clus-
ters but did not provide management mechanisms for
their clusters. In this section, we overview some re-
lated efforts in the field of managing communities that
helped us tailor our approach.

In (Paik et al., 2005), Paik et al. present the WS-
catalogNet framework allowing to group e-catalogs
having similar domain into communities, build rela-
tionships between them and manage them constantly.
The system offer monitoring functionalities and man-
aging operations to restructure a community network
according to the user interaction. Therefore, au-
thors model the community network and then specify
pre-conditions and effects for each operation based
on the graph-based model they have defined (Paik
et al., 2002). However, authors employ a classifica-
tion technique to organize communities, while we use
a dynamic clustering one. Furthermore, we use the
functionality criterion to structure communities rather
than business domain.

Medjahed and Bouguettaya (Medjahed and
Bouguettaya, 2005) propose an approach to organize
WSs into communities depending on their domain
of interest. A community is an instance of an
ontology metadata called community ontology and
is described by a set of generic operations. In this
context, community providers can add, delete or
modify some generic operations. Service providers,
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in turn, can delete a WS from a community or make
its operations temporarily unavailable. Thus, authors
propose a P2P approach to manage these changes.
However, their operations are described informally
compared to our management operations.

In (Maamar et al., 2009), Maamar et al. discuss
the dynamic nature of WS community and focus on
potential conflicts. They propose in (Subramanian
et al., 2007) an approach to engineer WSs commu-
nities in order to reconcile these potential conflicts.
This approach is based on the Community develop-
ment protocol which is interested in managing com-
munities in term of attracting and retaining WSs, cre-
ating and dismantling communities. Similarly to our
approach, communities are organized according to
WSs functionalities. However, this approach did not
propose a model and their operation descriptions are
rather informal.

7 CONCLUSIONS

In this paper, we proposed an approach for manag-
ing communities of WSs registries. We first defined
a model to facilitate the managing step. Then we
identified the main steps of registry and community
life-cycles. Afterwards, we specified managing op-
erations and algorithms based on the model that we
have proposed. Finally, we implemented aCommu-
nity Manager to test and validte these algorithms and
operations using graph simulation. Experiments show
that our algorithms and managing operations execute
well. The splitting operation has not been tested since
its pre-condition is not yet specified. Indeed, we used
different methods to detect the sparsity criterion in a
given community such as standard deviation of a stat-
ical series but each one represents an exception. As
part of our short term perspectives, we plan to specify
a pertinent pre-condition for splitting operation. Fur-
thermore, we foresee to implement these algorithms
on top of the platform P2PJXTA (JXTA, 2004) in or-
der to test the precision/time ratio of our approach.
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