
COFOCUS
Compact and Expanded Restful Services for Mobile Environments

Li Li and Wu Chou
Avaya Labs Research, 233 Mount Airy Road, Basking Ridge, New Jersey 07920, U.S.A.

Keywords: REST web service, Mobile device, Compact HTTP, XMPP, SMS, Android, Security.

Abstract: In this paper, we present an approach to enable collaborative endpoint network for mobile phones. In
particular, we expose functions on mobile phones as REST web services that make mobile phones as web
service providers for rapid integration with communication and collaboration applications. Because mobile
phones have distinct features and constraints, this paper describes a lightweight and efficient protocol,
Compact HTTP, which consists of a small subset of HTTP 1.1 to reduce the footprint of REST services. We
expand bindings of HTTP to multiple messaging protocols, including SMS and XMPP, and make the REST
services invariant to network and protocol changes. These expanded bindings enforce asynchrony into
REST, a desired property for many communication and collaboration services. Furthermore, HTTP over
XMPP described in our approach introduces the concept of hyperlink presence in collaboration, and it is
used to mitigate the broken link issue which is critical in mobile environments. To provide end-to-end
message security, a symmetric key based security scheme is described for service authentication and
authorization. A prototype system based on the proposed approach is developed that allows both local
operators and remote directors to control and monitor the camera, camcorder, location, telephony, motion,
power, etc. on Android phones in a secure manner. Experimental results indicate that the proposed approach
is feasible, lightweight, and has satisfactory performance.

1 INTRODUCTION

As mobile phones become more and more advanced,
they are replacing other devices, such as PDA and
notebook computers, as the next generation personal
digital assistant. Compared to other computing
devices, the mobile phones offer a unique
combination of telephony functions (making and
receiving phone calls), sensory functions (sound,
camera, camcorder, location, acceleration,
temperature, etc.), and communication networks
(3G, WiFi, Bluetooth, Wimax, etc.). More and more
applications are designed for mobile phones to take
advantage of these capabilities, as evidenced by the
popularity of iPhone and Android applications in
their App Stores.

The focus of this paper is on a web service
approach to enable collaborative endpoint network
for mobile phones and to expose functions on
mobile phones as REST web services, such that
applications running remotely can monitor and
control them in near real-time manner. Collaborative
endpoint network is an emerging area with critical

applications in intelligent home network, etc. There
are many motivating use cases to extend the
collaborative endpoint network to mobile phones.
For example, we can use a mobile phone as a
surveillance device to monitor a room or a car.
Mobile phones can also be used in healthcare to
monitor and remind patients of their treatments, as
well as find and locate medical professionals to treat
them. A travel application is to use mobile phones as
the virtual tour guide and push relevant multimedia
content to a visitor as he moves around a tourism
site. Mobile phones are also an ideal device to keep
track of traffic flows when the speed of many drivers
can be obtained and aggregated automatically. All
these applications require the ability to monitor and
control one or more functions on the phone in near
real-time, as these functions, such as location, may
change frequently and in-time responses are needed.

An efficient approach to support these
applications is to expose the fundamental functions
on the phones as REST web services and make
mobile phones as web service endpoints, so that
services on mobile phones can be invoked and
composed in different ways by different

51Li L. and Chou W..
COFOCUS - Compact and Expanded Restful Services for Mobile Environments.
DOI: 10.5220/0003346200510060
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (WEBIST-2011), pages 51-60
ISBN: 978-989-8425-51-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

applications. This approach eliminates the need for
each application to duplicate the same function.
Making a phone into a web service endpoint enables
the applications to interact with the phones in
heterogeneous mobile environments, as web service
is independent of transport protocols and
programming languages. REST web service is easy
to extend as it supports dynamic discovery through
links. For example, to add a second camera on the
phone into the services, we just need to implement a
new camera resource and link it to the main
resource.

There are two types of web services as we know
it: SOAP based (SOAP 2007) and REST based
(Fielding 2000). Many approaches have chosen
REST based web services for mobile devices
because of its simplicity and close relationship with
the architecture of Web. We chooses REST in our
approach for the same reason. However, we found
that HTTP 1.1 protocol as used in current REST web
services needs both compaction and expansion in
mobile phone environments. First, we need to
compact HTTP 1.1 messages as they can be complex
and large while some features are never used in
mobile phones. Second, we need to expand HTTP to
multiple transport protocol bindings besides TCP/IP
to support REST services in heterogenous mobile
environments. To address these issues, we propose
and define a “Compact HTTP” protocol, consisting
of a small set of HTTP 1.1 while keeping only the
essential elements of HTTP 1.1 to enable
collaborative endpoint network of mobile phones.

Moreover, we describe how Compact HTTP can
be bound to multiple messaging protocols, in
particular to XMPP (XMPP 2004) and SMS (Short
Message Service). These protocol bindings
introduces asynchrony into REST to support event-
driven REST web services on mobile phones.
Furthermore, HTTP over XMPP in our approach
introduces hyperlink presence into REST to mitigate
the broken link issue which is critical for mobile
phones. A security protocol is also devised to permit
flexible and quick setup of security contexts between
services and clients. Based on this protocol, we
develop a lightweight REST web services
framework on an Android phone. Within this
framework, we implement a few dozen resources,
including sound, camera, camcorder, location,
power, motion, scheduler, and telephony manager as
secured REST web services. Our collaborative
endpoint network framework also supports web
storages, including Google Sites, YouTube, etc., to
upload recorded media for instant sharing and
collaboration.

The rest of this paper is organized as follows.
Section 2 surveys some related work in developing
REST web services for mobile devices. Section 3
describes the Compact HTTP protocol. Section 4
describes the binding of this protocol to multiple
transport protocols. Section 5 presents a security
protocol to address related security issues. Section 6
describes the implementation and experiments of a
prototype systems running on a live wirless carrier
network (T-Mobile). And we conclude and sumarize
this paper in Section 7.

2 RELATED WORK

Because of its relative simplicity, compared to
SOAP based web services, REST web service
paradigm is gaining popularity in mobile device
communities.

The principles and architectures of REST web
services are extensively discussed in (Fielding 2000)
and (Richardson 2007), which are followed by this
paper whenever applicable.

WAP (WAP 2001) is a suite of protocols to
connect wireless mobile phones to the Web. The
typical WAP architecture consists of Content Server,
WAP Gateway and mobile devices. When requested
by the Content Server, the WAP Gateway uses a
protocol WSP (WSP 2001), which is a binary
version of HTTP, to transfer encoded WML content
(WML 2001) to the devices. However, modern
smart phones rarely support WAP as they can
interpret HTML directly.

Constrained REST Environments (Core) (Core
2010) is a recent IETF activity to restrict HTTP to
host resources on low-end devices, such as 8-bit
microcontrollers with up to 12 KB of memory. It
proposes a binding of HTTP to UDP that deals with
asynchronous messages. However, this approach is
not suitable for mobile environments, as the phones
do not have a reachable IP address, a major issue
that has to be addressed properly.

MacFaddin et al. (MacFaddin 2008) proposed a
REST web service framework for mobile commerce
spaces.

Liu and Conelly (Liu 2008) proposed to combine
REST web service with semantic web technology to
support services on mobile computing units.

Lozano et al (Lozano 2008) promoted the use of
REST web services to expose IMS capabilities to
Web 2.0 applications. In particular, it proposes the
use of AtomPub protocol to publish the IMS
resources.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

52

Antila et al (Antila 2009) discussed the hosting
of REST web services on mobile devices to support
person-to-person communication and collaborations
over Wifi and 3G networks.

Aijaz et al (Aijaz 2009) presented a REST web
service provisioning system and compared it against
the SOAP counterpart. The experiments showed that
REST messages have much lower overhead than
SOAP messages.

Pruter et al. (Pruter 2009) described an approach
to adapt resource-oriented service framework to
automatically control robots for industrial
automation tasks. It uses a special mechanism called
MIRROR to handle events. Performances of their
framework are evaluated under three physical
networks: wireless LAN, Bluetooth and ZigBee. The
results showed that the REST framework has lower
overhead than SOAP based DPWS.

AlShahwan et al (AlShahwan 2010) compared
the performances of the same SOAP and REST
services implemented on mobile devices. They
conclude that REST is more suitable to mobile
devices as it requires less processing time and
memory.

Stirbu (Stirbu 2010) presented a REST
architecture to render web interfaces on mobile
devices in which REST protocol is used to
synchronize states between applications.

However, none of the abovementioned prior
work has studied how to compact HTTP for mobile
devices and how to expand HTTP to connect phones
with each other to enable a collaborative endpoint
network in mobile phone environment and to link
functions on the phones with enterprise applications.

3 COMPACT HTTP

HTTP 1.1 has a set of very powerful features that
can be too expensive to implement and support on
resource-constrained mobile devices. Even though it
is possible to run a HTTP 1.1 server on Android
mobile phones, many of its features may never be
utilized. Therefore, we elect to develop a lightweight
compact protocol, compact HTTP, for mobile
phones. It consists of a subset of HTTP 1.1 protocol,
but is still capable to enable the endpoint network
and collaborative applications of mobile phones.
Protocol compaction in our approach is only a
process not the final goal – as mobile phones
become more powerful, less compaction will be
needed. For this reason, we choose to represent
HTTP message in plain text, instead of binary, as
this compact subset of HTTP 1.1 may grow to sup-

port further extensions.

3.1 Message Templates

To reach a compacted subset, we start from an
empty feature set and add features to it as necessary
until the desired services are covered. In our case,
this exercise leads to the following Compact HTTP
request and response templates that follow HTTP
1.1 closely:

Figure 1: Message Templates for Compact HTTP request
(above) and response (below).

All the variables, including {operation},
{path}, {version}, {status},
{reason}, are as defined in HTTP 1.1. For
Compact HTTP, the version is HTTP/1.1c.
{form} is defined by HTML 4 (HTML 1999),
whose media type is application/x-www-
form-urlencoded. The differences with HTTP
1.1 are described below.

Authorization contains the access token for
the message. In HTTP 1.1, this is a request header.
We extend it to responses because they may be sent
in a different connection. Therefore, the client needs
to authorize a response before taking any action (for
example, update user interface).

x-mid is a new header to HTTP 1.1 for clients
to correlate asynchronous responses and events to
requests. Its value is set in a request and echoed in
the responses.

The templates omit some headers considered
important for REST services, such as the ETag
response header. The reason is that our resources
tend to have small representations (measured by the
size of its form) that can be updated and transmitted
without checking the versions. We also omit content
negotiation headers in favour of using URI. Using
URI to identify media type is an approach
recommended by Richardson (Richardson 2007).

COFOCUS - Compact and Expanded Restful Services for Mobile Environments

53

3.2 Message Exchange Patterns

Typical HTTP messages follow the request-response
pattern. Services following this pattern are atomic as
the service is complete once the response is sent.
However, many services on the mobile phones are
multi-step instead of atomic. For example, to control
the camera to take a picture involves the following
steps: 1) adjust focus; 2) take shot; 3) upload picture
to a web site. Modeling this type of services as
atomic would not be a scalable approach because: 1)
it makes the service stateful, which violates the
REST statelessness principle; and 2) it makes a
client less responsive to service state changes and it
is much more expensive to recover from faults.

A solution in our approach is to model the multi-
step services as one request followed by multiple
responses, in which intermediate responses indicate
service progression while the final one indicates
service completion. To separate them, the status for
the intermediate responses should be 202
Accepted or 206 Partial Content, while
the final response should be 200 OK or 201
Created. Status 206 is used only with GET in
HTTP 1.1, and here we extend it to any request to
convey the current service state as partial content.
All asynchronous responses are correlated to its
request by x-mid for both atomic and multi-step
services.

Another important type of message exchange
pattern is event subscription and notifications. For
example, a client can subscribe to a phone’s location
tracking service to receive notifications about
location changes of the phone. In this pattern, a
subscription (sent by a client as PUT) is followed by
unknown number of notifications (sent by the
service as POST). It is needed for a client to tell
which notifications are from which subscriptions, so
that it can adjust the subscriptions, e.g. cancel, etc.
To support this feature, the x-mid of notifications
would echo the x-mid of the subscription request.

3.3 Design Patterns

The Compact HTTP does not specify how to design
the resources to support these message exchange
patterns. For these, we suggest to follow the REST
service design patterns (Li 2010), including session,
event subscription, multi-resource and multi-state,
that are common in real-time communication
services.

4 COMPACT HTTP BINDINGS

In conventional REST web services, there is a basic
and implicit assumption that a HTTP server has a
public IP address. However, this is not possible in
mobile environment, as a mobile phone is typically
behind its provider’s NAT gateway and its private IP
address is not reachable from outside. The enterprise
applications that control and monitor phones are also
behind corporate firewalls. This creates an issue for
many real-time applications where two-way
messaging is required. On the other hand, many 3G
mobile phones can join different communication
networks over different protocols such that they are
reachable without IP addresses. Instead of IP
address, a phone can be addressed by a phone
number (SMS), an email address (SMTP) or JID
(XMPP).

Therefore, to support REST services in these
heterogeneous environments, it is necessary to
decouple HTTP from TCP/IP. In addition to TCP/IP,
it is both convenient and advantages to treat these
messaging protocols as “transport” for HTTP. This
approach makes the REST services invariant to the
protocol changes as the mobile phone connects to
different networks. This allows us to keep the same
services while optimizing their performance over
available networks and protocols. For example, we
may choose to transmit time sensitive messages over
TCP/IP or XMPP, and noncritical ones over SMS or
SMTP. Furthermore, HTTP over XMPP can bring
presence information into REST architecture. In
particular, we can assign presence to hyperlinks to
address the issue of broken links in the Web.

The idea of separating protocol messages and
transport is not new. It is actually one of the tenets
of web service paradigm that web services should be
agnostic to transport protocols. SOAP based web
services community has embraced this approach by
defining SOAP bindings to HTTP (WSDL 2001), to
XMPP (SOAP/XMPP 2005), and to JMS
(SOAP/JMS 2009). However, HTTP has bindings
only to TCP/IP and UDP, as far as we know.

The following subsections describe the
components as well as process of HTTP bindings
with other message transport protocols. In particular,
we focus on the binding of HTTP with XMPP in our
approach.

4.1 URI Scheme

In REST services, any resource must have a URI
that identifies where the resource is and how to
contact it. Because we want to bind HTTP to

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

54

different transport protocols, we adopt a two-level
URI scheme according to (RFC 3986), where the
first level URI identifies the HTTP information and
the second level URI identifies the transport
information:

uri_1 = http://{uri_2}/...
{uri_2} = URI

For example, to address a resource x with HTTP
over SMS to a phone number, we can use:

http://sms:5555/x

Or alternatively, through a SMTP gateway as:
http://smtp:5555@example.com/x

To address the same resource with HTTP over
XMPP, we would use:

http://xmpp:joe@example.com/x

If the phone has an IP address, the URI for the
resource would simply be:

http://123.4.5.6/x

To communicate with a resource with uri_1, a
client first establishes a communication channel
according to uri_2 and then transmits HTTP
messages over the channel. This process is
elaborated in the next section using XMPP as an
example.

4.2 XMPP

XMPP architecture consists of XMPP servers and
clients. To exchange messages, clients have to
establish a TCP/IP connection to the same or
federated XMPP servers. There are many open
XMPP servers, including Google Talk, that give
people free accounts with federated identities. For
instance, you can use a valid GMail account to login
to the Google Talk server.

To connect to a XMPP server, A XMPP client
typically needs to know the following information:
1) XMPP host and port (talk.google.com:5222); and
2) XMPP Service (gmail.com). This information is
not included in URI scheme because a XMPP client
always connects to one XMPP server in a
collaboration session. Therefore, the information can
be saved in a configuration file associated with a
user. Once the user logs into the XMPP server, the
established connection is used to transmit all HTTP
messages.

Because chat is in the base protocols of XMPP
and most XMPP clients support this feature, we
choose to transmit Compact HTTP messages as chat
over XMPP. The template for HTTP request and
response over XMPP is:

<message
 from='{from_jid}' to='{to_jid}'>
 <body>
 {Compact HTTP message}
 </body>
</message>

4.3 Hyperlink Presence

In the Web, there is an annoying issue of broken
hyperlinks as the resource that embeds the links is
not aware of the linked resource. When the hosted
linked resources on the web server shuts down or the
resource is moved or deleted, the link becomes
broken. The problem is that it is difficult for the
client to know when the link will be restored unless
it polls the server constantly, which creates
unnecessary network traffic.

Our approach of HTTP over XMPP offers a
solution to this problem by using the presence
services provided by the XMPP layer. If a XMPP
client listens for presence updates from a JID
address, it can assign presence to a hyperlink
containing that address in near real-time. For
example, to assign presence to a hyperlink:
http://xmpp:someone@gmail.com/x, the
client just needs to monitor the presence of
someone@gmail.com. By knowing the link
presence, the client can avoid fetching or polling the
broken links all together. The presence also gives the
REST services the ability to change their presence,
for example in case of temporary maintenance,
while keeping the clients informed in a timely
fashion.

4.4 SMS

SMS is a very common feature in most mobile
phones. There are several ways to send and receive
SMS messages depending on the networks. In the
cellular networks that provide SMS, two phones can
exchange SMS directly. Outside the cellular
networks, a client could use a SMS gateway that
exposes particular protocols, such as SMTP to send
and IMAP to retrieve SMS messages. This approach
is available from T-Mobile who assigns each G1
phone an email address that ties with its number:
{number}@tmobile.net.

To bind to SMS, the Compact HTTP messages
are contained in the UD (User Data) segment of
SMS PDU (SMS 2010). To bind to SMTP, the
HTTP message is contained in the Email body.

COFOCUS - Compact and Expanded Restful Services for Mobile Environments

55

5 SECURITY

Security is a critical issue in hosting web services on
mobile phones because the services open access to
resources on the phone that may be misused by
malicious clients. It is typical to deploy layered
security mechanisms from protocol up to
applications such that a breach at lower level can be
defended by the layer above. In our case, security
mechanisms at Compact HTTP, transport protocols,
services and applications are employed. The
following sections will discuss these mechanisms in
more detail.

5.1 Secure Messages

Because in mobile environments, a HTTP message
may travel through different networks in different
protocols, it is necessary to employ end-to-end
message level security. Here we outline a
symmetric key based security protocol to set up the
security contexts between two parties.

The design goal is to allow the user who operates
the phone to quickly grant and reject clients and
service requests. For this reason, we chose
symmetric key because our applications are aimed at
a group of trusted users that can exchange secret
keys easily. In some cases, the phone and the client
are managed by the same user.

For convenience, the user that configures the
phone is referred to as “operator” and the user that
configures the application is referred as “director.”
The protocol consists of the following steps:
1. The operator and director agree upon a secret
passphrase P and enter it into the phone and the
client respectively.
2. The director creates an access token T1 and tells
it to the operator.
3. The operator enters client’s URI A and T1 into
the phone and creates an access token T2. The
token is sent by a “join” message encrypted by P to
URI A as follows:

4. The client decrypts the message with P, store T2
and sends an encrypted response message that
indicates acceptance.
5. The phone receives and decrypts the response
and activates the security context, which contains

(A, P, T1, T2).

6. Any subsequent message from the client to the
phone will contain T2 and be encrypted with P. The
phone will decrypt any message from A with P and
checks it against T2. Any response message to A
will contain T1 and be encrypted with P.

7. The operator deactivates the security context by
sending a “Delete” message to the client. The
corresponding security context becomes invalid on
the phone and client:

Figure 2 illustrates the phone interface for the
operator to carry out steps 3-5 and step 7.

Figure 2: Screenshot of Join/Leave Director Activity.

5.2 Secure Services and Data

Because a mobile phone that hosts REST services is
also used for other purposes, the operator can start
and stop services, login and out of transport services,
as ways to control access to the services.

In our system, we further limit message
exchange patterns for security reasons:
 The respond messages are always sent back to
the requester on the same transport protocol, who
has been authenticated and authorized.
 There is only one subscription for each resource
and the event listener must be the same as the
subscriber, who has been authenticated and
authorized.

Our system also secures the access to sensitive data
collected by the services, such as captured images
and videos. Instead of returning the content to the

PUT operators/{phone} HTTP/1.1c
Authorization: T1
x-mid: {number}

token=T2

DELETE operators/{phone} HTTP/1.1c
Authorization: T1
x-mid: {number}

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

56

authenticated client directly, the system stores it
locally or stores it in a web storage site and provides
a link to the client, who can retrieve it with another
set of credentials.

6 PROTOTYPE SYSTEM

Based on the proposed protocols, we developed a
prototype system that hosts a set of REST resources
on T-Mobile G1 phones running Android 1.6 in T-
Mobile cellular network. The intended relations
between various client applications and the phones
are illustrated in Figure 3 where REST services are
accessible to clients of different kinds over the
heterogeneous networks.

Figure 3: High level relations between client applications
and REST services on the phones.

Figure 4: High level architecture of REST service
framework on Android phone.

The high-level REST server architecture on an
Android phone is illustrated in Figure 4, where the
components in blue colour depend on the Android
SDK whereas the components in yellow colour
depend only on Java SDK. The core REST
framework, including the security package, does not

import any Android packages and can be run in any
Java runtime.

There are three types of Android services in the
framework: transport services, REST services and
storage service.

The transport services are responsible to listen
and send messages over a transport protocol, such as
SMS or XMPP. For XMPP transport, we used a
XMPP client library compiled by Srinivas (Srinivas
2008) for Android. For SMS, we used Android
SmsManager. If an incoming message is intended
for the REST Service, it is forwarded to the REST
Service as an Intent on Android platform.

The REST Service is an Android Service that
contains the REST framework. Upon start, the REST
Service registers an Intent Listener. Upon receiving
a message encapsulated in the Intent, the Intent
Listener looks up the security context for the
message and invokes the interceptor chain in the
REST framework to process the message.

The REST framework contains an incoming
interceptor chain, a pivot, and an outgoing
interceptor chain. The incoming chain consists of
three interceptors to 1) decrypt; 2) deserializes; and
3) authorize the message. If any of these interceptors
fails, the message is discarded and an error message
is returned. If the message is a request, the pivot will
invoke the corresponding resource; if the message is
a response, the pivot forwards it to the Android
Notification Service. The outgoing chain consists of
four interceptors to 1) endorse; 2) serialize; 3)
encrypt; and 4) deliver the responses. The chains can
also be invoked by a resource to control another
resource. For example, a scheduler resource controls
the camera by going through the same incoming
chain for security reasons.

For message encryption and token generation,
we used Java Crypto packages (javax.crypto
and java.security) with password based
encryption algorithm PBEWithMD5AndDES. The
encrypted messages are encoded as Base64 strings
for transmission.

The REST resources in our approach can use
web storages provided by Google to upload captured
audio (Google Docs), image (Picasa) and video
(YouTube) contents, so that they can be instantly
shared for collaboration. The storage service is an
abstraction of local and web storages with three
methods: login(account), logout(), and
save(uri, content). It uses a set of HTTP
clients to upload multimedia contents to the
designated server and publish the services to a web
proxy (e.g. Google Sites). The phone interface to
manage web storage is illustrated in Figure 5.

COFOCUS - Compact and Expanded Restful Services for Mobile Environments

57

6.1 Implemented Resources

This section lists the major resources developed so
far within our collaborative endpoint network
framework. Each resource is described by one table
that defines its path, service, operations and response
patterns, where “a” stands for atomic or “m” stands
for multi-step (Table 1).

Figure 5: Screenshot of Web storage Activity.

Table 1: Implemented resources.

path /sound/control
GET Retrieve current state. a
PUT Record or playback sound. m
path /camera/control
GET Retrieve current state. a
PUT Take or display a picture. m
path /camcorder/control
GET Retrieve current state. a
PUT Record or playback video. m
path /location, /power
GET Get current geo location or battery

power status.
a

path /{source}/monitor, where {source} is one
of gyroscope, light, location, magnet,
motion, orientation, pressure, proximity,
temperature, phone, and power.

GET Get current subscription a
PUT Subscribe for events from {source}. a
DELETE Unsubscribe events. a
path /schedule
POST Schedule a task in future. For

example, start and stop camcorder at
given time.

a

6.2 Implemented Clients

Two types of clients were implemented: the Android
phone (both client and service) and a dedicated Java
desktop client. The Android phone client can control
and monitor other Android phones running REST
services using HTTP over SMS or XMPP. The Java
client, based on open source Smack 3.1.0 XMPP
library (Smack API 3.1.0), controls and monitors
REST services using HTTP over XMPP only.

6.3 Experimental Results

Our main concern is the performance of our REST
based collaborative endpoint network framework.
On the server side, we measured the total processing
time (from entering the incoming chain to leaving
the outgoing chain) as well as the processing time of
individual interceptors. On the client side, we
measured the round-trip latency (which includes the
network latency and XMPP library processing time).
To obtain the time, we used the XMPP java client on
a desktop computer (Dual Core CPU 3.00 GHz with
2GB RAM) connected to the Internet to send 52
HTTP messages over XMPP to each REST service
on a T-Mobile HTC G1 phone (Firmware 1.6, Build
DMD64) registered in T-Mobile cellular network.
The measurements on the phone were collected
using Android TimeLogger utility and on our Java
desktop client using Java System.nanoTime
function. The performances are summarized in Table
2 and the message sizes are listed in Table 3.

Table 2: Total client time, total server time and individual
interceptor times (ms).

Process mean std min max
Client 1400.6 821.7 554.3 3858.3

Server 209.53 86.08 135 590
Encrypt 66.05 25.5 47 153
Decrypt 39.12 19.49 2 84

Deserialize 23.98 25.1 2 196
Serialize 7.4 7.3 4 41

Authorize 1.77 0.53 1 3
Endorse 2.4 3.03 1 24

Pivot 40.33 58.98 4 254
Deliver 28.42 3.8 20 47

Table 3: Message Sizes (byte).

Type mean std min max
Encrypted 113.36 28.6 88 192

Decrypted 77.93 21.54 56 138

The bar graph in Figure 6 illustrates the mean times
spent in the interceptors. The graph shows that, on

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

58

average, encryption, decryption and pivot are the top
three time consuming components. They take 69%
of total server time. Notice that the pivot time is the
mean time spent by the resources to execute HTTP
methods, which is outside the control of the
framework. Table 3 shows that the small messages
are sufficient to support a variety of basic services.

Interceptor Time

0

10

20

30

40

50

60

70

decrypt encrypt deserialize serialize authorize endorse pivot deliver

ti
m

e
(m

s)

Figure 6: Comparisons of mean interceptor times.

7 CONCLUSIONS

The contributions of this paper are summarized as
follows:
 We proposed and developed a lightweight
protocol, Compact HTTP, consisting of a small
subset of HTTP 1.1, to address message exchange
patterns to enable collaborative endpoint network of
mobile phones and related applications.
 We developed a REST based framework in the
Compact HTTP protocol to handle multi-step
interactions, including event subscription and
notification.
 We described how to bind HTTP to XMPP and
SMS for collaborative mobile phone endpoint
network.
 We introduced the concept of hyperlink presence
in our approach of HTTP over XMPP.
 We proposed an approach and implemented a
solution based on the hyperlink presence in
collaborative mobile phone endpoint network to
address the broken link problem.
 We described a symmetric key based security
protocol in collaborative mobile phone endpoint
network to provide end-to-end message level
security for service authentication and authorization;
 We developed a prototype system that allows
enterprise clients to control and monitor over a
dozen of REST resources on a T-Mobile G1 phone.

Experimental studies were performed and our results
demonstrated the proposed approaches and
architecture are feasible, efficient, and extensible.
The future work will be focused on lightweight
hypertext representations and application
development based on the REST services.

REFERENCES

AlShahwan, F., Moessner, K., 2010. Providing SOAP
Web Services and REST Web Services from Mobile
Hosts, Internet and Web Applications and Services
(ICIW), 2010 Fifth International Conference on, vol.,
no., pp.174-179, 9-15 May 2010.

Antila, V., Mantyjarvi, J., 2009. Distributed REST Web
Services for Mobile Person-to-Person Collaboration,
Next Generation Mobile Applications, Services and
Technologies, 2009. NGMAST '09. Third International
Conference on, vol., no., pp.119-124, 15-18 Sept.
2009.

McFaddin, S., Coffman, D., Han, J. H., Jang, H. K., Kim,
J. H., Lee, J. K., Lee, M. C., Moon, Y. S.;
Narayanaswami, C., Paik, Y. S., Park, J. W., Soroker,
D., 2008. Modelling and Managing Mobile Commerce
Spaces Using REST Data Services, Mobile Data
Management, 2008. MDM '08. 9th International
Conference on, vol., no., pp.81-89, 27-30 April 2008.

Aijaz, F., Ali, S. Z., Chaudhary, M. A., Walke, B.; 2009.
Enabling High Performance Mobile Web Services
Provisioning, Vehicular Technology Conference Fall
(VTC 2009-Fall), 2009 IEEE 70th, vol., no., pp.1-6,
20-23 Sept. 2009.

Pruter, S.; Golatowski, F.; Timmermann, D.; 2009.
Adaptation of resource-oriented service technologies
for industrial informatics, Industrial Electronics, 2009.
IECON '09. 35th Annual Conference of IEEE, vol.,
no., pp.2399-2404, 3-5 Nov. 2009.

Yong Liu, Connelly, K., 2008. Realizing an Open
Ubiquitous Environment in a REST Way, Web
Services, 2008. ICWS '08. IEEE International
Conference on, vol., no., pp.96-103, 23-26 Sept. 2008.

Lozano, D., Galindo, L. A., Garcia, L., 2008. WIMS 2.0:
Converging IMS and Web 2.0. Designing REST APIs
for the Exposure of Session-Based IMS Capabilities,
Next Generation Mobile Applications, Services and
Technologies, 2008. NGMAST '08. The Second
International Conference on, vol., no., pp.18-24, 16-
19 Sept. 2008.

Vlad Stirbu 2010. A REST architecture for adaptive and
multi-device application sharing, Proceedings of the
First International Workshop on REST Design, pp. 62-
66, 2010.

Core 2010. Constrained REST Environments (core),
https://datatracker.ietf.org/wg/core/.

SOAP 2007. SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition), W3C Recommendation
27 April 2007.

COFOCUS - Compact and Expanded Restful Services for Mobile Environments

59

Fielding, Roy, 2000. Architectural Styles and the Design
of Network-based Software Architectures, Ph.D.
Dissertation, 2000, http://www.ics.uci.edu/~fielding/
pubs/dissertation/top.htm.

XMPP 2004. Extensible Messaging and Presence
Protocol (XMPP): Core,
http://tools.ietf.org/html/rfc3920.

HTML 1999. HTML 4.01 Specification, W3C
Recommendation 24 December 1999,
http://www.w3.org/TR/REC-html40/.

Richardson, L.; Ruby, S.; 2007. REST Web Services,
O’Reilly, 2007.

Li Li; Wu Chou; 2010. Design Patterns for REST
Communication Web Services, ICWS 2010, pages
512-519, Miami, 5-10 July 2010.

WSDL 2001. Web Services Description Language
(WSDL) 1.1, W3C Note 15 March 2001,
http://www.w3.org/TR/wsdl.

SOAP/XMPP 2005. XEP-0072: SOAP Over XMPP,
http://xmpp.org/extensions/xep-0072.html.

SOAP/JMS 2009. SOAP over Java Message Service 1.0,
W3C Candidate Recommendation 4 June 2009,
http://www.w3.org/TR/soapjms/

Srinivas, Davanum. 2008. http://davanum.wordpress.com/
2008/12/29/updated-xmpp-client-for-android/.

Smack 3.1.0 API. http://www.igniterealtime.org/
projects/smack/.

SMS 2010. 3GPP TS 23.040 Technical realization of the
Short Message Service (SMS) (Release 9).
http://www.3gpp.org/ftp/Specs/archive/23_series/23.0
40/23040-930.zip.

RFC 3986. Uniform Resource Identifier (URI): Generic
Syntax, http://tools.ietf.org/html/rfc3986, January
2005.

WAP 2001. Wireless Application Protocol,
http://www.openmobilealliance.org/Technical/wapind
ex.aspx.

WML 2001. Wireless Markup Language, Version 2.0,
http://www.openmobilealliance.org/tech/affiliates/wap
/wap-238-wml-20010911-a.pdf, 11 September 2001.

WSP 2001. Wireless Session Protocol,
http://www.openmobilealliance.org/tech/affiliates/wap
/wap-230-wsp-20010705-a.pdf, 5 July 2001.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

60

