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Abstract. Insertion and deletion are considered to be the basic operations in Bi-
ology, more specifically in DNA processing and RNA editing. Based on these
evolutionary transformations, a computing modelinsertion-deletion system has
been proposed in formal language theory. Recently, in [14], a new computing
model namedMatrix insertion-deletion system has been introduced to model var-
ious bio-molecular structures. In this paper, we represent some natural language
constraints such astriple agreement, crossed dependency, copy language using
Matrix insertion-deletion systems and discuss how these constraints resemble
some bio-molecular structures. Next, we analyze the computational completeness
result for Matrix insertion-deletion system where the importance is given for not
using any contexts when deletion rule takes place. We see that when the insertion-
deletion system is combined with matrix grammar, the universality result is ob-
tained with weight just 3(1, 1; 1, 0) whereas for insertion-deletion systems, the
universality result is available with weight4 (1, 1; 1, 1).

1 Introduction

Linguistics agreed in late 1960’s that many natural languages including English, are
not context-free [4]. This initiated the idea of thinking grammars beyond the scope of
context-free. As membership problem is tough to handle for context-sensitive gram-
mars, they are not a good model for describing natural languages. To overcome these
difficulties and to give a syntactical representation for natural languages, a notion called
mildly context-sensitive (MCS) grammar formalisms has been defined by (majority of)
computational linguistics people and later many attempts have been made to find MCS
grammar formalisms [3], [5], [15]. A grammar formalism is said to be MCS formalism
if it satisfies the following properties.

1. The class of its languages contain all context-free languages
2. The class of its languages contain the following three basic non-context-free lan-

guages:
– triple agreements: Lta = {anbncn|n ≥ 1},
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– crossed dependencies: Lcd = {anbmcndm|n, m ≥ 1}, and
– copy language Lcp = {ww|w ∈ {a, b}∗}.

3. All languages in the class areparsable in polynomial time.
4. All languages in the class aresemilinear or at least satisfy thebounded growth

property.

In the last three decades, biology played a great role in the field of formal languages
by being the root for the development of various biologically inspired computing mod-
els such assticker systems, splicing systems, Watson-Crick automata, insertion-deletion
systems, p systems [6], [11], [12]. Since, most of the language generating devices are
based on the operation of rewriting systems, the insertion-deletion systems opened a
particular attention in the field of formal languages. Informally, the insertion and dele-
tion operations of an insertion-deletion systems are defined as follows: If a stringα is
inserted between two partsw1 andw2 of a stringw1w2 to getw1αw2, we call the oper-
ation as insertion, whereas if a substringβ is deleted from a stringw1βw2 to getw1w2,
we call the operation as deletion.

DNA molecules may be considered as strings over alphabet consisting of four sym-
bols namelya, t, g andc (denoted asΣDNA). Similarly, RNA molecules may be con-
sidered as strings over alphabet consisting of four symbolsnamelya, u, g andc (de-
noted asΣRNA). We discuss below in brief some of the important structuresseen in
bio-molecules such as protein, DNA and RNA. Fig.1. shows thestructures (a)stem,
(b) cloverleaf and (c)dumbbell. Since the bio-molecular structures can be defined in
terms of sequence of symbols (i.e., strings) there exists a correlation between formal
grammars and bio-molecular structures. The following example witnesses this corre-
lation. Consider a context-free language{wwR | w ∈ {a, b}∗} (wherewR is the
reverse ofw) and a gene sequencectatcgcgatag. As the complements arēa = t,
t̄ = a, ḡ = c and c̄ = g, the above gene sequence resembles the palindrome lan-
guage{ww̄R | w ∈ Σ∗

DNA} wherew = ctatcg and w̄R = cgatag. Like this, the
structures mentioned in Fig.1. can be represented by context-free languages.

However, there are some more structures that are predominantly available in bio-
molecules which cannot be modelled by context-free grammars. Fig.2. represents such
structures (a)pseudoknot and (b)attenuator. A closer look at these bio-molecular struc-
tures shows a resemblance with well known natural language constructs, such ascrossed
dependencies: {anbmcndm | n, m ≥ 1} andcopy language: {ww | w ∈ {a, b}∗}, see
[8, 9]. Therefore, if a formal grammar is capable of generating the context-free and non-
context-free languages, then that grammar is also suitableto represent bio-molecular
structures and the vice versa is also true. Next, we discuss some attempts made in for-
mal grammars to represent the above mentioned bio-molecular structures.

In the last two decades or so, many attempts have been made to establish the lin-
guistic behaviour of biological sequences by defining new grammar formalisms likecut
grammars [7], crossed-interaction grammar [10], simple linear tree adjoining gram-
mars andextended simple linear tree adjoining grammars [20] which are capable of
generating some of the biological structures mentioned above. However, there was
no unique grammar system that encapsulate all essential andimportant bio-molecular
structures. For example double copy language cannot be modelled by a simple lin-
ear tree adjoining grammar [20]. Very recently, a new biologically inspired computing
model namelyMatrix insertion-deletion system has been introduced in [14] by com-
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Fig. 1.Bio-molecular structures: (a) stem (b) cloverleaf (c) dumbbell.
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Fig. 2.Bio-molecular structures: (a) pseudoknot structure (b) attenuator.

bining insertion-deletion system and matrix grammars. This system represents all the
above discussed bio-molecular structures and also the other structures such ashairpin,
non-ideal attenuator, ideal strings, orthodox string. In this paper, we first briefly re-
call this system and using this system we generate a few natural language constraints
and we discuss their coherences in bio-molecular structures. Thus we aim to show that
Matrix insertion-deletion grammar system might be a uniquemodel that is suitable for
both natural language and bio-molecular representations.

Given an insertion-deletion system, the weight of the system is based on the max-
imal length of insertion, maximal length of the context usedfor insertion, maximal
length of deletion, maximal length of the context used for deletion and they are (respec-
tively) denoted as(n, m; p, q). The total weight is defined as the sum ofn, m, p, q. There
have been many attempts to characterize the recursively enumerable languages (i.e.,
computational completeness) using insertion-deletion systems with less weights. In [16]
the universality results were obtained with weight 5 (of thecombinations(1, 2; 1, 1),
(2, 1; 2, 0), (1, 2; 2, 0)). In [1] and [11], this result was improved with weight 4 (of
the combinations(1, 1; 1, 1) and(1, 1; 2, 0) respectively). In [17], a variant of insertion-
deletion systems called context-free insertion-deletionsystems were introduced by con-
sidering no context in insertion and deletion rules. The universality of context-free
insertion-deletion systems were proved initially with weight (∗, 0; ∗, 0) and reduced
to weight 6(3, 0; 3, 0). Further, in the same paper, the result was improved to weight 5
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(of the combinations(3, 0; 2, 0) and(2, 0; 3, 0)). As Matrix insertion-deletion system is
a variation of insertion-deletion systems and is more powerful than insertion-deletion
systems, the universality result of this system must be obtained with less weight than 4.
In this paper, we prove the universality result of Matrix insertion-deletion systems with
just weight 3(1, 1; 1, 0) where no contexts is considered for deletion thus the deletion
operation works in a context-free manner.

2 Preliminaries

We assume that the readers are familiar with the notions of formal language theory.
However, we recall the basic notions which are used in the paper. A finite non-empty
setV or Σ is called an alphabet. We denote byV ∗ or Σ∗ , the free monoid generated
by V or Σ, byλ its identity or the empty string, and byV + or Σ+ the setV ∗ − {λ} or
Σ∗−{λ}. The elements ofV ∗ or Σ∗ are calledwords or strings. For any wordw ∈ V ∗

or Σ∗, we denote the length ofw by |w|. For more details on formal language theory,
we refer to [13].

Next, we look into the basic definitions of insertion-deletion systems. Given an
insertion-deletion systemγ = (V, T, A, R), whereV is an alphabet,T ⊆ V , A is a
finite language overV , R is a finite set triples of the form(u, β/α, v), where(u, v) ∈
V ∗ × V ∗, (α, β) ∈ (V + × {λ}) ∪ ({λ} × V +). The pair(u, v) is called as contexts.
Insertion rule will be of the form(u, λ/α, v) which means thatα is inserted between
u andv. Deletion rule will be of the form(u, β/λ, v), which means thatβ is deleted
betweenu andv. In other words,(u, λ/α, v) corresponds to the rewriting ruleuv →
uαv, and(u, β/λ, v) corresponds to the rewriting ruleuβv → uv.

Consequently, forx, y ∈ V ∗ we can writex =⇒∗ y, if y can be obtained fromx
by using either an insertion rule or a deletion rule which is given as follows: (the down
arrow↓ indicates the position where the string is inserted, the down arrow⇓ indicates
the position where the string is deleted and the underlined string indicates the string
inserted/deleted)

1. x = x1u
↓vx2, y = x1uαvx2, for somex1, x2 ∈ V ∗ and(u, λ/α, v) ∈ R.

2. x = x1uβvx2, y = x1u
⇓vx2, for somex1, x2 ∈ V ∗ and(u, β/λ, v) ∈ R.

The language generated byγ is defined by

L(γ) = {w ∈ T ∗ | x =⇒∗ w, for some x ∈ A}

where=⇒∗ is the reflexive and transitive closure of the relation=⇒.
Next, we discuss about the weight of the insertion-deletionsystem. An insertion-

deletion systemγ = (V, T, A, R) is of weight(n, m; p, q) if

n = max{|α| | (u, λ/α, v) ∈ R}

m = max{|u| | (u, λ/α, v) ∈ R or (v, λ/α, u) ∈ R}

p = max{|β| | (u, β/λ, v) ∈ R}

q = max{|u| | (u, β/λ, v) ∈ R or (v, β/λ, u) ∈ R}

We denote byINSm
n DELq

p for n, m, p, q ≥ 0, the family of languagesL(γ) gener-
ated by insertion-deletion systems of weight(n′, m′; p′, q′) such thatn′ ≤ n, m′ ≤ m,
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p′ ≤ p, q′ ≤ q. The total weight ofγ is n + m + p + q.
Next, we will look into the definition of matrix grammars. A matrix grammar is

an ordered quadrupleG = (N, T, S, M) whereN is a set of non-terminals,T is a
set of terminals,S is the start symbol andM is a finite set of nonempty sequences
whose elements are ordered pairs(P, Q). The pairs are referred to as productions and
written in the formP → Q. The sequences are referred to as matrices and writtenm =
[P1 → Q1, ..., Pr → Qr], r ≥ 1. The above matrix grammar is without appearance
checking. The language generated by the matrix grammar is defined byL(G) = {w ∈
T ∗ | S =⇒∗ w}. A matrix grammar with appearance checking is defined asG =
(N, T, S, M, F ) whereF is a set of occurrences of rules in the matrices ofM . While
deriving, a rule may be exempted to apply if the rule is inF . The language generated
by the matrix grammar with appearance checking is defined asLac(G, F ) = {w ∈
T ∗ | S =⇒∗ w}. The family of languages generated by matrix grammars without/with
appearance checking is denoted byMAT λ, MAT λ

ac (theλ on the upper index indicates
where the ruleP → λ is allowed). For more details on matrix grammars, we refer to
[2], [18].

3 Matrix Insertion-deletion Systems

In this section, we describeMatrix insertion-deletion systems. A Matrix insertion-deletion
system is a constructΥ = (V, T, A, R) whereV is an alphabet,T ⊆ V , A is a finite lan-
guage overV , R is a finite set triples of the form in matrix format[(u1, β1/α1, v1), . . . ,
(un, βn/αn, vn)], where(uk, vk) ∈ V ∗ × V ∗, and(αk, βk) ∈ (V + × {λ}) ∪ ({λ} ×
V +), with (uk, βk/αk, vk) ∈ RIi ∪RDj ∪RIi/Dj

, for 1 ≤ k ≤ n. HereRIi denotes the
matrix which consists of only insertion rules,RDj denotes the matrix which consists of
only deletion rules andRIi/Dj

denotes the matrix which consists of both insertion and
deletion rules.

Consequently, forx, y ∈ V ∗ we can writex =⇒ x′ =⇒ x′′ =⇒ . . . =⇒ y, if y can
be obtained fromx by using a matrix consisting of insertion rules (RIi) or deletion rules
(RDj ) or insertion and deletion rules (RIi/Dj

). In a derivation step the rules in a matrix
are applied sequentially one after other in order and no ruleis in appearance checking
(note that the rules in a matrix are not applied in parallel).The language generated by
Υ is defined byL(Υ ) = {w ∈ T ∗ | x =⇒∗

Rχ
w, for some x ∈ A}, where χ ∈

{Ii, Dj , Ii/Dj} where=⇒∗ is the reflexive and transitive closure of the relation=⇒.
Note that the stringw is collected after applying all the rules in a matrix and also
w ∈ T ∗ only. The family of languages generated by Matrix insertion-deletion systems
with weights(n, m : p, q) is given asMATINSm

n DELq
p.

Example 1. Consider themix languageLml = {na(w) = nb(w) = nc(w) | w ∈
{a, b, c}∗}. The languageLml can be generated byΥml = ({a, b, c}, {a, b, c}, {λ}, R)
whereR is given asRI1 = [(λ, λ/a, λ), (λ, λ/b, λ), (λ, λ/c, λ)]. As no context is used
in insertion rulesa, b, c can be inserted anywhere in the derivation and the number of
a, b, c are equal. It is easy to see thatΥml generatesLml.
Remark. Note thatLml is generated with weight just 2(1, 1; 0, 0).
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3.1 Modelling Natural Language Constructs and Bio-molecular Structures

In this section, we represent some of the natural language constraints such ascrossed
dependency, copy language, triple agreement, quadruple agreement, center-embedded
structure and discuss their coherences with bio-molecular structures.

In the next lemma, we represent crossed dependency structure in natural languages
which models pseudoknot structure in bio-molecules.

Lemma 1. Lcd = {anbmcndm | m, n ≥ 1} ∈ Υcd.

Proof. The languageLcd can be generated by the Matrix insertion-deletion system
Υcd = ({a, b, c, d}, {a, b, c, d}, {abcd}, {RI1 = [(a, λ/a, λ), (c, λ/c, λ)],
RI2 = [(b, λ/b, λ), (d, λ/d, λ)] }). A sample derivation can be given as follows:a↓bc↓d
=⇒RI1

a↓abc↓cd =⇒RI1
aaab↓cccd↓ =⇒RI2

aaabbcccdd =⇒∗
RI1/I2

anbmcndm.

The languageLcd resembles the pseudoknot structure languageLps = {uvūRv̄R |
u, v ∈ Σ∗

DNA} in gene sequences as shown in Fig. 2(a). The languageLps can be gener-
ated by the Matrix insertion-deletion systemΥps = ({b, b̄, †1, †2, †3, †4}, {b, b̄}, {λ, †1†2
†3†4}, R), whereb ∈ {a, t, g, c}, b̄ is complement ofb and R is given as:RI1 =
[(λ, λ/b, †1), (λ, λ/b̄, †3)], RI2 = [(λ, λ/b, †2), (λ, λ/b̄, †4)],
RD1

= [(λ, †1/λ, λ), (λ, †3/λ, λ)], RD2
= [(λ, †2/λ, λ), (λ, †4/λ, λ)]

A sample derivation is given as follows:

↓ †1 †
↓
2 †3 †4 =⇒RI1

a †↓1 †2t †
↓
3 †4 =⇒RI2

a †1 g↓ †2 t †3 c↓†4 =⇒RI2
a †1 ga †2 t †3

ct†4 =⇒RD1
a⇓ga †2 t⇓ct†4 =⇒RD2

aga⇓tct⇓ 2

In the next lemma, we model copy language in natural languages which resembles
attenuator structure in gene sequences.

Lemma 2. Lcp = {ww | w ∈ {a, b}∗} ∈ Υcp.

Proof. The languageLcp can be generated by the Matrix insertion-deletion system
Υcp = ({a, b, †1, †2}, {a, b}, {λ, †1†2}, {RI1 = [(λ, λ/a, †1), (λ, λ/a, †2)],
RI2 = [(λ, λ/b, †1), (λ, λ/b, †2)], RD1

= [(λ, †1/λ, λ), (λ, †2/λ, λ)] }). A sample
derivation is given as follows:↓ †↓1 †2 =⇒RI1

a↓ †1 a↓†2 =⇒RI1
aa↓ †1 aa↓†2 =⇒RI2

aab †1 aab†2 =⇒RD1
aab⇓aab⇓.

The languageLcp resembles the attenuator languageLan = {uūRuūR | u ∈
Σ∗

DNA} in gene sequences as shown in Fig.2(b). The languageLan can be generated by
the Matrix insertion-deletion systemΥan = ({a, t, g, c, †1, †2}, {a, t, g, c}, {λ, †1†2}, R),
whereR is given as:RI1 = [(λ, λ/a, †1), (†1, λ/t, λ), (λ, λ/a, †2), (†2, λ/t, λ)], RI2 =
[(λ, λ/t, †1), (†1, λ/a, λ), (λ, λ/t, †2), (†2, λ/a, λ)], RI3 = [(λ, λ/c, †1), (†1, λ/g, λ),
(λ, λ/c, †2), (†2, λ/g, λ)], RI4 = [(λ, λ/g, †1), (†1, λ/c, λ), (λ, λ/g, †2), (†2, λ/c, λ)],
RD1

= [(λ, †1/λ, λ), (λ, †2/λ, λ)]
A sample derivation is given as follows:

↓ †↓1
↓†↓2 =⇒RI1

a↓ †↓1 t a↓ †↓2 t =⇒RI2
at↓ †↓1 atat↓ †↓2 at =⇒RI3

atc↓ †↓1 gatatc↓ †↓2

gat =⇒RI4
atcg †1 cgatatcg †2 cgat =⇒RD1

atcg⇓cgatatcg⇓cgat 2

In the next lemma, we show the relevance between triple, quadruple agreement lan-
guage to their corresponding structure in bio-molecules.
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Lemma 3. Lta = {anbncn | n ≥ 1} ∈ Υta.

Proof. The languageLta can be generated by the Matrix insertion-deletion system
Υta = ({a, b, c}, {a, b, c}, {abc}, {RI1 = [(a, λ/ab, b), (b, λ/c, c)]}). A sample deriva-
tion can be given as follows:a↓b↓c =⇒RI1

aa↓bb↓cc =⇒RI1
aaabbbccc =⇒∗

RI1

anbncn. The triple agreement language has relevances to triple-stranded DNA (triple
helix structure) [9]. If we included in V , T , replace the axiom asabcd andRI1 as
[(a, λ/ab, b), (c, λ/cd, d)] in Υta we can see thatΥta generates quadruple agreement
language{anbncndn | n ≥ 1}. It is mentioned in [9] that the quadruple agreement
language can be regarded as a quadruple-stranded DNA (quadruple helix structure).2

In the next lemma, we show that center-embedded structure found in natural languages
[19] can be viewed as a RNA stem in bio-molecules.

Lemma 4. The center-embedded language Lce = {anbmbman | n, m ≥ 0} can be
represented by Matrix insertion-deletion system.

Proof. The languageLce can be generated by the Matrix insertion-deletion system
Υce = ({a, b, †1, †2, †3, †4}, {a, b}, {λ, †1 †2 †3†4}, R), whereR is given as:RI1 =
[(†1, λ/a, λ), (†4, λ/a, λ)] RI2 = [(†2, λ/b, λ), (†3, λ/b, λ)], RD1

= [(λ, †1/λ, λ),
(λ, †4/λ, λ)] RD2

= [(λ, †2/λ, λ), (λ, †3/λ, λ)]. It is easy to see thatΥce generatesLce.
The center-embedded language resembles the stem construct{u1u2u3ū3

Rū2
Rū1

R |
u1, u2, u3 ∈ Σ∗

DNA} in gene sequences as shown in Fig.1(a). 2

Note.The dumbbell languageLdb = {uūRvv̄R | u, v ∈ Σ∗
DNA} (refer to Fig.1(c).) is

found relevance with the natural languageL = {anbncmdm | n, m ≥ 0}. It is easy to
generate this context-free language using Matrix insertion-deletion system.

4 Computational Completeness

In this section, we prove that the family of recursively enumerable languages can be
characterized by Matrix insertion-deletion grammars withweight 3 (1, 1; 1, 0). This
universality result is achieved by simulating matrix grammars with appearance checking
in strong binary normal form (SBNF).

Theorem 1. MATINS1
1DEL0

1 = RE.

Proof. The partMATINS1
1DEL0

1 ⊆ RE is obvious. We now prove the other part.
For each languageL ∈ RE there is a matrix grammarG with appearance checking in
SBNF, such thatL(G) = L. A matrix grammarG is given as(N, T, S, M, F ) where
N is a set of non-terminals,T is set of terminals,S is the start symbol,M is a finite set
of matrices andF is a set of rules (used for appearance checking). A matrix grammar
G is said to be in SBNF ifN = N1 ∪ N2 ∪ {$, #} where these three sets are mutually
disjoint and the matrices inM are in one of the following forms:

1. [S → XA] X ∈ N1, A ∈ N2

2. [X → Y, A → x] X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2; x = x1x2

3. [X → Y, A → #] X, Y ∈ N1, A ∈ N2
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4. [X → λ, A → x] X ∈ N1, A ∈ N2, x ∈ T ∗, |x| ≤ 2

There is only one matrix of type 1 and F consists exactly of allrulesA → # appearing
in matrices of type 3, # is a trap symbol once used in the derivation it cannot be removed
and the rules of matrix 4 are applied only in the last step of the derivation. Observe
that there can be at most only one non-terminal symbol fromN1 at any point of the
derivation.

Next, we construct a Matrix insertion-deletion systemΥ which will simulate the
matrix grammars in strong binary normal form with appearance checking. LetΥ =
(V, T, A, R), whereV = N1 ∪ N2 ∪ {S, ]XA, ]Y , [x1x2

, ]x1x2
, [#, ]#, # | X, Y ∈

N1, A ∈ N2, x1, x2 ∈ (N2 ∪ T )}, T = T (terminal set in matrix grammars),A = S,
andR is given in simulation process.

The Matrix of type 1 can be simulated by the following Matrix insertion-deletion
system rulesRI1/D1

= [(S, λ/]XA, λ), (λ, S/λ, λ), (]XA, λ/A, λ), (]XA, λ/
X, A), (λ, ]XA/λ, λ) | [S → XA], X ∈ N1, A ∈ N2]. Here after, we omit the corre-
sponding condition matrix rule (here[S → XA]) as we are giving the simulation for
each type of the matrix at the appropriate place. The simulation of type 1 is given as
follows:

S↓ =⇒ S]XA =⇒⇓]XA
↓ =⇒]XA

↓A =⇒]XAXA =⇒ XA

The Matrix of type 2 can be simulated by the following Matrix insertion-deletion
system rulesRI2/D2

= [(X, λ/]Y , λ), (λ, X/λ, λ), (]Y , λ/Y, λ), (λ, ]Y /λ, λ),
(λ, λ/[x1x2

, A), (A, λ/]x1x2
, λ), (λ, A/λ, λ), ([x1x2

, λ/x2, ]x1x2
), ([x1x2

, λ/x1, x2),
(λ, [x1x2

/λ, λ), (λ, ]x1x2
/λ, λ)]

The simulation is given as follows:

X↓ =⇒ X ]Y =⇒⇓]Y
↓ =⇒]Y Y =⇒⇓ Y

↓A =⇒ [x1x2
A↓ =⇒ [x1x2

A]x1x2
=⇒ [x1x2

⇓ ↓]x1x2
=⇒ [x1x2

↓x2]x1x2
=⇒

[x1x2
x1x2]x1x2

=⇒⇓ x1x2]x1x2
=⇒ x1x2

⇓

Since there is only one symbol fromN1 at any derivation, the rule(λ, X/λ, λ) will
delete the usedX ∈ N1 correctly. Note that we introduce anotherY ∈ N1 only af-
ter deletingX . Similarly, the rule(λ, A/λ, λ) can delete anyA ∈ N2, the (next) rule
([x1x2

, λ/x2, ]x1x2
) makes sure that the usedA ∈ N2 is deleted. If any otherA is

deleted, the rule([x1x2
, λ/x2, ]x1x2

) cannot be applied as the usedA will be in the
middle of[x1x2

and]x1x2
and the derivation stops.

The Matrix of type 3 can be simulated by the following Matrix insertion-deletion
system rulesRI3/D3

= [(X, λ/]Y , λ), (λ, X/λ, λ), (]Y , λ/Y, λ), (λ, ]Y /λ, λ),
(λ, λ/[#, A), (A, λ/]#, λ), (λ, A/λ, λ), ([#, λ/#, ]#), (λ, [#/λ, λ), (λ, ]#/λ, λ)]
The simulation is given as follows:

X↓ =⇒ X ]Y =⇒⇓]Y
↓ =⇒]Y Y =⇒⇓ Y

↓A =⇒ [#A↓ =⇒ [#A]# =⇒ [#
⇓ ↓]# =⇒ [##]# =⇒⇓ #]# =⇒ #⇓

Note that the appearance checking symbol# is not deleted in the derivation.

54



The Matrix of type 4 can be simulated by the following Matrix insertion-deletion
system rulesRI4/D4

[(λ, X/λ, λ), (λ, λ/[x1x2
, A), (A, λ/]x1x2

, λ),
(λ, A/λ, λ), ([x1x2

, λ/x2, ]x1x2
), ([x1x2

, λ/x1, x2), (λ, [x1x2
/λ, λ), (λ, ]x1x2

/λ, λ)]
The simulation is given as follows:

X =⇒ λ
↓A =⇒ [x1x2

A↓ =⇒ [x1x2
A]x1x2

=⇒ [x1x2

⇓ ↓]x1x2
=⇒ [x1x2

↓x2]x1x2
=⇒

[x1x2
x1x2]x1x2

=⇒⇓ x1x2]x1x2
=⇒ x1x2

⇓

Note that[x1x2
, ]x1x2

, ]Y , [#, ]# are considered to be single non-terminals. As the
maximal length of inserted string is 1 (i.e.,n = 1), the maximal length of the context
used in insertion rules is 1 (i.e.,m = 1), the maximum length of deleted string is 1 (i.e.,
p = 1) and no context is used in deletion rules (i.e.,q = 0), the matrix grammars in
SBNF can be simulated by Matrix insertion-deletion systemswith a total weight of 3.
This ends the proof. 2

5 Conclusions

In this paper, we discussed the Matrix insertion-deletion grammar systems and using
the system we have generated some context-free and non-context-free languages which
are having some structural relevances with bio-molecules.Thus we identified a promis-
ing grammar system which can suit for both natural language representation and bio-
molecular structural modelling. We have proved that Matrixinsertion-deletion systems
with weight 3(1, 1; 1, 0) can characterize all recursively enumerable languages andthe
system uses no contexts for deletion operation. As the insertion rules are context de-
pendent (as we use context for insertion), they are more likecontext-sensitive and since
deletions are done without looking any context, they are more like context-free. There-
fore, this system uses the nature of both context-sensitiveness and context-freeness, it
seems to be a promising model for representing natural languages. Thus analyzing this
model more towards the properties of MCS formalisms is necessary and is left as a
future work.

As the family of recursively enumerable languages is recognized with a total weight
of 3, the context-free languages should be characterized with weight less than 3 in ma-
trix insertion-deletion systems. As non-terminals are used in the context-free grammars,
the simulated matrix insertion-deletion system must use deletion rules to delete the in-
troduced non-terminals, it looks not possible to characterize context-free languages by
Matrix insertion-deletion systems with weight less than 3.The same holds true for even
regular languages, thus we reached to an hierarchical collapse. To avoid this hierar-
chical collapse, we can introduce two more new weights in Matrix insertion-deletion
systems, namelys, t such thats denotes the total number of matrices andt denotes
the maximum number of rules among all matrices. With the new weights the Matrix
insertion-deletion systems can be represented asMAT t

sINSm
n DELq

p and we believe
that regular and context-free languages can be characterized with less weights counting
the above said matrix measures. This leads to an interestingfuture work from generative
power perspective.
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