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Abstract: In the context of dense stereo matching of pixels, we study the combination of different correlation mea-
sures. Considering the previous work about correlation measures, we use some measures that are the most
significant in five kinds of measures based on: cross-correlation, classic statistics, image derivatives, non-
parametric statistics and robust statistics. More precisely, this study validates the possible improvement of
stereo-matching by combining complementary correlation measures and it also highlights the two measures
that can be combined in order to take advantage of the different methods: Gradient Correlation measure (GC)
and Smooth Median Absolute Deviation measure (SMAD). Finally, we introduce an algorithm of fusion that
allows to combine automatically correlation measures.

1 INTRODUCTION and Crouzil, 2011) on local costs, the influence of dif-

ferent measures on the quality of stereo matching re-
Finding homologous pixels in a stereo pair of im- sults have been studied, in particular, near occluded
ages is one of the most important step in order to régions and, in (Chambon and Crouzil, 2004), we
recover the 3D structure of a scene by stereovision. demonstrated that a measure based on a robust statis-
Many methods have been proposed in the literature fics tool combined with a cross correlation measure
where local methods are distinguished from global @llows to obtain better performances than using a cor-
ones. More precisely, matching methods can be de-relation measure alone. These results raise up three
scribed with essential components, this term has been€W questions:

firstly introduced by (Scharstein and Szeliski, 2002). ¢ \which are the correlation measures that are the

These components are: the maiching cost, the opti- 55t complementary to cover all the matching
mization method, the introduction of multiple passes, difficulties?

i.e. to improve the matching performances, some ap-
proaches are based on several methods applied in se-e Is it advantageous to combine numerous measures
guence. This description leads to a four type cate-  and how many?
gorization: local methods, global ones (without cor-
relation measure), mixed method (global ones with a
correlation measure) and the methods with multiple
passes. Our purpose is to introduce a multipass algo-
rithm based on combination of local methods.

Local methods are easy to implement, low time

consuming, quite efficient, and consequently inten- Tsparity (or matching) map represents for each

swply used. Ur_]fortunately, Character|5|_ng h.OW the pixel, the distance between the pixel and its correspondent.
existing correlation measures are effective, i.e. 0ob- \yhen the disparity map is represented by a grey level im-
taining correct matching in different areas of the im- age, the clearer the pixel, the larger the distance is. Black
age, is still an open issue. In our work (Chambon pixels are occluded pixels.

e Following up the previous questions, can we pro-
pose an algorithm that combines more than one
measure to obtain a whole dense and correct
matching (or disparity) madpand is it more effi-
cient than the method based on a sole measure?
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Existing methods are briefly presented before the de-(2) Family 2. Classical Statistics-based Measures —

scription of the data set used for validating the pro-

posed method. Then, combination study is described

leading to the proposal for matching algorithm based
on merging the results obtained from various correla-

tion measures. Finally, results are presented.

2 CORRELATION MEASURES

The principle of a local cost, i.e. a correlation mea-

sure, is to consider that two homologous pixels and
their respective neighborhoods, are similar, from a

photometric point of view. The main difficulties of

3)

these methods are: illumination changes, untextured
areas and occlusions. Many measures have been in-

troduced to tackle out these difficulties. Based on the

results of 41 measures on a benchmark of 42 images,

presented in (Chambon and Crouzil, 2011), we pro-

pose to study the complementarity of these measures,

and, in particular, the best measures of each families.

Table 1: Notations used for the description of the measures.

lw Theimages wittw € {I,r} (left and right).

ij The grey level of the pixgby/ of coordinates
Y7 (i, ]) inimagely is Iw'. Moreoverpr” is the
Pw correspondant pixel qf)!.

The number of pixels in the neighborhood
Nf = (2Ny 4+ 1) x(2Nn+ 1), Ny, Ny € N*,
The vector of grey levels of pixels in the cg
relation windows (inly):

fw fu= (...|\'N+Pvl+q...)T = (£ T

where T is the matrix transposition operatpr
andp € [—Ny;NyJ, g € [—Nn; Nn].

The mean of the grey levels fg.

The elemenk of vectorf,,.

The Lp norms: [fulle = (Si o |f[P)2/P
with P e N* and ||fw| = |Ifw]l2

N,

=
1

fw

fk

w

Lp

In the following description, when no explicit ref-

(4)

erence is given, the reader should consult (Aschwan-

den and Guggenbl, 1992). We briefly present the no-
tations in Table 1 and the five best measures of the

different families that are considered.

(1) Family 1. Cross Correlation-based Measures —

All these measures are based on a scalar prod-

uct (Moravec, 1980) and NCC (Normalized Cross
Correlation) is the most efficient one:

f| 'fr
]l

NCC(f),f;) = 1)

These types of measures can be used: measures
based on a distance or/and that are locally cen-
tered, variance-based or fourth-order cumulant-
based measures (Rziza and Aboutajdine, 2001).
The best one is the LSAD (Locally scaled Sum of
Absolute Differences) defined by:

LSAD(fi,fr) = ||fi — ::'f,||1. (2)

r

Family 3. Derivatives-based Measurednstead
of using grey levels, these measures employ the
derivatives of the images at different orders (Seitz,
1989). Most of the existing measures use only
the direction of the gradient vectors (Ullah et al.,
2001), but, this kind of information can induce er-
rors, in particular, with low norm gradient vectors
whose direction is not reliable. In consequence,
the most performant measure is based on the simi-
larity of the image gradient vectors, GC (Gradient
Correlation) (Crouzil et al., 1996). If the gradi-
ent vector apy/ in 1y is Ol and the norm is
denoted by||Oly/ ||, the definition of GC is:

A I D||i+p,j+q _ DI}’*p"’”qH

5 (0PI ||DI¥“’7W+“||>(’3

GC(fy,fr) =

with Yo = SN\, Tat .

Family 4. Non-parametric Statistics-based Mea-
sures — They are based on the order of the
grey levels inside the correlation window (Kaneko
et al.,, 2002; Bhat and Nayar, 1998). Using
the order of the grey levels allows these mea-
sures to be robust against noises and occlusions
but, sometimes, it also gives an ambiguous re-
sult, i.e. the best correlation score is obtained for
the wrong correspondant. The most performant
measure of this family is a non-parametric one,
CENSUS (Zabih and Woodfill, 1994). The simi-
larity measure uses a transform that produces a bit
chain which represents the pixels with an intensity
lower than the central pixel:

X &

ke[O;Nf —1]

Ni/2 ¢k
w I W)a

Re(fw) =

whereZ(fa"/? t5) = 1if tX < fa"/? and 0 else-
where. CENSUS is the sum of the Hamming dis-
tances, denoted by between the codes of each
pixel of the correlation window:

N¢—1
CENSUSf,f;) = ;DH(RT(ﬁ),RT(fr)). (4)
k=
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(5) Family 5. Robust Measures We are particu- NAME (a) (b)
larly concerned with the occlusion problem which Tsukuba EEEH Tas
appears in the vicinity of a pixel near a depth (2002) | - 85
discontinuity. In fact, some pixels lie on a first S—
level of depth whereas the other pixels lie on a Aloe \l ! g!
second level. It can disturb the matching pro- 1| (2006) e 4’,4

cess and introduce erroneous matches. To take _. ) .
Figure 1: Examples of data used in our tests (left images

this .problem into account’. robust Statlstlc_s tools (a) and disparitié‘s(b)). Interested readers can find more
are introduced as correlation measures, like par- explanations about the estimation of these reference maps
tial correlation (Lan and Mohr, 1997) or pseudo- (ground truth), both in the cited papers and in the cited web
norms (Delon and Roug, 2004). The most effi- page of section 3 (active vision is used and/or some con-
cientis SMAD, the Smooth Median Absolute De- straints about the geometry of the scene are introduced).
viation (Rousseeuw and Croux, 1992):
ho1 comparison is based on all their 38 images instead of
SMAD(f|,f ) = § (f —fr —medf —f))2 4.
(fi.f0) kZo( o = Iy -2 Many criteria can be used to evaluate the quality
(5) of the results based on ground truth (Chambon and
where the ordered valuesffare represented by:  Crouzil, 2004). However, for this evaluation, we use
(fw)ong—1 < ... < (fw)n;—1n;—1. [tcanbeinter-  the percentage of erroneous matches, notedafd
preted as a robust centered (median) and troncatedhe evaluation of the complementarity of the results
distance and, in our experiments:= % (also based on &) because they are the two most im-
portant aspects to consider in-order to evaluate the im-

Robust and non-parametric measures (families 4 andpact of the proposed fusion algorithm.

5) are efficient in the presence of noises and/or oc-
clusions whereas the classic ones (families 1 and 2)
obtain better results when there is no major problems.
The derivatives measures have been designed to bd COMPLEMENTARITY STUDY
more efficient in the presence of noises, but, most of
the time, they are really less efficient than the other To evaluate the complementarity of similarity mea-
ones, except GC which seems to have better resultssures, we analyse the percentage of erroneous
than the others, in particular in low textured areas. matches () for each measure used alone, and for
Interested readers can find more details about all theeach combination, by supposing that the correct cor-
measures in (Chambon and Crouzil, 2011). respondent is always kept (when one of the measures
that are combined finds the exact correspondent), see
Table 2 for the combination of 2 measures and Fig-

3 EVALUATION PROTOCOL ure 2 for the percentage of erroneous matches with

more than 2 measures. We use these notations:

To validate our approach, 42 images, with their ® MisWithi & {1;...;Nm}, theNm tested measures;

ground truth or reference disparity maps, have been e diz(p;) the disparity of the pixep, given by the
tested (see Figure 1 for examples): 1 random- ground truth;

dot stereogram, 2 synthetic pairMyrs) and one d the disparity given by the algorithm based
real image pair?, and, finally, 38 real pairs in- * oIrEFilh)é correla?ionym%asumy g
troduced by Scharstein and Szeliski (9 in 2002 '

(Tsukub (Scharstein and Szeliski, 2002), 2 in 2003 ® dic"(pr) the theoretical or optimal combination of
(Cone$ (Scharstein and Szeliski, 2003), 6 in 2005 Nm measures.

and 22 in 2006 Alog)). The last ones are the most More formally, the optimal combinations of the re-
complex scenes. The most consequent evaluation prosults ovemN,, measuresNm € {2;...;41} because in
tocol to highlight the different performances of global our previous work 41 measures have been studied),

methods is given by the authors of (Scharstein and genoteddi, is simply estimated by following this
Szeliski, 20023. Compared to their protocol, our rule, for each pixep:

2http:/lwww.irit. fr/~Benoit. Bocquillon/MYCVR/ it 31 eNil" 3N} Wherﬁf (Pr) = chn(p1)
research.php http://www.irit.f/Benoit.Bocquillon/ then e = tkn(pr) anddic™ is correct
MYCVR/research.php elsed;" is erroneous.

3http:/ivision.middlebury.edu/stereo/evall We have tested these configurations:
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(C1) Npy=2: All the 41 x 41 combinations have been (1) The comparison of the two most complementary

evaluated and it highlights the best combination:
GC and SMAD with only 1413% for the mean
percentage Eon the 42 images.

Npn =41 All the 41 measures have been theo-
retically combined and the results show that the
percentage E can be decreased toZ6%.

Nm € {3;...;40}: When we used the best com-
bination GC-SMAD, any kind of measures can
be added, the performances are quite equivalent.
With 3 measures, the percentage @#ecreases to
about 13% and, then, it goes slowly to the min-
imum percentage & (about 1% for each added
measure) reached by the optimal combination of
41 measures. Moreover, when more than 10 mea-
sures are used,/Hs close to this minimum.

First, the results show how the local matching with
one correlation measure can be theoretically im-
proved, and, second, which measures are the most
complementary. In Table 2, we can remark that com-
bining different measures can highly improve the re-

(C2)

(Cs)

measures As expected by the definitions of these
measures, this visualization illustrates that SMAD
compensates for the weaknesses of GC in occlu-
sion areas (or near occlusion areas) whereas GC
compensates for the weaknesses of SMAD in non-
occluded areas and, in particular, areas that are
low textured, see (a) in Figure 3.

(2) The areas with 1 correct correspondent over 5,

10 or 41 correspondents -The most distinctive
measure is GC, i.e. it is the most complementary
measure to the other measures. SMAD is the sec-
ond most complementary measure to the others,
see (b) for 5, (c) for 10 and (d) for 41 in Figure 3.
Moreover, with 10 different correlation measures,
the results are quite near the results with 41 mea-
sures. And, our last conclusion is that combin-
ing more than 2 measures seems to be interesting
because, most of the time, more than one mea-
sure obtains the correct correspondent. This last
remark has inspired the fusion algorithm that is
described in the next section.

sults: on the whole image, from 7% of improvement
(2 measures combined) to 17% (41 measures).

Table 2: Percentages of erroneous matcheg (#th each (@)
of the 5 best correlation measures and the best combinations

of 2 correlation measures.

MEASURE ER MEASURE ER
NCC 23.2 LSAD 23.3
GC 21 CENSUS 20.2 :
SMAD  [27.9] GC-SMAD [14.13 © N
* . ‘+L.:éreuca‘ pr—— COLOR CODES
o 5w Measure NCC LSAD GC CENSUS SMAD
25 5 SENSUS Non‘
i ® SMAD ocC. . .
2| Occ. [ |

Figure 3: Study of complementarity (an example with im-
age of Figure 1) — The pixels in grey levels correspond to
\ pixels with more than 1 correct match over thg combina-
N tions. The darker the pixel, the higher the number of correct
1 matches. The color codes are used when only one measure
gives the correct match. Moreover, we discern the occluded
areas Qcc.) from the non-occluded areablgn-occ.). In
(a), it shows that SMAD is efficient near occlusions whereas

. GC is more efficient than SMAD in low textured areas.
Figure 2: Percentage of erroneous matches versus the num-

ber of correlation measures theoretically combined. This

graph illustrates the maximal number of measures that areIn conclusion, we have decided to present an algo-

interesting to combine (10) but it also highlights the bigtge  rithm that combines\, different measures and we il-

improvement obtained with only 2 measures. lustrate the interest of this kind of algorithm by using
the two complementary measures: GC and SMAD.

Percentage of erroneous matches
@

i

e,
teee o —

s . . . . . .
0 5 10 15 20 25 30 35 40 45
Number of measures

The following analyses illustrate these results. Us-
ing four maps, see Figure 3, we propose to visualize:
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5 ALGORITHM OF FUSION

In our first proposition of combination (Chambon and
Crouzil, 2004), the algorithm was designed to take

into account occlusions. In consequence, as expected,
the results are good in non-occluded areas and also

in occluded areas. The goal of this new algorithm
is to improve this work by combining the advantages
of each measure according to each kind of regions in
order to take into account more difficulties, like low

textured or noisy regions. Towards this goal, instead
of detecting the occlusions, we work directly on how

to merge the disparities by taking into account their

For (each pixeby)
d = argminA(di(p;)) with

ie{1,Nm}
AG(P) = [(P) ~ s S dlp)
keA(pr)

with A((p|) the neighborhood gf*.
If (d <¢g)®

then d™(py) — d

elsep is occluded.

variations in several matching maps (each map has6 MATCHING RESULTS

been obtained with a different correlation measure).
Our method of fusion is based on two steps, the
principle being to estimate a disparity map with each

For this part, the fusion algorithm has been tested
with the fusion of the two most complementary mea-

measure and then to merge the results applying thesures: GC and SMAD. In order to try to detect oc-

following two rules:

(1) If more than one disparity map give the same
match, the correspondence is validated and this
result is considered as reliable.

(2) In an “undetermined area” (i.e. rule (1) is not
respected), the “most reliable” disparity is kept.
The difficulty is to determine the most reliable. In
this paper, we consider the disparities found in the
neighborhood in the matching map of each con-
sidered measure.

Formally, these two rules can be defined as:

(1) Initialization for each pixep, — The termd'f\lm is
the final disparity, after the fusion &, correla-
tion measures.

If3d| ((d = argmaMe(py) && (d > %))

then di(py) — d

else the disparity is undetermined.

We define :

Me(pr) = #{i[di(pi) == €}.

Refinement —For each pixelp; without dispar-

ity, we estimate the ambiguity, denoted by A, of
each possible disparig(p;). For the estimation

of the function A, which represents how much the
estimated disparity is reliable, we suppose that if
most of the neighbors have the same disparity (in
the same result obtained with the same correla-
tion measure) the estimated disparity can be con-
sidered as sure. In consequence, for estimating A,
we compare the studied disparity with the mean
of the disparities in the neighborhood, denoted by
AL. The disparity with the lowest ambiguity is
kept only if this ambiguity is not important, i.e.
higher than a given threshotd

(2)

602

clusions and erroneous matches, we use the symme-
try constraint that consists in estimating correspon-
dences from the left image to the right image and
then from the right to the left and in considering non-
coherent matches as occluded pixels (these occluded
pixels are shown in black in each disparity map). Ta-
ble 3 shows the improvements of the percentage of
erroneous matches obtained with the new algorithm
of fusion on all the 42 tested images. The decreasing
of this percentage is from£7 to 408 (with complex
images), i.e. the images difficult to match because of
the occlusion areas or the untextured areas. However,
this improvement did not reach the theoretically max-
imal improvement that is showed in Table 2. Another
way to appreciate the quality of the results is to look
at the disparity maps that are given in Figure 4. The
disparity maps obtained by fusion are the best ones
because they contain less false negatives than the oth-
ers. Moreover, the occlusion areas are better delim-
ited (the contours are clean and contain no “holes”).
As in the first step we have to estimate each dispar-
ity map induced by each measure, the execution time
is the sum of the execution time of each correlation-
based algorithm. The fusion algorithm does not take
much time in comparison to the second step. In con-
sequence, the higher the number of merged results,
the higher the execution time and the execution time
depends on the chosen measures. In our test, for ex-
ample with Tsukuba GC takes 16 s and SMAD
39.77 s, so finally, the fusion algorithm takes about
1 minute.

4The 8 neighbors have been taken into account.
5We have chosea= 1.
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Table 3: Precentage of erroneous matchés represents ~ measures (in the first step of the algorithm). More-
the images with untextured areas, liksukubgpair, O, the over, we will study the influence of the number of
images with a lot of occlusions, lik&loe pair andR, the measures involved in the proposed algorithm.
images with no major difficulties, lik€onespair (see Fig-

ure 4 for these images). The term Tc refers to the results

obtained with a theoretical or optimal fusion, see Table 2.
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