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Abstract: This paper presents a new approach to solve the classic perspective-three-point (P3P) problem. The basic 
conception behind is to determine the support plane, which is defined by the three control points. 
Computation of the plane normal is formulated as searching for the maximum likelihood on the Gaussian 
hemisphere by exploiting the geometric constraints of three known angles and length ratios from the control 
points. The distances of the control points are then computed from the normal and the calibration matrix by 
homography decomposition. The proposed algorithm has been tested with real image data. The computation 
errors for the plane normal and the distances are less than 0.35 degrees, and 0.8cm, respectively, within 
1~2m camera-to-plane distances. The multiple solutions to P3P problem are also illustrated. 

1 INTRODUCTION 

Perspective-n-Point (PnP) is a classic problem in 
computer vision field and has important applications 
in vision based localization, object pose estimation, 
and metrology, etc (Fischler et al., 1981, Gao et al., 
2003, Moreno-Noguer et al., 2007,  Vigueras et al., 
2009, Wolfe et al., 1991, Wu et al., 2006, and  
Zhang, et al., 2006). The task of PnP is to determine 
the distances between camera and a number of 
points (n control points), which are well known in an 
object coordinate space, from the image, that is 
taken by a calibrated camera. Existing PnP 
researches mainly focused on n=3, 4, 5 cases, also 
known as P3P, P4P, and P5P problems. Among 
them, P3P (n=3) problem requires the least 
geometric constraints and it is also the minimum 
point subset that yield finite solutions. Existing P3P 
researches can be classified into two categories. 
Researches in the first category try to solve P3P 
using different approaches, such as algebraic, 
geometric approaches, etc (Fischler et al., 1981, 
Moreno-Noguer et al., 2007, Vigueras et al., 2009, 
and Wolfe et al., 1991). Researches in the second 
one try to classify the solutions and study the 

distribution of multiple solutions (Fischler et al., 
1981, Gao et al., 2003, Wolfe et al, 1991, Wu et al., 
2006, and Zhang, et al., 2006). The P3P problem 
was first proposed in (Fischler et al., 1981), which 
proves that P3P has at most four positive solutions. 
Wolfe et al. gave geometric explanation of P3P 
solution distribution and showed that most of the 
time P3P problem gives two solutions (Wolfe et al, 
1991). Gao et al. gave a complete solution set of the 
P3P problem (Gao et al., 2003). More work on P3P 
and on the general PnP problems can be found in the 
literatures (Moreno-Noguer et al., 2007, Vigueras et 
al., 2009, Wu et al., 2006, and Zhang, et al., 2006). 

The work in the paper falls into the first 
category, which tries to address P3P by determining 
the support plane. We show that the key to P3P 
problem is to compute the plane normal. 
Computation of plane normal is formulated as a 
maximum likelihood problem from the geometric 
constraints of three control points so that the normal 
is computed by searching for the maximum 
likelihood on the Gaussian hemisphere. Once the 
normal is calculated, we can determine the support 
plane, compute the distances of the control points to 
the camera, and solve the P3P problem. 
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2 PLANE RECTIFICATION 
FROM HOMOGRAPHY 

Under a pin-hole camera model, a 3D point with the 
homogeneous coordinates [ ]TZYXM 1=  is 
projected onto an image plane, with the image 

[ ]Tvum 1=  given by the following imaging 
process (Hartley & Zisserman, 2000) 

[ ] [ ] [ ]TT ZYXtRKvu 11 ×≅  (1) 

where ≅  means equal up to a scale, K  is the 
calibration matrix, R  and t are the rotation matrix 
and the translation vector, respectively. 

Assume a reference plane coincides with the X-
O-Y plane ( 0=Z ) of the world coordinate system. 
We can derive the relationship between a 2D point 

[ ]TYXM 1= on the plane and its image m  
from Eq. (1) as follows (Zhang, 2000) 

[ ] [ ]T
H

YXtrrKm 121 ×≅  
(2) 

where ir  is the ith column of the rotation matrix. 

Hence, M and m are related by a 3×3 matrix, 
called homography. It is possible to compute the 
homography from the vanishing line or plane 
normal, and the camera calibration matrix, according 
to the stratified reconstruction theory. The 
computation details are referred to (Hartley & 
Zisserman, 2000, Liebowitz & Zisserman, 1998). 

Once the homography is determined, we can use 
it to rectify the physical coordinates of points on the 
reference plane from Eq. (2) as follows 

mHM 1−≅  (3) 

Once the coordinates are rectified from Eq. (3), 
more planar geometric attributes can computed, such 
as distance, length ratio, angle, shape area, 
curvature, etc. These computed geometric attributes 
are defined as rectified geometric attributes. 

3 THE PROPOSED ALGORITHM 

3.1 P3P from Support Plane  

The formulation of P3P problem is referred to 
(Fischler et al., 1981, and Wolfe et al., 1991), which 
states that “given the camera calibration matrix, the 
relative positions of three points, also called control 

points, and the images of the control points on the 
imaging plane, compute the distance of each control 
point to the camera center”. 

The three control points define an unique support 
plane. If the plane is well determined, e.g., the 
normal and the distance, we can compute its 
intersections with the re-projection rays, which can 
be computed from the images of the control points 
and calibration matrix. Hence, the 3D coordinates of 
the intersections (also control points) are determined 
readily, and the distances are thereafter computed. 
According to stratified reconstruction theories, the 
key to determine a plane is the normal (Hartley & 
Zisserman, 2000, Liebowitz & Zisserman, 1998). 
Once the plane normal is calculated, a metric 
reconstruction of a plane is ready by using the 
calibration matrix (Hartley & Zisserman, 2000, and 
Liebowitz & Zisserman, 1998). An actual distance 
e.g., distance between two arbitrary control points, 
can upgrade a metric reconstruction to Euclidean 
one. As a result, the distance of the plane is 
computed readily. Therefore, the key to P3P is to 
compute the normal of the support plane.  

3.2 Plane Normal Computation 

3.2.1 Basic Geometric Constraints from 
Three Control Points 

Let 321 ,, PPP be the three control points, from 
which, we can compute three lengths in-between as 
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where •  is Euclidean distance operator.  Hence, 
three length ratios can be derived as 
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We can also compute three angles from the 
triangle defined by the three points as 
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(6) 

From Eq. (5) and Eq. (6), we can derive six 
geometric constraints ( )6,2,1=iCi  on the plane 
normal from the three control points as follow 
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( ){ }( )6,2,1| === iuNSCC iii  (7) 

where iu  is the geometric attribute of the ith 

constraint, e.g., the value of iλ   or iθ , as specified 

in Eq. (5) and Eq. (6), and ( )NSi  is the rectified 
geometric attribute, which can be computed from 
homography, given the plane normal. 

3.2.2 Maximum Likelihood Model 

We try to compute the plane normal from the six 
geometric constraints, as specified in Eq. (7) above. 
This can be formulated as to maximize the following 
conditional probability (Hu & Matsuyama, 2010), 
which is given as follows 

( )621 ,,|maxarg CCCNP
N

 (8) 

where N  is the plane normal to compute. 
Therefore, Eq. (8) tries to compute the plane normal 
with the highest probability, given the six geometric 
constraints from the control points. Actually, it is 
difficult to solve Eq. (8) directly. By using Bayes’ 
rule, we can re-arrange Eq. (8) as  

( ) ( ) ( )
( )621

621
621 ,,

|,,,,|
CCCP

NPNCCCPCCCNP =  (9) 

where ( )NCCCP |,, 611  is known as the 
likelihood, ( )NP  and ( )621 ,, CCCP  are the prior 
probabilities for the plane normal directions and 
geometric constraints, respectively. Assume that the 
six geometric constraints ( )6,2,1=iCi  are 
independent to each other and the plane normal 
directions are uniformly distributed on the Gaussian 
sphere. Hence, we can derive from Eq. (9) 

( ) ( )∏
=

∝
6

1
621 |,,|

i
i NCPCCCNP  (10) 

Hence, Eq. (10) shows that solving Eq. (8) is 
equivalent to compute the maximum likelihood. In 
other words, the solution to the normal of the 
support plane is the one, which yields the maximum 
likelihood in Eq. (10). 

We define ( )NCP i |  in Eq. (10) as the likelihood 
or probability that the ith constraint is satisfied, given 
the plane normal. It is reasonable to assume that the 
likelihood depends on the rectification distortion. 
And for the ith geometric constraint, the rectification 
distortion is defined as the difference between 
( )NSi  and iu  as follows 

( ) ( ) iii uNSND −=  (11) 

The following rules are developed for the 
likelihood model: 1) the maximum likelihood should 
be obtained, where the rectification distortion is 
totally removed ( ( ) 0=NDi ); 2) more absolute 
distortion leads to less likelihood; 3) constraints 
should contribute equally to solve Eq. (10), if no 
special weights are assigned; 4) normalization is 
required, since geometric attributes may be in 
different scales or units.  

Based on the above rules, we proposed using a 
normalized Gaussian function with unit standard 
deviation to model the likelihood, which is given in 
the following form (Hu & Matsuyama, 2010) 
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3.2.3 Searching for Plane Normal on 
Gaussian Hemisphere 

Substitution Eq. (12) into Eq. (10) yields 
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A searching approach is proposed in order to 
solve Eq. (13). Actually, Gaussian sphere surface 
defines the searching space of the plane normal 
directions. In practice, we can search on Gaussian 
hemisphere instead of Gaussian sphere, since all 
visible planes are in the front of the camera. Once 
the searching space is defined, we can partition the 
Gaussian hemisphere into a number of patches, with 
each patch representing a sampled normal. And the 
likelihood for each sampled normal is computed by 
using Eq. (13), based on the basic geometric 
constraints, as specified in Eq. (7). The maximum 
likelihood is thereafter computed by sorting. And the 
corresponding normal is the final normal that we 
derive. In the case that a given P3P has multiple 
solutions, we need to find multiple local maxima to 
yield the multiple solutions to the support plane 
normal on the likelihood map. This will be 
illustrated in the experiment part. 

3.3 Distance Computation from 
Homography 

Once we compute the plane normal, we can derive 
the homography between the support plane and its 
image by using the calibration matrix, according to 
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the stratified reconstruction theories (Hartley & 
Zisserman, 2000, Liebowitz & Zisserman, 1998). 
Note that the plane normal and camera calibration 
matrix only allow the distances recovered up to a 
common scale (a metric reconstruction of the plane). 
In order to determine such scale factor, we need to 
know one actual length as the reference. For a P3P 
problem, the reference length can be derived from 
the distance of two arbitrary control points.  

With the computed homography and camera 
calibration matrix, the camera exterior parameters, 
including the rotation matrix and translation vector 
can be recovered by decomposition as follows 
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(14) 

where ⊗  is the cross product operator, and ih is 
the ith column vector of the homography. More 
details regarding camera/object pose computation 
using Eq. (14) can be referred to the literatures 
(Liebowitz & Zisserman, 1998, and Zhang, 2000). 
As a result, the 3D coordinates of the control point 
on the support plane in the camera coordinate 
system can be computed from the calculated rotation 
matrix and translation vector by using coordinate 
system transformation. Thereby, the distances of the 
control point to the camera are readily computed 
from the recovered 3D coordinates. Finally, the P3P 
problem is solved. 

4 EXPERIMENTAL RESULTS 

The proposed algorithm was tested with the actual 
image data. One issue for real image experiments is 
that the ground truth data, such as the normal of the 
support plane, the distances of the control points, is 
difficult to obtain. To overcome this problem, we 
carefully designed the experiment and used the 
chessboard pattern in the experiment, which is also 
used by Zhang’s calibration algorithm (Zhang, 
2000). As can be observed in Figure 1 below, four 
images of the chessboard pattern were taken by a 
Nikon COOL-PIX 4100 digital camera in an indoor 
office. All the images have the resolution of 
1600×1200 (in pixel). From each image, we can 
extract 48 (6 rows×8 columns) corner points from 
the grids. For the four images in the tests, the camera 
was placed at different positions with different 
orientations so as to make the proposed algorithm 
work in different situations. 

 

 
Figure 1: Images of chessboard pattern, from upper left to 
lower right numbered 1,2,3,4. 

Afterwards, the camera was calibrated from the 
chessboard images (Zhang, 2000). As a result, both 
the camera intrinsic and exterior parameters, 
including the rotation matrix and translation vector, 
were calculated. In the experiment, the camera 
calibration matrix was calculated as follows 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
8.6762.41690
1.87405.4175

K  

From the computed camera exterior parameters, 
we calculate the normal of chessboard plane in the 
camera coordinate system from each image, which is 
the third column vector of the rotation matrix. The 
3D coordinates of the control points were computed 
from the rotation matrix and the translation vector, 
from which the distances were calculated. They 
were then acted as the ground truth data to validate 
the proposed algorithm. 

 
Figure 2: Three control points selected from the grids of 
the chessboard pattern. 

Three control points (see the points marked by 
triangles and numbered P1, P2, and P3 in Figure 2) 
were chosen from a number of forty-eight (6 rows×8 
columns) corner points on the chessboard. Hence, 
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the support plane coincides with the chessboard 
plane. From the three control points, we derived 
three length ratios and three known angles using Eq. 
(4)~Eq. (6), which were then acted as the basic 
geometric constraints to compute the plane normal 
from each of the chessboard pattern image by using 
the proposed algorithm. In the experiment, we 
partitioned the Gaussian hemisphere into 400×200 
cells for the searching algorithm, with each cell 
representing a unit normal. 

Table 1: Computation results for the normal of the support 
plane (chessboard plane). 

 Computed Normal Actual Normal Err
(in 0) 

Img1 0.078  -0.823  -0.562 0.076  -0.825  -0.560 0.20 
Img2 0.034  -0.634  -0.773 0.030  -0.631  -0.776 0.33 
Img3 -0.700  -0.134  -0.701 -0.697  -0.133  -0.705 0.26 
Img4 0.029   -0.935  -0.354 0.027   -0.934  -0.356 0.20 

Table 1 above presents the normal computation 
results, where the second column is for computed 
normal with the proposed algorithm, and the third 
for the actual normal, or the ground truth normal 
from the camera calibration results. The angle 
between the estimated and actual normal reflect the 
computation errors, which are represented in the 
fourth column (unit in degree). It can be observed 
that all error angles are less than 0.35 degrees, which 
show that the proposed algorithm is accurate. 

Afterwards, distances of the three control points 
to the camera center were computed by homography 
decomposition based on the calculated normal. The 
results are presented in Table 2 below. Also, the 
ground truth distances were derived from the camera 
calibration results, to which the computed distances 
were compared. As can be observed in Table 2, 

( )3,2,1~ =iPi  is the computed Euclidean distance of 

the ith control point to the camera, with the proposed 
algorithm, while ( )3,2,1=iPi  for the ground truth 
distance. The Euclidean distance between them,

( )3,2,1~
=− iPP ii , defines the computation error. As 

shown in Table 2, the distance computation errors 
are very small. For example, for all the four images, 
the computation errors for all the three points are 
less than 0.8cm, and the average computation error 
is 0.41 cm, within about 1.0~2.0m camera-to-plane 
distances. The results demonstrate that the algorithm 
is accurate and practical. 

Table 2: Computed distances between the control points 
and the camera (unit in cm). 

 Img1 Img2 Img3 Img4 

1
~P 164.3 109.3 114.0 199.8 

1P 163.6 109.0 114.5 199.9 

Err 0.7 0.3 0.5 0.1 

2
~P 160.6 120.4 113.1 204.7 

2P 159.8 120.2 113.6 204.6 

Err 0.8 0.2 0.6 0.1 

3
~P 176.6 114.8 126.1 216.9 

3P 175.8 114.5 126.5 216.9 

Err 0.8 0.3 0.5 0 

The multiple solutions of P3P problem was also 
studied and illustrated with the proposed algorithm, 
which is shown in Figure 3. Actually, multiple 
solutions to P3P correspond to multiple support 
planes. If a P3P problem has multiple solutions, the 
algorithm may find a solution that is different from 
the ground truth normal, because it only searches for 
the maximum likelihood. As shown in Figure 3, the 
likelihood map was generated by computing the 
likelihood for each sampled normal on Gaussian 
hemisphere using Eq. (13). In the likelihood map, 
the image intensity represents the likelihood, with 
darker intensity representing higher likelihood. And 
the maximum likelihood was then searched 
throughout the likelihood map, with the computed 
plane normal [ ]T454.0888.0070.0 −− . The 
corresponding position in the likelihood map is 
marked by a diamond (◇) (see Figure 3(b)). And the 
actual normal, also the ground truth normal is 
[ ]T590.0802.0092.0 −− , with the position in 
the likelihood map marked by a cross (+) (see Figure 
3(b)). Figure 3(c) shows the positions of thirty 
normal directions, which yield the highest 
likelihoods. They are located in two different areas, 
with two local maxima in the likelihood map (see 
Figure 3(c)), which means that it has two solutions 
to the given P3P problem. The calculated normal is 
located in the right part, while the actual normal in 
the left (see Figure 3(c)). This is consistent with the 
conclusion that P3P gives two solutions most of the 
time (Wolfe et al., 1991). The results clearly 
demonstrate that the proposed algorithm can be used 
to study and classify the multiple solutions (two 
solutions in this case) to P3P problem. 
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Figure 3: Illustration of two solutions to P3P: a) Left: 
Original image; b) Upper right: likelihood map with 
positions of the actual and computed normal marked by + 
and ◇, respectively; c) Lower right: positions of the 30 
normal directions with the highest likelihoods. 

5 CONCLUSIONS 

This paper has presented a new algorithm to solve 
P3P problem by determining the support plane. 
Plane normal computation is formulated as finding 
the maximum likelihood on Gaussian hemisphere. 
With the determined support plane, the P3P problem 
can be solved by homography decomposition. The 
algorithm has been tested by using actual images 
with good results for plane normal and for distance 
computation reported. It was also applied to study 
and classify the multiple solutions to P3P problem. 
This algorithm not only suggests a new approach to 
P3P but also complements existing P3P researches. 
Moreover, the proposed model is expected to help 
solve other PnP (n=4, 5) problems and classify the 
multiple solutions.  
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