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Abstract: A unified approach to geometric modeling of curves and surfaces is given. Both a vector-valued fourth and 
sixth order partial differential equations (PDEs) of motion are proposed. The fourth order PDE covers all 
existing PDEs used for surface modeling, and the sixth order PDE considers the curvature effect on curves 
and surfaces. In order to apply these PDEs to create curves and surfaces in real time, we have presented a 
composite power series method which guarantees the exact satisfaction of boundary conditions, and 
represents curves and surfaces with analytical mathematical formulae. We have examined the accuracy and 
efficiency of the proposed method, and employed it to a number of applications of static and dynamic 
modeling of curves and surfaces, including free-form surface generation and surface blending. It is found 
that this method has similar computational accuracy and efficiency to the corresponding closed form 
solution method, and creates curves and surfaces far more efficiently and accurately than numerical 
methods. In addition, it can deal with complicated shape modeling problems. 

1 INTRODUCTION 

Free-form surfaces and curves are conventionally 
created by surface modelers, such as Bézier, B-
spline and NURBS (Farin, 1997). Normally, 
designers obtain control over the shape of a curve or 
surface by adjusting control points. This involves a 
lot of manual manipulations, especially when a large 
number of control points are involved. To overcome 
this weakness, active research is being undertaken 
for many complementary free-form modeling 
approaches. (Hyodo, 1990) proposed a method 
generating a free-form surface defined by contours 
and sectional curves. (Miura, 2000) proposed a unit 
quaternion integral curve which is used to specify 
the tangent of a curve in order to manipulate its 
curvature more directly. (Ochiai and Yasutomi, 
2000) demonstrated a method of generating a free-
form surface using the boundary integral equation. 

With the drive towards realism, especially in 
computer animation, physically-based modeling 
represents another on-going research area where 
forces, dynamics and time-dependent deformation 
are considered. (Terzopoulos et al., 1987) employed 
continuous elasticity theory to model the shapes and 
motions of deformable bodies. Later on, this model 
was extended to viscoelasticity, plasticity and 
fracture (Terzopoulos and Fleischer, 1988), and 

dynamic deformations (Terzopoulos and Qin, 1994), 
(Qin and Terzopoulos, 1995). (Celniker and 
Gossard, 1991) developed curve and surface finite 
elements for interactive sculpting of curves and 
surfaces. By minimizing the energy functional of a 
surface, (Vassilev, 1997) proposed an interactive 
sculpting method for deformable non-uniform B-
splines. With introduction of bar network 
mechanics, a deformation method of surfaces was 
developed (Guillet and Léon, 1998). A 
comprehensive survey into physics-based modeling 
methods was made by (Nealen et al., 2006) which 
reviews the existing finite element/difference 
/volume methods, mass-spring systems, meshfree 
methods, coupled particle systems and reduced 
deformable models based on modal analysis.  

However, all these methods have to solve a large 
set of linear algebra equations, hence are 
computationally expensive and require large 
computer memory. 

Surface blending, another important application 
field of shape modeling, has also been an active 
research subject and many methods have been 
developed. (Vida et al., 1994) classified methods of 
constructing parametric blends as rolling-ball based 
blends, spine-based blends, trimline-based blends, 
blends based on polyhedral methods and other 
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methods including a cyclicde solution, PDE based-
blends and the Fourier-based blends. 

The PDE based methods, since their advent two 
decades ago, have found their applications in a lot of 
surface modeling tasks, including free-form surface 
generation (Bloor and Wilson, 1990a), n-sided patch 
modeling (Bloor and Wilson, 1989a), surface 
blending (Bloor and Wilson, 1989b), and industrial 
applications (Athanasopoulos et al., 2009). 
Compared with the conventional surface modeling 
methods, the PDE-based methods provide the user 
with a higher level control of the shape of the 
generated surfaces using the parameters and the 
boundary conditions of the PDE instead of many 
hundreds of control points. Therefore they can be 
easily implemented as an easy to use interactive 
modeling package. However, before that can be 
realized, we need to overcome one serious hurdle, 
that is to solve the corresponding PDE efficiently. 
Currently, it is done either ad hoc or only for simple 
problems. For complicated problems, expensive 
numerical methods are still the only available 
choice, such as the finite element method (Li, 1998, 
1999, Li and Chang, 1999), finite difference method 
(Du and Qin, 2005), and collocation point method 
(Bloor and Wilson, 1990b). In order to improve the 
computational efficiency, the Fourier series method 
was proposed (Bloor and Wilson, 1996) although it 
is effective only when the high frequency modes are 
not strongly represented in the boundary conditions. 
In addition, another issue to be addressed is that the 
existing PDE based approaches only considered 
static modeling of surfaces. Dynamic modeling of 
curves and surfaces with up to curvature continuities 
using analytical PDEs has not been investigated yet. 
  In this paper, we propose a PDE approach to 
tackle both static and dynamic modeling of curves 
and surfaces. It represents curves and surfaces 
analytically, solves the PDEs quickly and accurately, 
and has a capacity to carry out complicated shape 
modeling. Therefore, it is applicable to interactive 
geometric modeling applications (Ugail et al., 
1999a, 1999b). Unlike the existing PDE-based 
methods, which can only generate dynamic surfaces 
of tangent continuity, this approach will be able to 
generate curves and surfaces of curvature continuity. 

2 THEORY AND METHOD 

In this section, we introduce two partial differential 
equations of motion for static and dynamic modeling 
of curves and surfaces, and determine their 
composite power series solutions. 

2.1 Partial Differential Equations 
of Motion 

Based on the existing research on dynamic 
simulation of cloth deformation (You et al., 1999, 
Zhang et al., 1999), deformable moving surfaces 
(You and Zhang, 2003), and introducing the 
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the following vector-valued fourth and sixth order 
partial differential equations of motion for both 
static and dynamic modeling of curves and surfaces 
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where u  and v  are parametric variables, t  is time 
variable, ρ  is the density, c  is the damping 
coefficient, { }  3~1  ; , ,(  === lzyxkaklla  for the 
fourth order, 4~1  for the sixth order )  are vector-
valued shape control parameters, and the vector-
valued position function { }zyx   ,  ,=x  and vector-
valued force function { }zyx FFF   ,  ,=F  involve 
variables u , v  and t , or  u and v , or u  and t , or 
u  only depending on different modeling tasks of 
curves and surfaces. 

Because of the introduction of time variable t , 
Eqs. (1) and (2) integrate both static and dynamic 
modeling. When time variable t  in these equations 
is taken to be a constant, Eqs. (1) and (2) become 
static PDEs and can be used to solve various static 
problems of curve and surface modeling.  

It is worth pointing out that when time variable 
t  is set to a constant, Eqs. (1) and (2) actually 
represent the generalization of all forms of existing 
fourth and sixth order PDEs used for surface 
modeling.  

Equation (2) provides enough degrees of 
freedom to consider not only tangent but also 
curvature properties of curves and surfaces at 
boundary points or boundary curves. This gives an 
advantage in two applications: firstly, it is able to 
generate curves and surfaces requiring curvature 
continuity; and secondly, the specified curvature 
values are useful for shape control and producing 
more varieties of different curves and surfaces, since 
boundary curvature also has a great influence on 
curves and surfaces. 

Equations (1) and (2) can be reduced to suit the 
modeling of curves, both statically and dynamically. 

GRAPP 2011 - International Conference on Computer Graphics Theory and Applications

24



 

This is undertaken by setting one parametric variable 
v  constant. 

In order to apply the above equations to static 
and dynamic modeling of curves and surfaces, we 
must define boundary curves and surface properties 
at these curves for surface modeling, and boundary 
points and curve properties at these points for curve 
modeling. A compound surface may consist of 
multiple patches separated by a number of boundary 
curves. Similarly, a compound curve can be divided 
into a number of segments joined together at the 
boundary points. Using Eq. (1), the tangential 
properties of surfaces or curves at the boundary 
curves or boundary points can be taken into account. 
Thus the boundary conditions can be given by 

2,1              iuiiuu SxSx ===                  (3) 
where i  denotes the index of the boundary curves or 
boundary points, 1iS  and 2 iS  are the function of v  
and t  for dynamic modeling of surfaces, of v  for 
static modeling of surfaces, of t  for dynamic 
modeling of curves, and are constants for static 
modeling of curves.  

With Eq. (2), higher order derivatives were 
introduced which provide more degrees of freedom 
to accommodate the curvature property of surfaces 
at boundary curves and that of curves at boundary 
points. Therefore, boundary conditions for Eq. (2) 
are given by 

3,2,1 2              iuiuii xuu SxSSx ====         (4) 

where the definition of 3iS  is the same as those of 

1iS  and 2 iS , and { } )3 2 1(  ,,lSSS ilzilyilxil ==S .  

2.2 Solution to PDEs of Motion 

Many modeling applications of curves and surfaces 
in computer graphics and computer-aided design 
such as interactive design and computer animation 
require real-time performance. Numerical solutions 
of PDEs are too expensive to fulfil this requirement. 
Closed form solutions of PDEs, which are the 
fastest, are obtainable only for some simple 
boundary conditions. In the following, we present a 
solution method making use of the composite power 
series.  

Like the treatment given by You and Zhang 
(2004), we first define linearly independent basic 
functions as constant 1, parametric variable v , time 
variable t , their various elementary functions 
excluding polynomials, and their combinations not 
in a polynomial form. Then we can decompose the 
boundary conditions (3) and (4) into such basic 
functions.  

To facilitate the description, we also define a 
new vector product operator whose operands are two 
vectors of the same dimension and each element of 
the resultant vector is the product of the 
corresponding elements of the two vectors, i. e.,   

{ }zzyyxx qpqpqp     =pq                     (5) 
where  { }zyx ppp     =p  and { }zyx qqq     =q  are two 
column vectors. 

According to the decomposed linearly 
independent basic functions, boundary conditions 
(3) and (4) can be rewritten as follows, respectively 
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where { }ijzijyijxij bbb     =b , { }ijzijyijxij ccc     =c  and 
{ }ijzijyijxij ddd     =d  are the known constants, and 
{ }ijzijyijxij sss     =s  are the linearly independent basic 

functions which involve the same variables as those 
of )3 2 1(  ,,lil =S  depending on different modeling 
tasks. 

The curve or surface to be generated can now be 
approximately represented with a composite power 
series which combines the power series of the 
parametric variable u  with the linearly independent 
basic functions ijs . Thus the ith curve or surface 
segment can be given by 

ij
mJ

j

M

m
ijmi u srx ∑ ∑

= =
=

0 0
                    (8) 

where )  ,2  ,1  ,0( =iijmr  are the unknown constants 
to be determined, and M  may be set to the same or 
different integers for different position function 
components and different terms of the same position 
function component.  

When 1s =ij  or its some component is 1, the 
corresponding M  should be set to 3 for Eq. (1) and 
5 for Eq. (2) because these two equations have been 
satisfied for these cases and only the boundary 
conditions require to be considered. 

Eq. (8) represents the approximate analytical 
solution of PDEs (1) and (2) under boundary 
conditions (3) and (4). Substituting Eq. (8) into 
boundary conditions (6), we determine the unknown 
constant )3  ,2  ,1  ,0   ;  ,  ,2  ,1  ,0( == mJjijmr . Then 
the vector-valued function ix  is written in the 
following form which satisfies boundary conditions 
(3) exactly 
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where ),,,,( 11 jijiijiji u ++ cbcbg  is the function of 
parametric variable u  and the known constants 

jiijij 1  ,  , +bcb  and ji 1+c . That is { }iki g=g  and 
) , , , ,( 11 jkijkiijkijkikik cbcbugg ++=  ),,( zyxk = . ),( muig  

is the function of the parametric variable u  and 
index m . 

Similarly, substituting Eq. (8) into boundary 
conditions (7), the unknown constants  

)5  ,  ,2  ,1  ,0   ;  ,  ,2  ,1  ,0( == mJjijmr  can be 
determined and the vector-valued function ix  
meeting the boundary conditions (4) accurately is 
written as 
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Respectively substituting Eq. (9) into (1), and 
(10) into (2), we can obtain the residual value 
functions of these PDEs. Within the region where 
the curve or surface is defined, choosing N  
collocation points and substituting the coordinate 
values of these collocation points into the residual 
value functions, the residual values at these 
collocation points can be written as 

BACR −=                     (11) 
By minimizing the squared sum of the residual 

values of Eq. (11) using the least squares technique 
(You et al. 2000), we obtain the following linear 
algebra equations 

BAACA TT =                    (12) 
The solution of Eq. (12) determines the rest 

unknown constants of Eq. (9) or (10). Then curves 
or surfaces can be generated from the analytical 
mathematical equation (8). 

3 COMPUTATIONAL 
ACCURACY AND EFFICIENCY 

Equations (9) and (10) are analytical expressions. 
Although to determine some of the unknown 
constants, the least squares technique was employed 
for the solution of a very small number of linear 
equations, the efficiency is very close to a closed 
form solution. Also because we ensure the boundary 
conditions are met exactly and errors in the inner 
region of the generated curve and surface are 

minimized, we can expect to have a good accuracy. 
To verify the speculation that the above method 
provides both good accuracy and efficiency, in this 
section we are undertaking a numerical study. 

This study is to make comparisons between the 
proposed composite power series solution, finite 
difference solution and the corresponding closed 
form solution for a specified example where a closed 
form solution exists. Firstly, we investigate the error 
and efficiency between the proposed solution and 
closed form solution for both Eq. (1) and Eq. (2). 
Then we compare the efficiency and accuracy of the 
three methods only for the static form of Eq. (1). For 
a surface, since the determination of yx   ,  and z  
components are the same, we only discuss the x 
component. In order to obtain its closed form 
solution, the damping term and force function are set 
to zero, the density is assumed to be 1=ρ , the 
vector-valued parameters are taken to be 1aa == 21  
and 1aa −== 43 , and the boundary conditions have 
the form of 
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where the derivatives of the second order in the 
above equation are redundant for Eq. (1).  

The closed form solutions of Eqs. (1) and (2) 
subject to the above boundary conditions are 
denoted with x , and the composite power series 
solutions and finite difference solutions are 
represented with x~ . In order to quantify the 
difference between these methods, we choose 

vu JI ×  points within the solving region and 
introduce the following error equation 

∑ ∑
= =
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According to the proposed method, we can 
obtain the composite power series solutions x~  of 
this problem for both Eqs. (1) and (2). In this case 
study, the collocation points are taken to be 9 for 
both equations, and the number of terms of the 
composite power series is 5 for Eq. (1) and 7 for Eq. 
(2). 

Taking the resolution region to be 
{ }π≤≤≤≤ vu 0  ;10 , uniformly choosing 101101×  
points within the resolution region, substituting the 
values of the two solutions at these points into the 
above equation, we find that the relative error 
between the closed form solution and the proposed 
solution is 31037.7 −×=E  for Eq. (1) and 
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41005.1 −×=E  for Eq. (2). Clearly, these errors are 
very small.  

The computational efficiency of the proposed 
method is also very high. We have timed the process 
determining the unknown constants in the closed 
form solutions and composite power series solutions. 
It was found that both methods took less than 610−  
second on an ordinary PC to solve Eqs. (1) and (2). 

In order to further demonstrate good accuracy 
and efficiency of proposed composite power series 
method, in the following, we carry out the finite 
difference calculation of Eq. (1) subject to boundary 
conditions. For simplicity, we only study the static 
problem of the above example, i. e., set 1sin =t  in 
the boundary conditions (13), neglect the force 
function and all other terms containing the partial 
derivatives with respect to the time variable t  in Eq. 
(1), and take the resolution region to be 
{ }10  ;10 ≤≤≤≤ vu . The collocation points and terms 
of the proposed composite power series are the same 
as above. The boundary conditions for the finite 
difference calculation are taken from the closed from 
solution of the same problem. Within the resolution 
region, uniformly set vu NN ×  nodes, and determine 
the values of x  component at these nodes using the 
finite difference formulae of Eq. (1) and all the 
boundary conditions of this problem. Then calculate 
the values of the proposed power series solution and 
closed form solution at these nodes, and use Eq. (14) 
to find the errors among them. In Table 1, PS means 
the errors between the proposed power series 
solution and the closed form solution, FD stands for 
the errors between the finite difference solution and 
the closed form solution, and the last row of the 
table gives the time of the finite difference solution. 
The time of the proposed solution and closed form 
solution is less than 610−  second once again.  

Table 1: Comparison of accuracy and efficiency. 

vu NN ×  1515×  2525×  3535×  

PS 0.00437 0.0045 0.00455 

FD 0.738 0.622 0.579 

Time(seconds) 08.3  4 5.71  78.573  

It is very clear that the proposed method has much 
better computational accuracy and efficiency than 
the finite difference method. Although the total 
number of the nodes was greatly increased leading 
to very expensive computational cost, the 
computational accuracy of the finite difference 

method was not improved obviously. From the 
tendency of the computational errors given by the 
finite difference method, it appears difficult to reach 
as high accuracy as that of the composite power 
series solution although we increase the nodes for 
the finite difference calculation. Low computational 
efficiency of numerical methods indicates they are 
less ideal for the computer graphics applications 
requiring real-time performance.  

In summary, the proposed composite power 
series solution is both accurate and efficient. It can 
generate surfaces with the similar efficiency and 
accuracy to the closed form solution method, far 
more quickly and accurately than numerical 
methods. 

The proposed method can be employed to a wide 
range of shape modeling applications. In the 
following, we will apply this method to solve a 
number of dynamic and static modeling problems of 
curves and surfaces. 

4 DYNAMIC MODELLING 

Dynamic modeling of curves and surfaces is a very 
interesting subject of computer animation. With the 
developed composite power series method based on 
Eqs. (1) and (2) together with boundary conditions 
(3) and (4), we can perform dynamic modeling of 
curves and surfaces analytically.  

4.1 Dynamic Surface Modeling 

For dynamic surface modeling, we here give an 
example to show how an original surface is 
consecutively changed to a series of different 
surfaces using Eq. (1). The boundary conditions for 
this dynamic modeling are 
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From the above boundary conditions, we can 
obtain the linearly independent basic functions 

vπ2cos , vt π2cos , vπ12sin , vt π12sin  for x  
component, vπ2sin , vt π2sin , vπ12cos , vt π12cos2  
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for y  component, and 1 and vt π10sin  for z  
components. According to these linearly 
independent basic functions, we can construct the 
following composite power series functions 
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The unknown constants   3~0( 0 =jr jmk for x and 
y components and j=0,1 for z component; 

)    ;30 zy,x,k~m ==  in the above equation can be 
determined from boundary conditions (15). Then 
substituting Eq. (16) into (1), uniformly choosing 9 
collocation points within the solving region and 
taking 6 terms for each composite power series 
which means only 2 unknown constants in Eq. (12) 
are to be determined, we can obtain the rest 
unknown constants and analytical mathematical 
equations of the surface to be created. Specifying the 
values of the geometric parameters in Eq. (15) and 
vector-valued parameters in Eq. (1), we can generate 
the surface at any time t .  

    
            t = 0                                  t = 0.25   

       
       t = 0.5            t = 0.75                t =1 

Figure 1: Dynamic modeling of a surface. 

In Figure 1, we give the images of the surface at 
t=0, 0.25, 0.5, 0.75 and 1. They were created with 

one surface patch determined by the analytical 
mathematical equations. This example indicates that 
the proposed composite power series method can be 
used to animate objects directly such as skin 
deformation of the arms and legs during human 
motion, or produce a series of key frames of the 
object to be animated. 

4.2 Dynamic Curve Modeling 

When the parametric variable v  in Eqs. (1) and (2) 
together with boundary conditions (3) and (4) is 
taken to be a constant, we can carry out dynamic 
modeling of curves. In Figure 2, we give an example 
to show how a straight line is consecutively changed 
to a human face profile which consists of four curve 
segments with each segment being determined by a 
vector-valued position function. 

 
Figure 2: Dynamic modeling of a curve. 

5 STATIC MODELING 

When the time variable t  in Eqs. (1)-(4) is set to a 
constant, these equations can be applied to perform 
static modeling of curves and surfaces. In the 
following, we will give some examples to indicate 
the applications of these equations in free-form 
surface generation and surface blending.  

5.1 Free-form Surface Generation 

The proposed method is also an effective means for 
free-form surface generation. Rather than moving 
the control points, the surfaces to be generated can 
be controlled and deformed simply by changing 
some parameters, such as the vector-valued shape 
control parameters, tangential and curvature 
boundary conditions as well as the force function. 
Since any complicated boundary curves, planar or 
spatial, can always be represented by mathematical 
functions, a  surface  so  defined  can be created with 
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the proposed method.  
By dividing the object to be created into some 

surface patches connected by the boundary curves, 
we can generate complicated free-form surfaces. In 
Figure 3, the surfaces of a fish were created with the 
proposed composite power series method. 

 
Figure 3: Surface generation of a fish. 

5.2 Surface Blending 

Surface blending is another important area of surface 
modeling. Here we give an example to illustrate the 
application of the proposed method.  

This example is to blend two intersecting 
cylinders using the solution of the static form of Eq. 
(1) under boundary conditions (3). We only employ 
18 collocation points in the blending region and 6 
terms for each composite power series. The obtained 
blending surface is given in Figure 4. The whole 
resolution process took less than 610−  second.  

 
Figure 4: Blending between two intersecting cylinders. 

6 CONCLUSIONS 

In this paper, we have proposed a unified curve and 
surface modeling approach so that both static and 
dynamic problems can be represented in a uniform 
manner. This approach is based on the use of two 
partial differential equations of motion, a vector-
valued fourth order PDE and a vector-valued sixth 
order PDE. The former is able to satisfy tangent 
boundary conditions, while the latter is able to meet 
curvature conditions. 

A key element of making the proposed approach 
applicable to interactive graphics applications is to 
solve these PDEs efficiently and effectively. To this 
point, we have used a composite power series 
method, which is able to give analytical 
mathematical equations of curves and surfaces to be 
created. The positional, tangential and curvature 
functions in the boundary conditions were firstly 
decomposed into a number of linearly independent 
basic functions which combine with the power series 
of another parametric variable to formulate 
approximate solution functions. By determining 
some unknown constants in these solution functions, 
the boundary conditions are always exactly satisfied. 
The residual values in the proposed PDEs are 
minimized using the least squares technique which 
further reduces the discrepancy between the 
approximate and the accurate shapes.  

The computational accuracy and efficiency of 
the proposed composite power series method have 
been investigated. The comparisons between this 
research, the finite difference approach and the 
closed form solution indicate that the proposed 
method can generate surfaces with similar efficiency 
and accuracy to the closed form solution method, 
and far more quickly and accurately than numerical 
methods.  

The proposed partial differential equations can 
also be degenerated for the purpose of curve 
modeling in a unified format. Since curve modeling 
is more flexible, it is useful in complex surface 
modeling as well.  

To demonstrate its applications, we have applied 
this approach to a number of examples of static and 
dynamic modeling of curves and surfaces. 
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