EFFICIENT UNIFORM GRIDS FOR COLLISION HANDLING IN MEDICAL SIMULATORS

Marc Gissler, Markus Ihmsen and Matthias Teschner

Computer Science Department, University of Freiburg, Freiburg, Germany

Keywords: Spatial data structures, Collision detection, Collision response, Cell indexing, Spatial hashing, Cuckoo hashing.

Abstract: We investigate spatial acceleration structures within collision handling in scenarios with “worst-case” spatial layout. These are scenarios where lots of collisions and interactions persist over large time intervals. We focus on acceleration structures based on uniform grids and assess their efficiency in construction, update and query. Z-curves as a technique for the mapping of spatial locality to uniform grids are analyzed to improve the cache-hit rate. The findings are applied to a deformable collision framework. Experiments are performed on scenarios that are typical for medical simulators. They often exhibit the ”worst case” spatial layout mentioned above.

1 INTRODUCTION

Collision handling and the computation of the dynamics are commonly the two main tasks in physically-based animations. While the computation time for the dynamics is generally constant, it can significantly vary for the collision handling dependent on the spatial configuration of the environment. This is due to the fact that spatial acceleration structures are employed. They reduce the search space for collisions to pairs of primitives that are in the same spatial partition. On the other hand, the collision handling can get rather expensive in application scenarios where lots of collisions persist over large time intervals, e.g. the mesh representations of organs in medical simulations are in constant interaction with each other. Various solutions exist to reduce the computational work in such cases. One is to keep the candidates for intersection tests to a minimum by optimizing the spatial partitioning or by improved culling (Tang et al., 2008). On the other hand, the construction, update and query performance of the spatial acceleration structures could be improved. Time-critical collision handling is a research topic that is concerned with time constraints at the expense of accuracy (Hubbard, 1996). With respect to dynamics simulations, an approximate collision handling might still yield visually plausible results (O’Sullivan and Dingliana, 2001; Gissler et al., 2009). We focus on the research areas of efficient data structures, parallel algorithms and approximate techniques.

Our Contribution: We investigate parallel data structures based on uniform grids in terms of efficient construction, update and query. We discuss various representations of uniform grids and their particular properties. We describe Z-curves as a technique for the mapping of spatial locality to uniform grids and analyze their impact on the cache-hit rate. Regarding the index sorting approach, we analyze various sorting algorithms. The findings are applied in the collision handling step, i.e. in both collision detection and collision response, of a deformable collision framework. Experiments are performed on scenarios from medical simulators. They are specifically challenging because of their spatial layout, i.e., the simulated objects are in constant interaction with each other.

2 RELATED WORK

The problem of collision detection has been extensively studied in the areas of computer graphics, simulation, computational geometry and robotics. For excellent surveys, we refer the reader to (Lin and Manocha, 2003; Ericson, 2004; Teschner et al., 2005; Fares and Hammam, 2005; Kockara et al., 2007). A comprehensive survey on the underlying search meth-
Spatial Data Structures and Parallelization

3 Spatial Data Structures

3.1 Uniform Grid

A uniform grid partitions the simulation domain into regular grid cells of size \(d \). If the domain is bounded by an axis-aligned bounding box (AABB) with \(e^{\text{min}} \) and \(e^{\text{max}} \) being its minimum and maximum extent, the grid cells can be stored in an array of size \(s_x \times s_y \times s_z \) and \(s = (s_x, s_y, s_z) = \left\lfloor \frac{1}{d} (e^{\text{max}} - e^{\text{min}}) \right\rfloor \). The cell index \(c \) of a point with position \(p = (x, y, z) \) can be computed as:

\[
c = i + j \times s_x + k \times s_x \times s_y
\]

with \(i, j, k \) as:

\[
(i, j, k) = \left\lfloor \frac{x - e^{\text{min}}}{d} \right\rfloor, \left\lfloor \frac{y - e^{\text{min}}}{d} \right\rfloor, \left\lfloor \frac{z - e^{\text{min}}}{d} \right\rfloor
\]

Each cell has to store references to all the primitives that overlap the cell. Usually, the references are stored in either linked lists or dynamic arrays. Using dynamic arrays requires more memory, but improves the locality of the references.

3.2 Compact Grid

A compact grid both requires low memory and keeps the locality of the references (Lagae and Dutré, 2008). It consists of two static arrays. The first is an indirect array \(L \) that stores references to primitives. The second array \(C \) contains the indexed cells of the grid. Each grid cell stores a pointer to the beginning of an interval within the array \(L \). The end of the interval is implicitly given by the pointer in the adjacent cell within \(C \). Primitives that are referenced within this interval are contained in the respective cell. Thus, the references in \(L \) can be seen as sorted according to their cell index.

Parallel Construction: We employ the algorithm proposed in (Kalogian and Slusallek, 2009) to construct the compact grid. Its independent of the primitive distribution, because the construction problem is reduced to sorting. The algorithm first iterates over all primitives and counts how many cells the primitives intersect to reserve space for \(L \). The entries of \(L \) are computed in a second iteration. An entry consists of a cell index and a pointer to the respective primitive. \(L \) is then sorted according to the cell index. Then, all primitives that lie within the same cell are contiguous in \(L \). In the final step, parallel reduction is performed to compute the offsets stored in \(C \). The complexity and performance of the compact grid construction are defined by the employed sorting algorithm.

Parallel Query: The query is performed by looping in parallel over the corresponding primitives, e.g. the tetrahedrons, per model. The cell index is computed and the primitives, e.g. the points, that are assigned to the same cell are tested for intersection by lookups in \(L \) via the offset stored in \(C \).

3.3 Spatial Hashing

In contrast to basic uniform grids or compact grids, spatial hashing can be employed to subdivide a possibly infinite simulation domain into a regular grid. Therefore, a hash function maps the three-dimensional cells of the infinite grid to an one-dimensional hash-table of finite size (Teschner, et al., 2003). For example, a point with position \(p = (x, y, z) \) is hashed into a hash table of size \(m \) by computing its cell index \(c \) as follows:

\[
c = \left[\left(\left\lfloor \frac{x}{d} \right\rfloor \times u + \left\lfloor \frac{y}{d} \right\rfloor \times v + \left\lfloor \frac{z}{d} \right\rfloor \times w \right] \mod m \right] + c
\]

where \(u, v, w \) are large prime numbers and \(d \) is the cell size. If multiple points are hashed to the same hash cell, chaining is employed to resolve hash collisions.
i.e. the points are stored in a linked list specific to this cell. The parallel construction of such a hash table is difficult to realize. It would require serialization of the access to the list structure if two points are hashed to the same cell simultaneously. Frequent memory allocations for the linked lists might be necessary if more points move in and out of cells during the simulation. (Teschner et al., 2003) reserve a certain amount of memory for each list during initialization to avoid this problem, which is quite memory-inefficient.

Cuckoo Hashing: A parallel hashing approach is proposed in (Alcantara et al., 2009). It combines the efficiency in construction time of the classical perfect hashing scheme (Fredman et al., 1984) with multiple-choice perfect “cuckoo” hashing (Pagh and Rodler, 2004) that achieves high occupancy. The approach employs a two-level construction. In the first step, the keys are hashed to a set of buckets. The buckets are aligned in one large array B where all keys within the same bucket are contiguous in memory. Step two works on each bucket independently. The multiple-choice hashing is performed on three hash tables T_0, T_1, T_2 each with its own hash function. Each bucket gets assigned a certain interval within the hash tables. All keys within a bucket are hashed to the first hash table T_0. If a hash collision occurs, the currently processed key is stored in T_0 and the previously stored key is kicked out. This is repeated iteratively for all keys that are kicked out. In each iteration i, the remaining keys are stored in hash table T_j, with $j = i \mod d$. It is likely that there is a key which is constantly kicked out of the hash tables. If this is the case, new hash functions have to be chosen and the process has to be repeated entirely. With increasing hash table size, this is becoming unlikely and negligible in practice. The key value is the cell index. Naturally, as the primitives within the same grid cell get the same cell index, the approach has to be extended to multi-valued hashing. Therefore, each key gets a counter and an index pointer in order to know how many values it represents within the hash table and where to find those values within a secondary buffer array.

Discussion: The data structures of the compact grid and cuckoo hashing are remarkably similar. The secondary buffer array resembles L and the hash tables replace C. In contrast to the compact grid, C does not scale with the simulation domain, but with the number of primitives. The array sizes for the buckets and hash tables are reportedly chosen such that the occupancy reaches 80% for the buckets and 70% for the hash tables on average (Alcantara et al., 2009).

4 IMPLEMENTATION

The reduced memory requirements and the increased efficiency of compact grids compared to basic uniform grids can be attributed to the fact that L is a static array (Lagae and Dutré, 2008). However, the static array demands a reconstruction from scratch in dynamic scenes if the number of references to primitives varies from frame to frame and, thus, changes the size of L. In the following, we discuss three aspects related to these arguments.

Cell Size: The cell size influences the number of primitive pairs that have to be tested for intersection. However, it also influences the performance of the sorting algorithm. The more cells the primitives cover, the larger the data array and the lower the sorting performance. In (Teschner et al., 2003), it is suggested that the average edge length of all tetrahedrons should be chosen to achieve optimal performance. In general, we stick to this recommendation. However, if the tetrahedrons are close to regular, the maximal edge length is chosen.

Parallel Sorting: The complexity and performance of the compact grid construction are dominated by the employed sorting algorithm. We tested a parallel radix sort and a parallel re-implementation of the sorting algorithm of the Standard Template Library (STL) of C++. The last one is part of the OpenMP Multi-Threaded Template Library (Yliuoma, ; Ope, 2005). Inherently, the radix sort does not take advantage of pre-sorted sets of keys. Thus, its performance is constant. On the other hand, the STL-sort benefits from sets of keys that are predominantly sorted. Such sets appear if the spatial configuration of objects in a simulation domain is temporally coherent i.e. is similar to the previous frame. In such a case, only a small number of keys moves to new spatial cells. A sorted set is quickly re-established. However, using STL-sort on a largely distorted set of keys might prove to be slower than radix sort depending on the input size. In such cases it might be beneficial to employ the radix sort algorithm. Therefore, the amount of distorted keys is determined by keeping track of the primitives’ bounding boxes. If too many bounding boxes move into new spatial cells, a threshold triggers the switch to radix sort, and back. We discuss timings for both sorting algorithms in the results section.

Z-curves: Primitives that intersect more than one cell have to query the primitives stored in all the intersected cells. It depends on the indexing function, whether the order of the referenced primitives in L is memory-coherent, i.e. are likely to be contiguous in memory. Space-filling curves provide a solution to
Table 1: Scene statistics for the three test scenarios.

<table>
<thead>
<tr>
<th>scene statistics</th>
<th>stacking</th>
<th>eye</th>
<th>skull</th>
</tr>
</thead>
<tbody>
<tr>
<td>#points</td>
<td>4840</td>
<td>3167</td>
<td>8293</td>
</tr>
<tr>
<td>#edges</td>
<td>19620</td>
<td>16248</td>
<td>38352</td>
</tr>
<tr>
<td>#tris</td>
<td>9600</td>
<td>6472</td>
<td>13592</td>
</tr>
<tr>
<td>#tetras</td>
<td>10000</td>
<td>9819</td>
<td>23225</td>
</tr>
</tbody>
</table>

this problem. They are a common tool in computer science for mapping multidimensional data to one dimension while preserving spatial locality as good as possible. We propose to employ the Lebesgue space filling curve, also called Z-curve, to construct an array \(C \) that is more spatially compact. They can be efficiently computed by bit-interleaving (Pascucci and Frank, 2001).

5 RESULTS

We evaluate the performance of the presented methods in the context of interactive deformable modeling using a set of test scenarios. Therefore, we have integrated the approaches into a deformable modeling framework based on the Finite Element Method for tetrahedrons in order to accelerate the collision handling. The timings have been obtained on a commodity computer with one quad-core 2.66 GHz Intel Xeon E5430 CPU, 12 MB L2 cache and 4 GB of memory. For the scaling experiments, a second computer with two quad-core 3.16 GHz Intel Xeon X5460 CPUs, 2x6 MB L2 cache and 16 GB of memory has been used. The number of cores is given with the timings, respectively. The methods are implemented in high-level C++ with STL. No low-level optimization such as SIMD is used. Parallelization of the code is achieved using OpenMP (Ope, 2005).

Test Scenarios: The framework is applied to three test scenarios. Their statistics are given in Table 1. Stacking of deformable membranes is performed in the first scene. Here, the number of collisions increases until all membranes are stacked up.

Figure 1: The prediction of skin-tissue deformations due to bone realignments supports the preoperative planning in craniofacial surgery. The lower jaw is repositioned and the effects on the skin tissue is computed.

In the second and third scene, we apply the framework to medical simulations. In the eye data set, the interaction between skull, tissue, muscles, nerves, eye bulb and titanium mesh is simulated. A titanium mesh is used in orbital reconstruction to fix fractures to the orbital floor (see Figure 4). Thus, the eye bulb is repositioned. All objects are in constant interaction.

In the skull data set, the interaction of the soft tissue with the skull, upper jaw and lower jaw is simulated. The lower jaw is repositioned and the effect on the skin tissue is simulated (see Figure 1).

Figure 2: Collision-handling timings for the stacking scene using spatial hashing (black) and index sort with one (red), two (green) and four (blue) cores.

Index sort vs. Serial Hashing: First, we compare the parallel index-sort approach (IS) to the serial hashing approach (SH) (Teschner et al., 2003). We observe a more efficient update of the points stored in the static array of IS when compared to the repeated insertion of the points into the dynamic arrays within the hash cells, even when using only one core. The query is slower in IS when using one core, due to the standard parallelization technique of adding one additional iteration to determine the size of the output array in order to write out the collisions in parallel. However, this is quickly compensated with each additional core, see Figure 2. The first frame shows a high initial computation time, since the array \(L \) is sorted for the first time and spatial locality is established in \(L \). The frame rate stays interactive with the compact grid approach, even when all membranes are stacked up.

Index Sort vs. Cuckoo Hashing: We set the size of the buckets and the size of the hash table so that an occupancy of 71% is achieved on average. Over-filling of the buckets or hash collisions that enforce a repeated insertion has never occurred in our test runs,
Figure 3: Timings for the eye scene using index sort (red) and cuckoo hashing (blue) with one, four and eight cores.

Figure 4: Deformable modeling supports the preoperative planning in craniomaxillofacial surgery. In orbital reconstruction, a titanium mesh is placed beneath the bulb for repositioning. All simulated objects are in constant interaction. The spatial configuration only changes slowly over time.

so we refer to the empirical results in (Alcantara et al., 2009). The index sort approach again shows superior insertion times with respect to points, but falls back when inserting the footprints of a large number of colliding edges. On the other hand, the cuckoo hashing introduces some overhead. This is due to the multiple hash key computations for the three hash tables and keys that iteratively have to find an empty hash cell. Performances are given in Figure 3.

Parallel Scaling: Ideally, the performance gain from parallel algorithms should be linear in the number of cores. However, this cannot be expected for several reasons. First, there is some parallelization overhead for synchronization and communication between different threads. Second, some parallel algorithms have to perform additional computations that only pay off after providing a certain amount of additional cores, e.g., additional loops over data arrays. Third, certain portions of an algorithm cannot be parallelized. According to Amdahl’s law, this limits the achievable speedup (Amdahl, 1967). For example, if 90 percent of the algorithm can be parallelized, the maximum speedup is 10, regardless of the number of cores. Note that the law assumes that the problem size remains the same when parallelized. The proportion of a program that is run in parallel can be estimated using:

\[
P_{\text{estimated}} = \frac{1}{P_{\text{measured}}} - 1 / \left[\frac{1}{\text{processors}} - 1 \right].
\]

We measure the speedup using the dual quad-core machine with all eight cores and get an average speedup of 3.2 for the index sort approach and 2.6 for the cuckoo hashing (based on the data shown in Figure 3). Using the equation above, the estimated amount of code is 80% for the index sort approach and 70% for the cuckoo hashing approach. We see two reasons for these results. Regarding the index sort approach, the STL-sort shows poor scaling behavior which leads to a speedup of 1.5 for the update functions. This is compensated by speedups of 5 in the query functions. Regarding the cuckoo hashing, the work is distributed to the threads per bucket. When multi-value hashing is performed, the fixed size of the buckets’ hash tables leads to unequal work loads in the threads. Dynamically sized tables would account for this, but would require additional hashing to determine the actual number of values hidden behind the unique keys.

Sorting Performance: Two parallel sort algorithms have been implemented. The results support the assumptions made. For an input size of 128000 entries in \(L \), the radix sort takes 14 ms on the 4-core system. The STL-sort takes less than 6 ms if 10% of the keys change their value and 3 ms for 2%. A randomly filled array performs about equally in both approaches. Thus, the STL-sort is always to be preferred for scenes with a complexity like the ones we show here.

Z-curve Reordering: We employ Z-curves to increase the spatial locality in memory. The index sort only profits marginally when rearranging \(L \). However, the query of edge-triangle intersections gets a performance boost by about 8% on average. When querying the intersection for one edge, the triangles that are spatially close and likely to intersect are also close in memory and likely to be already loaded into the cache.

6 CONCLUSIONS

We have presented two acceleration data structures based on uniform grids for the efficient collision handling in a deformable modeling framework. Important aspects critical to the performance of such a system were discussed. We have analyzed Z-curves for the mapping of spatial locality to the grid representations. Further, the STL-sorting algorithm exhibits better performance than the radix sort when applied in the index sort approach. However, improved parallel sorting algorithms have to be developed to achieve
better speedups. We have analyzed the performance aspects of the presented uniform grid approaches and gave a detailed scaling analysis. The efficient update of the data structures as well as the efficient query specifically improve the performance in medical simulation scenarios where lots of collisions persist over large time intervals.

ACKNOWLEDGEMENTS

This work has been supported by the German Research Foundation (DFG) under contract numbers SFB/TR-8 and TE 632/1-1.

REFERENCES

