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Abstract. Insertion and deletion are considered to be the basic operations in Bi-
ology, more specifically in DNA processing and RNA editing. Based on these
evolutionary transformations, a computing motekertion-deletion system has

been proposed in formal language theory. Recently, in [14], a new computing
model namedWatrix insertion-deletion system has been introduced to model var-
ious bio-molecular structures. In this paper, we represent some natural language
constraints such asiple agreement, crossed dependency, copy language using

Matrix insertion-deletion systems and discuss how these constraints resemble
some bio-molecular structures. Next, we analyze the computational completeness
result for Matrix insertion-deletion system where the importance is given for not
using any contexts when deletion rule takes place. We see that when the insertion-
deletion system is combined with matrix grammar, the universality result is ob-
tained with weight just 31, 1; 1, 0) whereas for insertion-deletion systems, the
universality result is available with weight(1, 1;1,1).

1 Introduction

Linguistics agreed in late 1960's that many natural languages including English, are
not context-free [4]. This initiated the idea of thinking grammars beyond the scope of
context-free. As membership problem is tough to handle for context-sensitive gram-
mars, they are not a good model for describing natural languages. To overcome these
difficulties and to give a syntactical representation for natural languages, a notion called
mildly context-sensitive (MCS) grammar formalisms has been defined by (majority of)
computational linguistics people and later many attempts have been made to find MCS
grammar formalisms [3], [5], [15]. A grammar formalism is said to be MCS formalism

if it satisfies the following properties.

1. The class of its languages contain all context-free languages
2. The class of its languages contain the following three basic non-context-free lan-
guages:
— triple agreements: L, = {a™b"c"|n > 1},
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— crossed dependencies: L.q = {a"b"c"d™|n,m > 1}, and
— copy language L¢p = {ww|w € {a,b}*}.
3. All languages in the class aparsablein polynomial time.
4. All languages in the class asemilinear or at least satisfy théounded growth
property.

In the last three decades, biology played a great role inéekdif formal languages
by being the root for the development of various biologicaikpired computing mod-
els such asticker systems, splicing systems, Watson-Crick automata, insertion-deletion
systems, p systems [6], [11], [12]. Since, most of the language generating desiare
based on the operation of rewriting systems, the insedigetion systems opened a
particular attention in the field of formal languages. Imfiatly, the insertion and dele-
tion operations of an insertion-deletion systems are deéfasefollows: If a stringx is
inserted between two partg andws of a stringw; w-» to getwyaw-, we call the oper-
ation as insertion, whereas if a substrifigs deleted from a string;; Sws to getw; wo,
we call the operation as deletion.

DNA molecules may be considered as strings over alphabetstorg of four sym-
bols namely, ¢, ¢ andc (denoted asp v 4). Similarly, RNA molecules may be con-
sidered as strings over alphabet consisting of four symtatselya, u, g andc (de-
noted as¥'ry 4). We discuss below in brief some of the important structwesen in
bio-molecules such as protein, DNA and RNA. Fig.1. showsstingctures (ajtem,
(b) cloverleaf and (c)dumbbell. Since the bio-molecular structures can be defined in
terms of sequence of symbols (i.e., strings) there existxi@lation between formal
grammars and bio-molecular structures. The following exemvitnesses this corre-
lation. Consider a context-free languagew® | w € {a,b}*} (wherew?® is the
reverse ofw) and a gene sequencéuicgcgatag. As the complements are = t,

t =a,g = candec = g, the above gene sequence resembles the palindrome lan-
guage{ww® | w € X% ya} wherew = ctatecg andw? = cgatag. Like this, the
structures mentioned in Fig.1. can be represented by cefresxlanguages.

However, there are some more structures that are predotiyirgaailable in bio-
molecules which cannot be modelled by context-free graranfag.2. represents such
structures (apseudoknot and (b)attenuator. A closer look at these bio-molecular struc-
tures shows a resemblance with well known natural languagstaucts, such asossed
dependencies: {a™b™c™d™ | n,m > 1} andcopy language: {ww | w € {a,b}*}, see
[8, 9]. Therefore, if a formal grammar is capable of geneathe context-free and non-
context-free languages, then that grammar is also suitaliepresent bio-molecular
structures and the vice versa is also true. Next, we disams attempts made in for-
mal grammars to represent the above mentioned bio-molestlectures.

In the last two decades or so, many attempts have been madatdih the lin-
guistic behaviour of biological sequences by defining neawgnar formalisms likeut
grammars [7], crossed-interaction grammar [10], simple linear tree adjoining gram-
mars and extended simple linear tree adjoining grammars [20] which are capable of
generating some of the biological structures mentioned/@bdHowever, there was
no unique grammar system that encapsulate all essentiaigradtant bio-molecular
structures. For example double copy language cannot belledd®y a simple lin-
ear tree adjoining grammar [20]. Very recently, a new biaally inspired computing
model namelyMatrix insertion-deletion system has been introduced in [14] by com-
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Fig. 2. Bio-molecular structures: (a) pseudoknot structure (fgnaiator.

bining insertion-deletion system and matrix grammarssH®yistem represents all the
above discussed bio-molecular structures and also the stiiuetures such dsirpin,
non-ideal attenuator, ideal strings, orthodox string. In this paper, we first briefly re-
call this system and using this system we generate a fewaldéunguage constraints
and we discuss their coherences in bio-molecular strutiifeus we aim to show that
Matrix insertion-deletion grammar system might be a unioueelel that is suitable for
both natural language and bio-molecular representations.

Given an insertion-deletion system, the weight of the sgstebased on the max-
imal length of insertion, maximal length of the context ugedinsertion, maximal
length of deletion, maximal length of the context used fdetien and they are (respec-
tively) denoted agn, m; p, ¢). The total weight is defined as the surmoin, p, ¢. There
have been many attempts to characterize the recursivelpemble languages (i.e.,
computational completeness) using insertion-deletistesys with less weights. In [16]
the universality results were obtained with weight 5 (of toenbinations(1,2;1, 1),
(2,1;2,0), (1,2;2,0)). In [1] and [11], this result was improved with weight 4 (of
the combination$l, 1; 1, 1) and(1, 1; 2, 0) respectively). In [17], a variant of insertion-
deletion systems called context-free insertion-deletigmtems were introduced by con-
sidering no context in insertion and deletion rules. Theversality of context-free
insertion-deletion systems were proved initially with glei («, 0; *,0) and reduced
to weight 6(3, 0; 3,0). Further, in the same paper, the result was improved to wéigh
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(of the combination$3, 0; 2,0) and(2, 0; 3, 0)). As Matrix insertion-deletion system is
a variation of insertion-deletion systems and is more péwénan insertion-deletion

systems, the universality result of this system must beilddavith less weight than 4.

In this paper, we prove the universality result of Matrixdrt#gon-deletion systems with

just weight 3(1, 1; 1, 0) where no contexts is considered for deletion thus the deleti
operation works in a context-free manner.

2 Preliminaries

We assume that the readers are familiar with the notions mfidblanguage theory.
However, we recall the basic notions which are used in thepdpfinite non-empty
setV or X is called an alphabet. We denote By or 2* , the free monoid generated
by V or X, by X its identity or the empty string, and By™ or X+ the setl’* — {\} or

X* —{\}. The elements oF* or X* are calledvordsor strings. For any wordw € V*

or X*, we denote the length ab by |w|. For more details on formal language theory,
we refer to [13].

Next, we look into the basic definitions of insertion-dedetisystems. Given an
insertion-deletion system = (V, T, A, R), whereV is an alphabet]’ C V, Ais a
finite language oveV, R is a finite set triples of the forrtw, 5/a, v), where(u, v) €
V¥ x V*, (o, 8) € (VT x {A}) U ({A} x V). The pair(u, v) is called as contexts.
Insertion rule will be of the form{u, A/«, v) which means that is inserted between
u andwv. Deletion rule will be of the form{u, 3/, v), which means that is deleted
betweenu andv. In other words{u, \/«,v) corresponds to the rewriting rutev —
uaw, and(u, 8/, v) corresponds to the rewriting rulg3v — uwv.

Consequently, for,y € V* we can writex =—* y, if y can be obtained from
by using either an insertion rule or a deletion rule whichiveg as follows: (the down
arrow | indicates the position where the string is inserted, therdawow.} indicates
the position where the string is deleted and the underlitiigsindicates the string
inserted/deleted)

1. x = myutvas, y = ryuavrs, for somer,, z, € V* and(u, \/a,v) € R.
2. z = z1uPvrs, Yy = r1utvz,, for somery, o € V* and(u, /), v) € R.

The language generated hys defined by
Liy)={weT" |z =" w, for somex € A}

where=—* is the reflexive and transitive closure of the relaties.
Next, we discuss about the weight of the insertion-delesigstem. An insertion-
deletion systemy = (V, T, A, R) is of weight(n, m;p, q) if

n = max{|a| | (u,\/a,v) € R}
m = maz{|u| | (u, \/a,v) € Ror (v, \/a,u) € R}
p= maa{|] | (u,6/A,v) € R}
q = maz{|u| | (u,B/\,v) € Ror (v,/\,u) € R}

We denote by N.S;* DEL{ forn,m, p, q > 0, the family of language () gener-
ated by insertion-deletion systems of weight, m’; p’, ¢') such that’ < n, m’ <m,
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p' <p,q < q.Thetotal weightofyisn +m +p +q.

Next, we will look into the definition of matrix grammars. A tnia grammar is
an ordered quadrupl§é = (N,T,S, M) whereN is a set of non-terminalg; is a
set of terminalsS is the start symbol and/ is a finite set of nonempty sequences
whose elements are ordered pdiF5Q). The pairs are referred to as productions and
written in the formP — Q. The sequences are referred to as matrices and written
[PL — Q1,...,P- — Q.],r > 1. The above matrix grammar is without appearance
checking. The language generated by the matrix grammafiisedeby L(G) = {w €
T* | S =* w}. A matrix grammar with appearance checking is defined as
(N,T,S, M, F)whereF is a set of occurrences of rules in the matriced/afWhile
deriving, a rule may be exempted to apply if the rule i¢inThe language generated
by the matrix grammar with appearance checking is definef a8, F) = {w €
T* | S =* w}. The family of languages generated by matrix grammars withgth
appearance checking is denotedWdyA7*, M AT?. (the X on the upperindex indicates
where the ruleP? — ) is allowed). For more details on matrix grammars, we refer to
(2], [18].

3 Matrix Insertion-deletion Systems

In this section, we describdatrix insertion-del etion systems. A Matrix insertion-deletion
systemis a construgt = (V, T, A, R) whereV is an alphabef]’ C V, Ais afinite lan-
guage ovel/, R is a finite set triples of the form in matrix formgt, 51 /a1, v1), . . .,
(tn, Brn/n, vn)], Where(ug, vy) € V* x V*, and(ag, Bx) € (VT x {A}) U ({A\} x
V), with (ug, B /ak, vi) € Ri; URp;URy, ) p,, for1 < k < n. HereR, denotes the
matrix which consists of only insertion ruleBp; denotes the matrix which consists of
only deletion rules and®;, , p, denotes the matrix which consists of both insertion and
deletion rules.

Consequently, for,y € V* we can writer = 2/ =— 2"/ =— ... =y, if y can
be obtained from: by using a matrix consisting of insertion rulg®,() or deletion rules
(Rp,) orinsertion and deletion rulegk(, ,p,). In a derivation step the rules in a matrix
are applied sequentially one after other in order and noisule appearance checking
(note that the rules in a matrix are not applied in parallEfe language generated by
T is defined byL(Y) = {w € T* | + =} w, forsome x € A}, where x €
{L;, D;,I;/D;} where=>* is the reflexive and transitive closure of the relaties-.
Note that the stringw is collected after applying all the rules in a matrix and also
w € T* only. The family of languages generated by Matrix inseril@ietion systems
with weights(n,m : p, q) is given asM ATIN S;" DEL.

Example 1. Consider themix languageL,,,; = {n,(w) = ny(w) = ne(w) | w €
{a,b,c}*}. The languagé€.,,,; can be generated K,,; = ({a,b, ¢}, {a,b,c},{\}, R)
whereR is given asRy, = [(A\, M a, A), (A, A/b, A), (A, A/c, A)]. As no context is used

in insertion rules, b, ¢ can be inserted anywhere in the derivation and the number of
a, b, care equal. It is easy to see that; generated.,,;.

Remark. Note thatL,,; is generated with weight just@, 1; 0, 0).
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3.1 Modelling Natural Language Constructs and Bio-molecur Structures

In this section, we represent some of the natural languagsti@nts such asrossed
dependency, copy language, triple agreement, quadruple agreement, center-embedded
structure and discuss their coherences with bio-molecular strusture

In the next lemma, we represent crossed dependency selotoatural languages
which models pseudoknot structure in bio-molecules.

Lemmal. L.g = {a"b™c"d™ | m,n > 1} € Teq.

Proof. The language..; can be generated by the Matrix insertion-deletion system
Yea = ({a,b,¢,d}, {a,b,c,d}, {abed}, { Ry = [(a, N a, N), (¢, N ¢, )],

Rr, = [(b,\/b,\), (d, A/d,\)] }). A sample derivation can be given as followsbc!d
=Ry, atabcted =R, aaab‘ecedt =Ry, aaabbcecedd 2?{11/12 abmetd™.

The languagé.., resembles the pseudoknot structure language= {uva*o! |
u,v € X% x4} ingene sequences as shown inFig. 2(a). The langliagean be gener-
ated by the Matrix insertion-deletion syst&im = ({b,b, 11, T2, T3, T4}, {0, b}, {\, f1t2
fata}, R), whereb € {a,t,g,c}, b is complement ob and R is given as:R;, =
[(/\7 )‘/ba Tl)v ()‘7 /\/b7 TS)]? Ry, = [()‘7 )‘/bv T?)a (/\7 )‘/bv T4)]7
Rp, = [(/\7 Tl/)‘7 )‘)7 (/\7 TB//\v )‘)]7 Rp, = [(/\7 T?//\v )‘)7 (/\7 T4//\7 )‘)]

A sample derivation is given as follows:

Y thtsta =y, atf fatthta=r,, ati gt fat s cMta==r, atigatatis
ctts =>Rp, avgats thetty =Ry, aga‘tctt O
In the next lemma, we model copy language in natural languagech resembles
attenuator structure in gene sequences.
Lemma2. L., = {ww | w € {a,b}*} € T¢,.
Proof. The languagel., can be generated by the Matrix insertion-deletion system

TCP = ({a7 b, T1, T2}7 {a, b}7 {)‘7 T1T2}7 {Rh = [()‘7 /\/a7 Tl)ﬂ (/\7 )\/a, T2)]7

Ry, = [()‘v /\/b7 Jrl)v (/\7 )‘/bv TQ)]v Rp, = [(/\7 Jrl//\v )‘)v (/\7 TQ//\v )‘)] }) A Sample
derivation is given as follows: t{ to =>r,, a't1a'ts =>g,, aa! t1 aalts =g,
aab 11 aabte =Ry, aab%aab.

The languagéd.., resembles the attenuator languagge, = {uufua® | u €
X% N4} Ingene sequences as shown in Fig.2(b). The langliggean be generated by
the Matrix insertion-deletion system,., = ({a,t,9,¢, 11,12}, {a,t,g,c}, {\, T1t2}, R),
whereR is givenasR;, = [(A, A/a, 11), (T1, A/t A), (A, A a, t2), (T2, A/t, N)], R, =
[(/\7 )‘/ta Tl)v (T17 )‘/aa )‘)7 ()‘7 /\/tv T?)v (T?a /\/a7 )‘)]’ ng = [()‘7 /\/Cv Tl)v (Tla /\/ga /\)7
()‘7 /\/Cv T?)a (T2a /\/ga /\)]' RI4 = [()‘7 /\/ga Tl)a (Tla )‘/Ca )‘)7 ()‘7 /\/ga T2)7 (T27 )\/C, )‘)]1
RDI = [(/\7 Jrl//\v )‘)v (/\7 TQ//\v )‘)]
A sample derivation is given as follows:

b M =g, ot ttal 15t =g, at* 1] atat! 1} at =g, atc' 1 gatatch 13
gat =>r,, atcg 1 cgatateg T2 cgat =Rp, atcgucgatatcgucgat u

In the next lemma, we show the relevance between triple, rypéel agreement lan-
guage to their corresponding structure in bio-molecules.
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Lemma 3. Ly, = {a™b"c" | n > 1} € 1iq.

Proof. The language.;, can be generated by the Matrix insertion-deletion system
Yo = ({a,b, ¢}, {a,b,c}, {abe}, {Rr, = [(a, A/ab,b), (b, \/c,c)]}). A sample deriva-
tion can be given as followst'blc =g, aa'bblcc =g, aaabbbcce =%,
a™b"c". The triple agreement language has relevances to tripdedsd DNA (triple
helix structure) [9]. If we includel in V, T, replace the axiom agbcd and Ry, as
[(a,\/ab,b), (¢, \/cd,d)] in 13, We can see thdly, generates quadruple agreement
language{a™b™c"d™ | n > 1}. It is mentioned in [9] that the quadruple agreement
language can be regarded as a quadruple-stranded DNA (guiadelix structure)D

In the next lemma, we show that center-embedded structurelfm natural languages
[19] can be viewed as a RNA stem in bio-molecules.

Lemma 4. The center-embedded language L.. = {a™b™b™a™ | n,m > 0} can be
represented by Matrix insertion-del etion system.

Proof. The languagel.. can be generated by the Matrix insertion-deletion system
Yee = ({a,b, 11,12, 3, T4}, {a, 0}, {\, 11 T2 t3t4}, R), whereR is given as:R;, =

[(T17 )\/a, )‘)7 (T47 )‘/a’ )‘)] Rlz = [(T?a /\/b7 )‘)7 (TB; /\/b7 )‘)]’ RD1 = [()‘a Tl/)‘ﬂ /\)7

A, T4/ AN Rpy = [(A T2/ A A), (A, 73 /A, A))- Itis easy to see thaf.. generated ...

The center-embedded language resembles the stem con@tiugtizus Hin |

u1, uz, ug € X5 4} IN gene sequences as shown in Fig.1(a). O

Note. The dumbbell languagky, = {uuvvf | u,v € X%y 4} (refer to Fig.1(c).) is
found relevance with the natural languae= {a™b™c™d™ | n,m > 0}. Itis easy to
generate this context-free language using Matrix insestieletion system.

4 Computational Completeness

In this section, we prove that the family of recursively eruable languages can be
characterized by Matrix insertion-deletion grammars witkight 3 (1, 1;1,0). This
universality result is achieved by simulating matrix graamewith appearance checking
in strong binary normal form (SBNF).

Theorem 1. MATINSIDELY = RE.

Proof. The partM ATINS{DELY C RE is obvious. We now prove the other part.
For each language € RE there is a matrix grammay¥ with appearance checking in
SBNF, such thal (G) = L. A matrix grammarG is given as(N, T, S, M, F') where

N is a set of non-terminalq; is set of terminals$ is the start symbol}/ is a finite set

of matrices and” is a set of rules (used for appearance checking). A matrimmgrar

G is said to be in SBNF ifV = N; U N» U {$, #} where these three sets are mutually
disjoint and the matrices in{ are in one of the following forms:

1. [S%XA]XENl,AENQ
2. [ X->Y,A—- 2] X, Y € Nj,A€ Ny,z € (N2 UT)*, || < 2,2 = 2129
3.[X >V, A—# X,Y e Nj,Ae Ny
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4. [X 5 MA— 2] X €N, A€ Ny,z €T, |z| <2

There is only one matrix of type 1 and F consists exactly oftdisA — # appearing
in matrices of type 3, #is a trap symbol once used in the diivét cannot be removed
and the rules of matrix 4 are applied only in the last step efdkrivation. Observe
that there can be at most only one non-terminal symbol fAémat any point of the
derivation.

Next, we construct a Matrix insertion-deletion syst&hwhich will simulate the
matrix grammars in strong binary normal form with appeaeacdltecking. Le?”” =
(‘/, T,A,R), whereV = N; U Ny U {S,]XA,]y, [1112,]$1$2, [#,]#,# | XY €
Ny, A € Ny,zq,29 € (N2 UT)}, T = T (terminal set in matrix grammars}, = S,
andR is given in simulation process.

The Matrix of type 1 can be simulated by the following Matmsértion-deletion

systemrules?;, /p, = [(S, M]xa,A), (A, S/AN), (Jxa, VAN (Ixa, A/
X, A), (A ]xa/MNA) | [S — XA], X € N1, A € Ny]. Here after, we omit the corre-
sponding condition matrix rule (hefé — X A]) as we are giving the simulation for
each type of the matrix at the appropriate place. The sinoulatf type 1 is given as
follows:

The Matrix of type 2 can be simulated by the following Matmsertion-deletion
SyStem rU|eg%I2/D2 = [(Xa A/]Y7 )‘)’ ()‘7 X/A7 )‘)7 (]Y7 )‘/Ya )‘>7 ()‘7 ]Y/)‘a A)?
()‘7 /\/[0010027 A), (A7 )‘/]11127 /\)7 ()‘7 A//\7 )‘)7 ([mwzﬂ /\/:Ug, ]ﬂhwz)ﬂ ([0010027 )\/.Tl, ;Cg),
(A foraa /2 A)s (A Jaraa /A, A)]
The simulation is given as follows:
)(l — X]y ﬁu]y ! :>]yX :>U Y

iA = @Ai = [1112"4]961962 = [I112 v i]11962 = [I1I2 i@]flfQ =
[zlz2ﬂx2]zlr2 ﬁu xle]zle = T1T2 ¢

Since there is only one symbol frofd; at any derivation, the ruléx, X /A \) will

delete the use € N; correctly. Note that we introduce anothgre N; only af-
ter deletingX. Similarly, the rule(A, A/, \) can delete anyl € N», the (next) rule
([er22, M T2, |z1as) Makes sure that the usetl € N, is deleted. If any otheH is
deleted, the rulé[,, ,,, \/z2,]s,2,) Cannot be applied as the usédwill be in the
middle of|[,,,, and],, ., and the derivation stops.

The Matrix of type 3 can be simulated by the following Matmsertion-deletion
SyStem rU|e£lg/D3 = [(Xa A/]Yv )‘)a (Av X/A7 )‘)a (]Yv )\/Ya A)v ()\a ]Y/)\a A)v

()‘v /\/[#7 A)v (Av )‘/]#7 )‘)v (/\7 A/)‘v /\)7 ([#7 )‘/#7 ]#)a (/\7 [#//\7 )‘)v (/\7 ]#/)" /\)]
The simulation is given as follows:

= pA' = Al = [ Ve = el = #le = #

Note that the appearance checking sym#as not deleted in the derivation.
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The Matrix of type 4 can be simulated by the following Matmsertion-deletion
system rulesi;, ;p, [(A X/ A A), (A A [e120, A), (A, N ]ay20, A,
()‘v A//\7 )‘)v ([I112v /\/3727 ]1112)7 ([Ilrw /\/Ila IQ)? ()‘v [I112//\7 )‘)v (/\7 ]1112//\7 )‘)]
The simulation is given as follows:
X =
lA = [$1$2111l = [1112A]$1$2 = [$1$2 4 l]$1$2 = [$1$2 l@]iliz =

[mlwgﬂirQ]wlxg :>u x1$2]1112 :> .T]_:,CQ U

Note that[;,z,, |z.2., v, [#, | are considered to be single non-terminals. As the
maximal length of inserted string is 1 (i.e.,= 1), the maximal length of the context
used ininsertion rules is 1 (i.en, = 1), the maximum length of deleted string is 1 (i.e.,
p = 1) and no context is used in deletion rules (ie+ 0), the matrix grammars in
SBNF can be simulated by Matrix insertion-deletion systevith a total weight of 3.
This ends the proof. O

5 Conclusions

In this paper, we discussed the Matrix insertion-deletingmar systems and using
the system we have generated some context-free and noextdrge languages which
are having some structural relevances with bio-moleciiless we identified a promis-
ing grammar system which can suit for both natural languageasentation and bio-
molecular structural modelling. We have proved that Matisertion-deletion systems
with weight 3(1, 1; 1, 0) can characterize all recursively enumerable languagethand
system uses no contexts for deletion operation. As thetinsemules are context de-
pendent (as we use context for insertion), they are morebkeext-sensitive and since
deletions are done without looking any context, they areenlike context-free. There-
fore, this system uses the nature of both context-senséseand context-freeness, it
seems to be a promising model for representing natural Egegl Thus analyzing this
model more towards the properties of MCS formalisms is remrgsand is left as a
future work.

As the family of recursively enumerable languages is rezaghwith a total weight
of 3, the context-free languages should be characterizéwégight less than 3 in ma-
trix insertion-deletion systems. As non-terminals aralusé¢he context-free grammars,
the simulated matrix insertion-deletion system must usetioe rules to delete the in-
troduced non-terminals, it looks not possible to charéerontext-free languages by
Matrix insertion-deletion systems with weight less thafil3e same holds true for even
regular languages, thus we reached to an hierarchicalpsellalo avoid this hierar-
chical collapse, we can introduce two more new weights inriatsertion-deletion
systems, namely, ¢ such thats denotes the total number of matrices @ndenotes
the maximum number of rules among all matrices. With the naights the Matrix
insertion-deletion systems can be representetfa! /N S;* DELY and we believe
that regular and context-free languages can be charasdesiith less weights counting
the above said matrix measures. This leads to an interdatung work from generative
power perspective.
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