
LazyDOM
Transparent Partial DOM Loading and Unloading

for Memory Restricted Environments

Daniel Peintner, Richard Kuntschke, Jörg Heuer
Siemens AG, Corporate Technology, Information & Communication, 81730 Munich, Germany

Harald Kosch
University of Passau, Chair of Distributed Information Systems, 94032 Passau, Germany

Keywords: XML, DOM, EXI, LazyDOM.

Abstract: Processing XML documents using the Document Object Model (DOM) usually requires loading the entire
document into an in-memory DOM prior to processing. Since the in-memory size of a DOM generally is a
multiple of the original XML document size, the resulting DOM often consumes a lot of memory and might
not even fit into the available memory on memory restricted devices. The LazyDOM approach presented in
this paper divides a DOM into XML fragments and loads or unloads these fragments transparently on demand
during processing. Thus, the LazyDOM only loads the parts of a DOM that are actually currently needed by an
application and unloads them if they are no longer required and memory needs to be freed for other processing
tasks. Besides enabling DOM-based processing of large XML documents on memory restricted devices, this
approach is able to reduce the amount of memory required for DOM processing at any given time and can also
increase the performance of DOM loading if only parts of a DOM are actually needed by an application.

1 INTRODUCTION

Many XML tools and XML-based applications di-
rectly or indirectly rely on the Document Object
Model (DOM) (Hors and Hégaret, 2004). This
includes, for example, the XML Path Language
(XPath) (Clark and DeRose, 1999) for specifying and
evaluating path expressions on XML document in-
stances, XQuery and XSLT processors, XML Schema
validators, XForms, and applications built on top of
these tools. Many XML-based processors today work
on an in-memory representation of the entire XML
document instance, usually represented as a DOM.
The in-memory representation of a document can be-
come very large—even larger than the size of the
corresponding textual XML file in the file system
(about 400% of the file size according to (Marian and
Siméon, 2003)). When the file contains a represen-
tation of the XML data in the W3C’s Efficient XML
Interchange (EXI) (Schneider and Kamiya, 2009) for-
mat, the discrepancy between file size and in-memory
size of the DOM is even larger. Especially when
dealing with larger XML document instances, the po-
tentially excessive memory consumption constitutes a
problem and may render traditional DOM processing

infeasible on embedded and other resource limited de-
vices such as cell phones and digital cameras.

Nevertheless, the flexibility and extensibility of
XML makes using XML and XPath desirable even on
such limited devices. Consider, for example, the use
of SVG (Ferraiolo et al., 2003) for creating animated
user interfaces on digital cameras. Enabling such use
cases requires a means for loading an XML instance
into a DOM and evaluating XPath expressions in the
face of restricted memory boundaries. In this paper,
we present an approach for dynamically loading and
unloading DOM elements using EXI features (Sec-
tion 3.1).

Since EXI and our solution are seamlessly inte-
grated into the XML stack, our approach can be com-
bined with any existing DOM-based XML technol-
ogy without any additional modifications. For ex-
ample, compared to previous solutions (Marian and
Siméon, 2003), we do not need to analyze the XPath
expression prior to loading the DOM. Instead, we can
use the same DOM for several queries, dynamically
adapting the loaded parts of the DOM not only be-
tween the evaluation of subsequent expressions but
also on-the-fly during the evaluation of a single ex-
pression. The paper introduces the general concept

98 Peintner D., Kuntschke R., Heuer J. and Kosch H..
LazyDOM - Transparent Partial DOM Loading and Unloading for Memory Restricted Environments.
DOI: 10.5220/0003338100980105
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (WEBIST-2011), pages 98-105
ISBN: 978-989-8425-51-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

of a lazy DOM (Section 2) combined with an index-
ing mechanism for referencing DOM elements to be
loaded into memory and a simple but effective strat-
egy for identifying DOM elements to be unloaded
when memory becomes scarce (Section 3). Fur-
ther, we present evaluation results comparing our ap-
proach to other DOM and XPath evaluation solutions
in terms of memory consumption and query execution
speed (Section 4), give guidelines how the solution
can be tailored to given demands (Section 5), intro-
duce a real word application (Section 6) and discuss
related work (Section 7).

2 LAZY DOCUMENT OBJECT
MODEL

The introduction shortly alluded to the idea behind
our memory sensitive model and highlights its sim-
plicity but also its effectiveness in the sense of reduc-
ing memory consumption and increasing processing
speed. In the following, we describe the general con-
cept and the requirements of our approach, while the
technical realization is subsequently discussed in Sec-
tion 3.

2.1 LazyDOM Concept

Lazy evaluation is a well-known technique in the area
of programming languages. Delaying a computation
until its result is required can increase performance by
avoiding unnecessary calculations. A similar concept
can be adopted to operate on an in-memory model of
an XML document. The Document Object Model
(DOM) is a W3C specification and can be seen as
an in-memory representation of an XML information
set (Cowan and Tobin, 2004), providing at any time
the full information of the actual XML instance to
navigate through or operate on.

An XML instance is generally transformed en-
tirely into a DOM while multiple interactions, such as
look-up operations, may tackle only certain elements
of the XML tree. The possibility of working with such
independent XML fragments paves the way for effi-
cient processing and saving runtime memory. Hence,
at a given time, only a fragment of the document is
required. In the following, we use the termLazyDOM
for referring to a DOM that partially loads XML ele-
ments and unloads elements that are not needed any-
more.

Figure 1 depicts a fragmentation example of an
XML document that represents an arbitrarily subdi-
vided document. The root elementsite and its chil-
dren build the basic structure. The third XML level
consists ofghost elements. Loaded elements are
present in memory whileghost elements indicate that
there is no subtree available in memory, unless it has

������

����

	
��� ���

������ �������

����� �������

��� ������ �������

������� ������

��� �����!
����

Figure 1: Lazy Document Object Model containing loaded
and not loaded elements.

been loaded on demand. Children ofghost elements,
labeled asnot loaded element, are parsed and built
only if required and can be unloaded later if neces-
sary. This fragmentation can be done in a nested fash-
ion, meaning that anot loaded element may contain
furtherghost elements.

2.2 LazyDOM Requirements

From the practical point of view, the LazyDOM solu-
tion has to face certain requirements to fulfill the de-
scribed concept. Aghost element needs to be parsed
independently from the rest of the document. To do
so, the basic document needs to allow partial loading
while also allowing random access on an element ba-
sis.

In XML terms this means that an XML instance is
only partially loaded into a DOM and that currently
unnecessary elements are skipped. Those skipped
portions of a document (ghost elements) need to be
accessible and indexable without any dependencies
concerning previous data (e.g., XML namespace dec-
larations).

The stated requirements could possibly be fulfilled
using plain XML, but only with a fair amount of work
and complexity. Hence we choose the upcoming EXI
format, that is identical with XML on the basis of the
Information Set (Cowan and Tobin, 2004) and already
offers some of the required capabilities.

3 TECHNICAL REALIZATION

This section describes the technical realization of the
required features for the LazyDOM. First, we intro-
duce the EXI format and highlight format features we
base our work on. Second, we describe the indexing
mechanism that enables an efficient look-up ofghost
elements.

LazyDOM - Transparent Partial DOM Loading and Unloading for Memory Restricted Environments

99

3.1 Efficient XML Interchange (EXI)

The EXI format (Schneider and Kamiya, 2009) is a
very compact representation of the XML Information
Set (Cowan and Tobin, 2004) that is intended to si-
multaneously optimize performance and the utiliza-
tion of computational resources. The W3C published
the candidate recommendation in late 2009 and is ex-
pected to produce the final recommendation by the
beginning of 2011.

The EXI format uses a relatively simple grammar-
driven approach that achieves very efficient encodings
(EXI streams) for a broad range of use-cases. Due
to a straightforward encoding algorithm and a small
set of data types, EXI processors can be implemented
on devices with limited capacity. Besides other rele-
vant properties such as encodings with and even with-
out schema information, as well as schema deviations
or partial schemas, the EXI format offers a variety
of additional useful features. In this paper, we focus
mainly on an aspect calledselfContained element.

In EXI terms, aselfContained element is a por-
tion of an XML document that may be read indepen-
dently from the rest of the EXI document, meaning
that it offers random access on XML element level.
The EXI specification itself does not restrain the use
of selfContained elements to a certain mechanism.
An application is free to make use of this capability
in a convenient way. The LazyDOM proposal uses
this feature to realize the concept of aghost element.
Hence, both terms,ghost elements andselfContained
elements, are used as synonyms throughout the paper.

3.2 Indexing Mechanism

Subsequently, we introduce a simple, yet powerful in-
dexing mechanism. Based on the previously intro-
duced requirements (Section 2.2) a LazyDOM index-
ing solution needs to provide three information items.

First of all, aselfContained element needs to be
uniquely identifiable. The mechanism we are propos-
ing is inspired by XPath (Clark and DeRose, 1999),
a language for selecting nodes in XML documents.
Let’s assume the following XPath expression, com-
posed of three XPath nodes:

/site[1]/people[1]/person[2]

This expression uniquely identifies the second
person node of the firstpeople node of the firstsite
node. Second, the byte offset of a givenselfContained
element is needed to randomly access the element.
Third, the length of eachselfContained element needs
to be known to support skipping of such elements.

Figure 2 depicts the outcome of the indexing
format expressed in XML Schema notation. Multiple
indices are glued together to a set of indices, depicted
asscIndices.

scIndices

0 ∞..

scIndex

xPathExpr

1 ∞..

nodeName

nodeIndex

scElement
offset

length

Figure 2: XML Schema for index structure.

A selfContained element index (scIndex)
is composed of an XPath expression
(xPathExpr) and a selfContained element infor-
mation set (scElement). An XPath expression in
turn has one to manynodeName and nodeIndex
tuples while the selfContained element portion
comprises the byteoffset for random access and the
selfContained elementlength in bytes.

Listing 1: Index Example Document.
�

<?xml ve r s i on="1.0" encod ing ="UTF -8"?>
<s c I n d i c e s>

<sc Index>
<xPathExpr>

<nodeName>s i t e</ nodeName>
<nodeIndex>1</ nodeIndex>
<nodeName>pe op le</ nodeName>
<nodeIndex>1</ nodeIndex>
<nodeName>pe rs on</ nodeName>
<nodeIndex>2</ nodeIndex>

</ xPathExpr>
<scElement>

<o f f s e t>233</ o f f s e t>
<l e ng th>81</ l e ng th>

</ scElement>
</ sc Index>
<!−− more s c Inde x e le me n ts−−>

</ s c I n d i c e s>
� �

The index example in Listing 1 maps exemplar-
ily the previously used XPath expression to the byte
offset (233) in an EXI document. This means that
one needs to skip 233 bytes from the start of the EXI
stream before reaching the relevantselfContained el-
ementperson while the length of the selfContained
element is 81 bytes.

The use of XML technologies (e.g., XML
Schema) to describe the index has the advantage of
being able to use the EXI format to efficiently store
the index in an easy consumable way without intro-
ducing new requirements or technologies. EXI uses
local-names to keep the overhead at a minimum. In-
stead of coding the element name as a character se-
quence over and over again, EXI uses compact iden-
tifiers that are already part of EXI string tables. Mea-
surements presented in Section 4 take a closer look at
the effectiveness of the presented index structure and
present numbers for real world data.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

100

3.3 LazyDOM Applicability

As stated in the introduction, our goal is to offer
the same functionality as any other Document Ob-
ject Model realization, with the benefit of having
just the relevant parts of an XML tree in memory.
Hence we propose the LazyDOM solution that uses
the described indexing mechanism and initially forms
a skeletal structure, meaning that the root element and
the entire substructure up to any indexed element is
resolved and loaded into memory (see Figure 1).

An XPath engine or any application using a DOM
does not see any difference to a conventional DOM
implementation. A DOM node or element has to pro-
vide capabilities for navigating the tree. Each node
has a link to the parent, the previous and the next sib-
ling, as well as a complete list of child-nodes. The
LazyDOM solution provides exactly the functionality
required by the W3C DOM specification without any
restrictions.

4 MEASUREMENTS
& EVALUATION

In this section, we provide test results showing that
the memory sensitive approach presented in this pa-
per works well for real test data. For compari-
son with other projects, such as Projecting XML
Documents (Marian and Siméon, 2003), as well as
for traceability, we use test-data generated with the
XMark Benchmark Project1. In addition, we use
Java’s Management Extensions (JMX)2, a Java tech-
nology that supplies tools for managing and monitor-
ing Java applications, e.g., in terms of memory con-
sumption.

4.1 Test Data

XMark provides a data generator that we used to pro-
duce XML documents with sizes varying from 1 to
116 MB (e.g. the document xmark-f-0-10.xml was
produced using the XMark factor 0.10, see Table 1).

Our comparison is split into two steps. First of all,
we produce EXI encoded streams, which constitute
counterparts to the XMark generated textual XML
documents. Second, we test those generated XML /
EXI documents applying several XPath queries.

Table 1 shows the different documents
and their sizes on disk. EXI stands for
the EXI encoded document with selfCon-
tained elements. We decided to introduce
selfContained elements for all elements appear-
ing on the third XML tree level. The last column

1http://www.xml-benchmark.org/
2http://java.sun.com/products/JavaManagement/

Idx shows the overhead of the index structure by
mentioning the size of the index and quoting the
number of indices (#).

Table 1: Document sizes in kB.

TestCase XML EXI Idx (#)
xmark-f-0-01.xml 1155 812 7 (498)
xmark-f-0-10.xml 11597 8076 72 (4931)
xmark-f-1-00.xml 115775 79133 731 (49256)

It should further be noted that the size of the in-
dex structure compared to the documents itself is less
than 1%. This seems like a reasonable overhead in
the sense of storage and parsing. Please note also
that EXI documents are usually about ten or more
times smaller than semantically equivalent XML doc-
uments (see EXI Evaluation Note (Bournez, 2009)).
Due to the fact that the XMark generator produces in-
stances with string datatypes only and the XML struc-
ture is minimal compared to the actual content data,
the EXI format can not properly show its expected
benefit. Nevertheless, this paper is not about showing
EXI’s compression efficiency. Instead we focus on
a small subset of EXI format features that facilitate
building the LazyDOM solution.

4.2 Query Set

To show the effectiveness of the LazyDOM approach,
we introduce three XPath queries. These serve as a
basis for the subsequently presented measurements
regarding memory consumption and processing time.

Query Q1. /site/people/person[2]/name
describes a very precise request looking for a per-
son’s name with a position index.

Query Q2. /site/regions/∗
returns a node list of regions such asasia and
europe.

Query Q3a. //closed auction[date =′

04/16/2000′]
tackles essentially the entire document. The
request is stated in such a generic way that an
XPath engine is required to traverse the entire
XML tree and filter closed auction’s with a
certain date.

Query Q3b. /site/auctions/closed auction[date =′

04/16/2000′]
is semantically equivalent to Query Q3a accord-
ing to the XMark schema. The improvement
is though that the request uses absolute paths to
identify the node. We will get back to the sig-
nificant difference between Q3a and Q3b further
below.

LazyDOM - Transparent Partial DOM Loading and Unloading for Memory Restricted Environments

101

0

2

4

6

8

10

12
M

em
or

y
[M

B
]

0

200

400

600

800

1000

1200

1400

T
im

e
[m

se
c]

Memory [Query] 5,2 5,2 10,6 5,2 5,2 5,3 8,0 5,3 1,7 1,6 7,0 2,0

Memory [DOM] 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 1,0 1,0 1,0 1,0

Time [Query] 548 562 713 579 516 532 673 532 219 203 1297 437

Time [DOM] 469 469 469 469 438 438 438 438 125 125 125 125

Q1 Q2 Q3a Q3b Q1 Q2 Q3a Q3b Q1 Q2 Q3a Q3b

XML EXI LazyDOM

(a) xmark-f-0-01.xml (ca. 1 MB of XML).

0

20

40

60

80

100

120

M
em

or
y

[M
B

]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
im

e
[m

se
c]

Memory [Query] 46,5 47,3 113,1 47,2 42,1 42,9 68,5 42,1 3,3 3,2 56,9 8,0

Memory [DOM] 45,8 45,8 45,8 45,8 41,2 41,2 41,2 41,2 2,5 2,5 2,5 2,5

Time [Query] 1437 1405 3297 1500 2613 2597 3723 2674 312 281 8907 1937

Time [DOM] 1312 1312 1312 1312 2519 2519 2519 2519 203 203 203 203

Q1 Q2 Q3a Q3b Q1 Q2 Q3a Q3b Q1 Q2 Q3a Q3b

XML EXI LazyDOM

(b) xmark-f-0-10.xml (ca. 12 MB of XML).

0

100

200

300

400

500

600

700

800

900

1000

M
em

or
y

[M
B

]

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

T
im

e
[m

se
c]

Memory [Query] 459,0 459,1 907,0 468,0 393,0 392,0 581,0 398,0 18,2 17,4 545,0 69,0

Memory [DOM] 457,0 457,0 457,0 457,0 391,0 391,0 391,0 391,0 16,9 16,9 16,9 16,9

Time [Query] 13075 12773 50465 13094 24045 23952 52313 24170 953 828 82704 12125

Time [DOM] 12672 12672 12672 12672 23858 23858 23858 23858 750 750 750 750

Q1 Q2 Q3a Q3b Q1 Q2 Q3a Q3b Q1 Q2 Q3a Q3b

XML EXI LazyDOM

(c) xmark-f-1-00.xml (ca. 116 MB of XML).

Figure 3: Memory consumption and query execution times.

4.3 Performance Measurements

Our testbed is composed of a notebook running Win-
dows XP with 1.66 Ghz and 2 Gigabytes of RAM.
We used the latest Java Virtual Machine 1.6 (with de-
fault options). From the many possible XPath en-
gines, we selected the widely used and well estab-
lished Jaxen3engine.

Figure 3 shows a digest of our memory con-
sumption measurements and the according process-
ing times. The bar diagram presents the peak size in
MB of the Java heap during execution (e.g., the JVM
option-Xmx128m sets the maximum heap size to 128
MB) while the line diagram respectively shows query
loading/execution times in milliseconds.

3http://jaxen.codehaus.org/

The set of queries (Q1, Q2, Q3a and Q3b) groups
the three candidates, XML, EXI, and LazyDOM.
XML designates parsing and loading the DOM from a
textual XML document. EXI in turn parses and loads
an EXI document. The LazyDOM, in contrary, parses
an EXI document but only loads required portions of
the document into the DOM.

To demonstrate the difference between initially
loading the XML information set to a DOM and the
additional overhead for processing queries we split
both measurements. Figure 3 shows memory con-
sumption (Memory) and processing times (Time) for
both, DOM loading only (DOM) and DOM loading
together with subsequent query execution (Query).
Three XMark generated XML test documents (a), (b),
and (c) varying in size from 1 MB to 116 MB demon-
strate the applicability of the LazyDOM in diverse
memory magnitudes.

4.3.1 Memory Consumption

Figure 3 illustrates that the memory consumption and
processing times for DOM loading is similar for XML
and EXI. The reason for the slight difference in mem-
ory size is due to the fact that the EXI format prunes
insignificant whitespaces.

Our proposed LazyDOM solution shows a huge
memory benefit especially for queries Q1, Q2 and
Q3b, where only a portion of the entire document is of
interest. If we deal with inefficient XPath queries (e.g.
Q3a // closedauction [date =’04/16/2000’]) the en-
tire tree has to be visited. We implemented an ap-
proach that unloadsselfContained elements that are
no longer required if memory becomes scarce. We
keep track of a list of least recently usedselfCon-
tained elements and remove the least recently used
selfContained element each time an additional ele-
ment is to be loaded and the number of loaded ele-
ments has reached a configurable numberN (e.g., in
our test casesN = 10). Nevertheless, the gain com-
pared to conventional engines is not as outstanding as
expected (see query Q3a in Figure 3). The reason is
the implemented caching strategy of many XPath en-
gines. The less an XPath engine makes use of caches,
the more memory can be freed by Java’s garbage col-
lector.

4.3.2 Execution Time

Loading the information set into a DOM shows ad-
vantages for the LazyDOM given that only a small
amount of data needs to be parsed. In the second mea-
surement step, query processing takes effect. The ad-
ditional querying process does not indicate any note-
worthy execution time difference between the test
candidates XML and EXI. This matches our expecta-
tions given that there is no difference between a DOM
created from an XML or an EXI document.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

102

In terms of processing efficiency, the LazyDOM
shows improved runtime performance for XPath ex-
pressions requiring the loading or unloading of no or
only fewselfContained elements. When many load or
unload operations take place, e. g., because of heavily
restricted memory availability, processing efficiency
suffers. However, evaluating the query will still suc-
ceed instead of failing with an out-of-memory error.

The measurements show that the developed solu-
tion represents a well-behaved DOM strategy, load-
ing sub-elements of a document only when the actual
need occurs. In any case, the overhead is kept at a
minimum. Furthermore, both the granularity of in-
dexedselfContained elements in EXI as well as the
numberN of bufferedselfContained elements are tun-
able. Hence, we offer atransparent mechanism to
reduce the overall memory consumption for devices
with limited resources as well as for powerful servers.

5 DESIGN GUIDELINES

The LazyDOM offers a tunable means to potentially
reduce the memory consumption and at the same time
improve the performance of DOM-based XML pro-
cessing. As with many optimization techniques, the
amount of improvement that can be achieved depends
on the actual use case. The configuration of the Lazy-
DOM and the components interacting with it should
be carefully tailored to the demands of the actual ap-
plication. In this section, we describe some design
guidelines that illustrate how the LazyDOM could
and should be used in practice to achieve best results.

5.1 LazyDOM: Where and When

It should be pointed out that there are use cases where
the LazyDOM might not be the best choice. In an en-
vironment that is always able to load the entire DOM
into memory and that always accesses all or at least
most of the data in the DOM, dynamically loading the
DOM has little or no benefit in terms of memory con-
sumption but can incur a performance penalty. Con-
sider Query Q3a in Figure 3 as an example. Since the
query uses the XPath descendant-or-self axis, all of
the DOM is traversed during query evaluation. Thus,
the savings in memory consumption when using the
LazyDOM is limited compared to a traditional DOM.
But the processing time is increased due to the over-
head of indexing and dynamic loading.

However, if only parts of the DOM are actually
needed, dynamically loading only these parts will not
only save memory but will also lead to faster DOM
loading since much less data needs to be loaded over-
all. This can be seen, for example, from the perfor-
mance results for Query Q3b in Figure 3. The query
avoids using the XPath descendant-or-self axis and

directly queries only parts of the DOM. Thus, mem-
ory consumption and processing time are heavily de-
creased.

Furthermore, in an environment that is not able
to always load the entire DOM into memory due to
memory restrictions, LazyDOM is enabling the use of
DOM-based XML processing in the first place. If, in
this case, only parts of the DOM are actually required
by an application, the reduced memory consumption
is again combined with improved processing perfor-
mance as described above. If all or most of the data in
the DOM is referenced by an application, processing
performance can be worse than when loading the en-
tire DOM into memory up front since repeated load-
ing and unloading ofselfContained elements will oc-
cur. Still, since loading the entire DOM into memory
is not possible in memory restricted environments,
LazyDOM enables the use of DOM-based XML pro-
cessing at the cost of potentially increased processing
times.

5.2 Granularity of selfContained
Elements

A major means of configuring the LazyDOM is
the choice of granularity ofselfContained ele-
ments. Identifying more and smallerselfContained
elements—e. g., at lower levels of the XML tree—
allows more fine grained control over memory con-
sumption since smaller parts of the DOM can be
loaded and unloaded. On the other hand, this ap-
proach increases indexing overhead and reduces EXI
compactness.

Choosing less and larger selfContained
elements—e. g., at higher levels of the XML
tree—leads to less fine grained control over memory
consumption but reduces indexing overhead and
improves EXI compactness.

6 REAL WORLD APPLICATION

Many memory-restricted device classes such as nav-
igation systems or cell phones run applications that
require an in memory model of the data set. A promi-
nent data format is GPX. GPX, or GPS eXchange for-
mat is as a common GPS data format for software
applications that can be used to describe waypoints,
tracks, and routes in XML. We use an Android4 ap-
plication that loads GPX instances, shows the track
on the display and adds additional user relevant infor-
mation along the track.

The application demands loading the GPX data
into an in-memory model to be able to execute queries

4Android is an operating system for mobile devices such
as cellular phones, http://www.android.com/

LazyDOM - Transparent Partial DOM Loading and Unloading for Memory Restricted Environments

103

(a) Without LazyDOM
- Out-of-Memory Error.

(b) With LazyDOM -
Successfully loaded.

Figure 4: GPX Tracks - Demonstration Tool.

on the data set. Internal tests, run on a widely used
cellular phone, highlighted possible memory restric-
tions. For example, the HTC Hero phone, running
Android 2.1 with 288 MB of RAM, ran into an out-
of-memory error when trying to load larger tracks into
a DOM (see Figure 4(a)). Listing 2 shows a snippet
of an example GPX track (with 1.7 MB of GPX data)
causing such a problem. We have retrieved the GPX
data from GPSies.com, a virtual community (e.g., for
sharing bike tracks or trekking routes).

Listing 2: GPX Track Example.
<?xml ve rs i on=” 1 .0 ” encod ing =”UTF−8” ?>
<gpx xmlns=” h t t p : / /www. t o p o g r a f i x . com /

GPX/ 1 / 1 ”>
<metadata>

<name>Randweg Romant ische S t r< / name
>

<cop y r i gh t a u t h o r =” GPSies . com” />
< l i n k h r e f =” h t t p : / /www. g p s i e s . com /

map . do ? f i l e I d =ewyawkysxmfjwlpp”
/>

<t ime>2010−08−24 T15:07:52Z< / t ime>
< / metadata>
<t rk >

+ <t r k seg> [5469 l i n e s]
+ <t r k seg> [4705 l i n e s]
+ <t r k seg> [7933 l i n e s]
+ <t r k seg> [9225 l i n e s]
+ <t r k seg> [5505 l i n e s]
+ <t r k seg> [7429 l i n e s]
+ <t r k seg> [6065 l i n e s]
+ <t r k seg> [5245 l i n e s]
+ <t r k seg> [2305 l i n e s]
< / t rk >

< / gpx>

We replaced the default Android document builder
with the LazyDOM solution presented in this paper
and createdselfContained elements for each track
segmenttrkseq. Hence, each track segment is
loaded sequentially and we managed to load the same
information set without running into memory prob-
lems (see Figure 4(b)).

This real world application shows the easy appli-

cability of the LazyDOM in a memory-restricted en-
vironment where an in memory representation of an
XML document is needed and available memory is
scarce.

7 RELATED WORK

(Busatto et al., 2005) presented a technique that repre-
sents the tree structure of an XML document in an ef-
ficient way by exploiting the high regularity of XML
documents. Repetitions of tree patterns are detected
and removed. The used technique is a generaliza-
tion of the approach of sharing common subtrees. If
a subtree has occurred before it is represented by a
pointer to its previous occurrence. This approach is
orthogonal to the LazyDOM. Combining both solu-
tions, the LazyDOM and the efficient representation
of the XML tree structure, reduces overall memory
consumption even further.

The approach of (Kim et al., 2007) relates to our
technique in the sense that large XML documents are
partitioned into smaller XML trees. When retrieval
operations take place, in contrast, a unify operation is
required to unify split child nodes.

The way DOM-based applications, such as XPath,
XQuery, or XSLT processors, interact with the DOM
can have significant impacts on the improvements
that are achievable by combining these applications
with the LazyDOM. One example to be mentioned
here is the concept of schema-aware XPath processors
(e.g., (Paparizos et al., 2007)). Considering Query
Q3a in Section 4.2, a non-schema-aware XPath pro-
cessor has to traverse all of the DOM to answer the
query. Thus, the entire DOM needs to be loaded (and
potentially unloaded) during the process. Query Q3b
uses schema knowledge to eliminate the descendant-
or-self axis in the XPath expression of Query Q3a to
obtain the same result without having to traverse all
of the DOM.

Many efforts have been made to reduce the mem-
ory requirements of XQuery and XPath processors.
An approach for reducing the memory requirements
has been implemented in the Galax XQuery proces-
sor (Marian and Siméon, 2003). This approach is
based on an a priori analysis of the query to be eval-
uated. Only the parts of the document needed to
correctly and completely process the query are sub-
sequently loaded into an in-memory DOM. Depend-
ing on the query, this might require significantly less
memory than loading the entire document. How-
ever, the analysis process needs to be repeated and
the identified necessary parts of the XML document
need to be reloaded for each new query. In contrast,
the LazyDOM can use the same DOM for evaluating
each XPath expression referencing the corresponding
XML document. Also, when dealing with queries

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

104

that need most of or even the entire document dur-
ing processing, e. g., queries using the descendant-or-
self axis on the document root, the a priori analysis
of the query yields little or no benefit since all nec-
essary parts of the document need to be loaded into
memory as a whole. Our solution allows to dynam-
ically load and unload DOM subtrees during XPath
evaluation. Hence, even if the parts of the document
necessary for evaluating a certain XPath expression
do not fit into memory as a whole, we are still able to
correctly process the document within the available
memory boundaries.

Streaming Transformations for XML
(STX) (Cimprich et al., 2007) allow the trans-
formation of large, theoretically infinite XML
documents or XML data streams with bounded
memory requirements. STX processes the XML data
in a streaming fashion. The limitation of memory
consumption during the processing of XPath expres-
sions results from a limitation of the allowed XPath
expressions to a subset of XPath that is suitable for
streaming evaluation. Thus, the evaluation does not
require the buffering of a possibly infinitely large
internal state. Compared to STX, our approach is
aimed at supporting the full functionality of any
DOM-based application.

Other optimization approaches in the context of
XPath processing focus on processing performance
instead of memory consumption. A special problem
in this context is the quick and efficient evaluation
of a large set of XPath expressions on a sequence
of XML documents as needed in XML-based pub-
lish&subscribe systems.

8 CONCLUSIONS & OUTLOOK

In this paper, we introduced the LazyDOM as an ap-
proach to limit the memory requirements of DOM-
based XML processing and to potentially increase the
performance of DOM loading. The LazyDOM uses
the concept ofselfContained elements defined in the
Efficient XML Interchange (EXI) format to divide
a DOM into fragments and to load or unload these
fragments on demand during DOM processing. The
approach is transparent to DOM-based applications,
i. e., no changes need to be made to applications to
support the LazyDOM instead of a traditional DOM.
Any DOM-based application such as XPath proces-
sors, XQuery processors, XSLT processors, XML
Schema parsers and validators, etc. can be used with
the LazyDOM. An indexing mechanism allows to ef-
ficiently jump to the parts of the EXI encoded XML
document that need to be loaded.

Our measurement results show that the LazyDOM
is able to drastically reduce memory consumption
during DOM-based XML processing. The amount

of memory needed for processing and the processing
performance depend highly on the use case and the
configuration of the LazyDOM and the DOM-based
applications. We have outlined generic design guide-
lines that promise to yield good results when followed
in practice.

Topics for future work include investigating var-
ious cache replacement strategies and their applica-
bility for partial DOM unloading, further investiga-
tions concerning suitable LazyDOM configurations
for specific use cases especially with respect to the
identification of suitableselfContained elements in
the DOM, and exploiting schema knowledge.

REFERENCES

Bournez, C. (2009). Efficient XML Interchange
Evaluation. http://www.w3.org/TR/2009/WD-exi-
evaluation-20090407/. W3C Working Draft.

Busatto, G., Lohrey, M., and Maneth, S. (2005). Effi-
cient memory representation of xml documents. In
Database Programming Languages, 10th Interna-
tional Symposium, Trondheim, Norway, pages 199–
216. Springer.

Cimprich, P., Becker, O., Nentwich, C., Jiroušek, H.,
Batsis, M., Brown, P., and Kay, M. (2007).
Streaming Transformations for XML (STX) Version
1.0. http://stx.sourceforge.net/documents/spec-stx-
20070427.html. Working Draft.

Clark, J. and DeRose, S. (1999). XML Path Language
(XPath) Version 1.0. http://www.w3.org/TR/xpath.
W3C Recommendation.

Cowan, J. and Tobin, R. (2004). XML Information Set (Sec-
ond Edition). http://www.w3.org/TR/xml-infoset/.
W3C Recommendation.

Ferraiolo, J., Jun, F., and Jackson, D. (2003). Scal-
able Vector Graphics (SVG) 1.1 Specifica-
tion. http://www.w3.org/TR/2003/REC-SVG11-
20030114/. W3C Recommendation.

Hors, A. L. and Hégaret, P. L. (2004). Document
Object Model (DOM) Level 3 Core Specification.
http://www.w3.org/TR/DOM-Level-3-Core/. W3C
Recommendation.

Kim, S. M., Yoo, S. I., Hong, E., Kim, T. G., and Kim,
I. K. (2007). A document object modeling method to
retrieve data from a very large xml document. In King,
P. R. and Simske, S. J., editors,ACM Symposium on
Document Engineering, pages 59–68. ACM.

Marian, A. and Siméon, J. (2003). Projecting xml doc-
uments. InProceedings of the 29th International
Conference on Very Large Data Bases (VLDB), pages
213–224, Berlin, Germany.

Paparizos, S., Patel, J. M., and Jagadish, H. V. (2007).
Sigopt: Using schema to optimize xml query process-
ing. In ICDE, pages 1456–1460. IEEE.

Schneider, J. and Kamiya, T. (2009). Effi-
cient XML Interchange (EXI) Format 1.0.
http://www.w3.org/TR/2009/CR-exi-20091208/.
W3C Candidate Recommendation 08 December
2009.

LazyDOM - Transparent Partial DOM Loading and Unloading for Memory Restricted Environments

105

