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Abstract: In this paper, we present a formalization of an Index Assignment process that was used against documents 
stored in a text database. The process uses key phrases or terms from a hierarchical thesaurus or ontology 
and is based on the new notion of entropy on ontology for terms and their weights that is an extension of the 
Shannon concept of entropy in Information Theory and the Resnik semantic similarity measure for terms on 
ontology. Introduced notion provides a measure of closeness or semantic similarity for a set of terms in 
ontology and their weights and allows creation of a clustering algorithm that constructively resolves index 
assignment task. The algorithm was tested on 30,000 documents randomly extracted from MEDLINE 
biomedicine database that are manually indexed by professional indexers. The main output from 
experiments shows that after all 30,000 documents were processed in seven topics out of ten the presented 
algorithm and human indexers have the same understanding of documents. 

1 INTRODUCTION 

Over past decades many Information Retrieval (IR) 
Systems were developed to manage the increasing 
complexity of textual (document) databases, see 
references in Manning, Raghavan, Schütze (2008). 
Many of these systems use a knowledge base, such 
as a hierarchical Indexing Thesaurus or Ontology to 
extract, represent, store, and retrieve information 
that describes such documents (Salton, 1989; 
Agrawal, Chakrabarti, Dom, Raghavan, 2001; 
Tudhope, Alani, Jones, 2001; Aronson, Mork, Gay, 
Humphrey, Rogers, 2004; Medelyan, Witten, 2006a; 
Wolfram, Zhang, 2008; and others). Ontologies were 
used in IR systems to endorse the semantic concepts 
consistency and enhance the search capabilities. In 
this paper we assume that ontology has hierarchical 
relations among concepts and interchangeably refer 
to ontology as hierarchical Indexing Thesaurus 
(Cho, Choi, Kim, Park, Kim, 2007). An Indexing 
Thesaurus consists of terms (words or phrases) 
describing concepts in documents that are arranged 
in a hierarchy and have a stated relations such as 
synonyms, associations, or hierarchical relationships 
among them. We discuss this in more detail later in 
the “Knowledge Base” section. Medical Subject 
Headings (MeSH) hierarchical thesaurus (Nelson, 

Johnston, Humphreys, 2001) together with the 
National Library of Medicine MEDLINE® database 
and the Unified Medical Language System 
Knowledge Source (Lindberg, Humphreys, McCray, 
1993) are the best examples of IR systems for 
biomedical information.  

There are numerous ontologies available for 
linguistic or IR purposes, see references in 
Grobelnik, Brank, Fortuna, Mozetič (2008). Mostly, 
they were manually built and maintained over the 
years by human editors (Nelson et al., 2001). There 
were also attempts to generate ontologies 
automatically by using the word’s co-occurrence in a 
corpus of texts (Qiu, Frei, 1993; Schütze, 1998). 

It is an issue in linguistics to determine what a 
word is and what a phrase is (Manning, Schütze, 
1999). We use terminology from the Stanford 
Statistical Parser (Klein, Manning, 2003) which for a 
given text specifies part-of-speech tagged text, 
sentence structure trees, and grammatical relations 
between different parts of sentences. This 
information allows us to construct a list of terms 
from a given ontology to be used to present the 
initial text.  

To retrieve information from databases, 
documents are usually indexed using terms from 
ontologies or key phrases extracted from the text 
based on their frequency or length. Indexing based 
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on ontology is typically a manual or semi-automated 
process that is aided by a computer system to 
produce recommended indexing terms (Aronson et 
al., 2004). For large textual databases, manual Index 
Assignment is highly labor-intensive process, and 
moreover, it cannot be consistent because it reflects 
the interpretations of many different indexers 
involved in the process (Rolling, 1981; Medelyan, 
Witten, 2006b). Another problem is the natural 
evolution of the indexing thesauruses when new 
terms have to be added or when some terms become 
obsolete. This also adds inconsistency to the 
indexing process. These two significant setbacks 
drove the development of different techniques for 
automating Index Assignment, see references in 
Manning et al. (2008), Medelyan, Witten (2006a) 
but none of them could be close in comparison with 
Index Assignment by professional indexers. Névéol, 
Shooshan, Humphrey, Mork, Aronson (2009) 
described the challenging aspects of automatic 
indexing using a large controlled vocabulary, and 
also provided a comprehensive review of work on 
indexing in the biomedical domain.  

This paper presents a new formal approach to the 
Index Assignment process that uses key phrases or 
terms from a hierarchical thesaurus or ontology. 
This process is based on the new notion of Entropy 
on Ontology for terms and their weights and is an 
extension of the Shannon (1948) concept of entropy 
in Information Theory and the Resnik (1995) 
semantic similarity measure for terms in ontology. 
This notion of entropy provides a measure of 
closeness or semantic similarity for a set of terms in 
ontology and their weights, and is used to define the 
best or optimal estimation for the State of the 
Document, which is a pair of terms and weights that 
internally describes main topics in the document. 
This similarity measure for terms allows the creation 
of a clustering algorithm to build a close estimation 
of the State of the Document and constructively 
resolve Index Assignment task. This algorithm, as a 
main part of Automated Index Assignment System 
(AIAS), was tested on 30,000 documents randomly 
extracted from MEDLINE biomedicine database. 
All MEDLINE documents are manually indexed by 
professional indexers and terms assigned by AIAS 
were compared against human choices. The main 
output from our experiments shows that after all 
30,000 documents were processed, in seven out of 
ten topics, AIAS and human indexers had the same 
understanding of the documents. 

Every document in a database has some internal 
meaning. We may present this meaning by using a 
set of terms { ܶ} from the Indexing Thesaurus and 

their weights { ܹ} showing the relative importance 
of corresponding terms. We define the State of the 
Document as a latent pair ({ ܶ}, { ܹ}) that 
represents implicit internal meaning of the 
document. The goal in Index Assignment in IR is to 
classify the main topics of the document to identify 
its state. Usually, the State of the Document is 
unknown, and we may have only a certain 
estimation of it. Among human estimations we have 
the following: 

1. The author’s estimation – how author of the 
document desires to see it; 

2. The indexer’s estimation – with general 
knowledge of the subject and available vocabulary 
from Indexing Thesaurus; 

3. The user’s estimation – with the knowledge of 
the specific field. 

In addition, inside each human category the 
choice of the terms depends on background, 
education, and other skills that different readers may 
have and this adds inconsistency in the indexing 
process as mentioned earlier.  

One of the thesaurus-based algorithms exploiting 
semantic word disambiguation was proposed in 
Walker (1987). The main idea here is, for a given 
word from the text that corresponds to different 
terms in thesaurus hierarchy, to choose the term T 
having the highest sum of occurrences or the highest 
concentration of words from the document with 
highest frequencies in sub hierarchy with the root T.  

In another thesaurus based algorithm (Medelyan, 
Witten, 2006a) the idea of concentration based on 
the number of thesaurus links that connect candidate 
terms was mentioned as one of the useful features in 
assigning key phrases to the document. The same 
idea of word concentration that is used to identify 
topics or terms in the document is implicitly seen in 
Figure 1. Figure 1 demonstrates part of the MeSH 
hierarchy (Nelson et al., 2001) and MeSH terms, 
indicated as ▲, that were manually chosen by a 
MEDLINE indexer for the abstract from MEDLINE 
database presented in Appendix A. The MeSH terms 
that have a word from this abstract are spread among 
MeSH hierarchy in almost 30 top topics, not all of 
them are shown here. However, only terms that are 
concentrated in two related topics in ontology 
(hierarchy) with highest word frequencies were 
chosen by the indexer: “Nursing”, hierarchy code 
G02.478, and “Health Services Administration”, 
hierarchy code N04. 

We might emphasize two main concepts that 
could indicate how the terms were chosen among all 
possible candidates in these examples: the concept 
of relevant or similar terms in an ontology and the 
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Figure 1: Medical Subject Headings for MEDLINE abstract 21116432 ”Expert public health nursing practice: a complex 
tapestry”. 

concept of concentration of relevant terms in 
ontology that have the highest frequencies of words 
from the document. 

The notion of concentration energy, information, 
business and other entities was defined through 
concept of Entropy (Wiener, 1961). Shannon (1948) 
presented the concept of Entropy in Information 
Theory as ܪ({ݔ}) = −  ݔ logଶ  , ݔ
where {ݔ} is a distribution, ݔ ≥ 0, ∑ ݔ = 1. The 
functional ܪ({ݔ}) is widely used to measure 
information in a distribution, particularly, to 
compare ontologies (Cho et al., 2007) and to 
measure distance between two concepts in ontology 
(Calmet, Daemi, 2004). Functional ܪ({ݔ}), or 
entropy, is at its maximum when all ݔ, ݇ = 1, … ,  ,ܭ
are equal, meaning that we cannot accentuate any 
element or a group of elements in the distribution, 
or, in other words, there is no concentration of 
information. On the other hand, functional ܪ({ݔ}), 
or entropy, is 0 or at its minimum if one of the 
elements, say xଵ = 1, and all the others are 0. In this 
case all information about the distribution is well 
known and is concentrated in xଵ. 

The concept of similarity for two terms in IS-A 
ontology was introduced by Resnik (1995, 1999) 
and is based on the information content -logଶ  ,(ܶ)

where (ܶ)) is an empirical probability function of 
terms T in ontology. The measure of similarity for 
terms ଵܶ and ଶܶ is defined as the maximum 
information content evaluated over all terms that 
subsume both ଵܶ and ଶܶ. The measure of similarity 
is used in linguistics, biology, psychology and other 
fields to find semantic relationships among the 
entities of ontologies (Resnik, 1999). 

In IR, the input set of weights { ܹ} for candidate 
terms is usually not a distribution, and so we extend 
the concept of entropy for weights ܹ  > 0, ∑ ܹ ≠ 1. We also expand the concept of 
similarity to measure the similarity for any set of 
terms in ontology. Based on these new notions of 
Weight Entropy and Semantic Similarity, we 
introduce in corresponding section the notion of 
Entropy on Ontology for any set of candidate terms 
{ ܶ} and their weights { ܹ}. We define Optimal 
Estimation of the State of the Document as a pair 
({ ܶ}, { ܹ}) where the minimum value for Entropy 
on Ontology is attained over all possible sets of 
candidate terms. Theoretically, this is a formal 
solution for the Index Assignment problem and the 
minimum of entropy could be found through 
enumeration of all possible cases. Compared to 
human indexers, the Optimal Estimation of the State 
of the Document provides a uniform approach to 
solving the problem of assigning indexing terms to 
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documents with the vocabulary from an indexing 
thesaurus. Any hierarchical knowledge base can be 
used as an indexing thesaurus for any businesses, 
educational, or governmental institutions.  

In general, when the indexing thesaurus is too 
large, the Optimal Estimation of the State of the 
Document provides a non-constructive solution to 
the problem of assigning indexing terms to a 
document, see also Névéol et al. (2009) for the 
scalability issue. Nevertheless, its definition 
provides insight into how to construct a Quasi 
Optimal Estimation that is presented in 
corresponding section. We may consider the Index 
Assignment problem as a process that is used to 
comprehend and cluster all possible candidate terms 
with words from the given document into groups of 
related terms from the indexing thesaurus that 
present the main topics of the document. There are 
different clustering algorithms, particularly in IR 
(Manning, Schütze, 1999; Rasmussen, 1992), that 
characterize the objects into groups according to 
predefined rules that represent formalized concepts 
of similarity or closeness between objects. Rather 
than randomly enumerating all possible sets of 
candidate terms, we use clustering. We start from 
separate clusters for each term that contains a word 
from a given document to construct a Quasi Optimal 
Estimation algorithm for the State of the Document. 
It is based on the concept of closeness introduced 
here as Entropy on Ontology which evaluates 
similarity for a set of terms and their weights.  

Manually indexed documents are the best 
candidates for testing the new algorithm, and maybe 
unique samples for comparison in assignment terms 
from ontology. We evaluate our algorithm against 
human indexing of abstracts (documents) from 
MEDLINE bibliographic database covering the 
fields with concentration on biomedicine. 
MEDLINE contains over 16 million references to 
journal articles in life sciences worldwide and over 
500,000 references are added every year. A 
distinctive feature of MEDLINE is that the records 
are indexed with Medical Subject Headings (MeSH) 
Knowledge Base (Nelson et al., 2001) which has 
over 25,000 terms and 11 levels of hierarchy. The 
evaluation results are discussed in “Algorithm 
Evaluation” section. 

2 KNOWLEDGE BASE 

The knowledge base for any domain of the world 
and any human activity consists of semantic 
interpretation of words from documents that may be 

used for indexing. One of the organizations of such 
knowledge is Hierarchical Indexing Thesaurus or 
Ontology. Terms for ontology are usually selected 
and extracted based on the users’ terminology or key 
phrases found in documents stored in the database. 
Each term should represent a topic or a feature of the 
knowledge domain and provide the means for 
searching the database for this topic or feature in a 
unique manner. 

The other fundamental components in ontology 
are hierarchical, equivalence, and associative 
relationships.  

The main hierarchical relationships are: 
part/whole, where relation may be described as 

“A is part of B”, “B consists of”; 
class/subclass, where child term inherits all 

features of the parent and has its own properties; 
class/object, where the term A as an object is 

instantiated based on the given class B, and “A is 
defined by B". 

Equivalence in relationships may be described 
also as “term A is term B”, when the same term is 
applied to two or more hierarchical branches, as in 
the most concerned situation. 

Associative relationship is a type of “see related” 
or “see also” cross-reference. It shows that there is 
another term in the thesaurus that is relevant and 
should also be considered. 

Two terms in ontology may relate to each other 
in other ways. A concept of similarity that measures 
relationship between two terms was introduced by 
Resnik (1995) and is based on the prior probability 
function (ܶ) of encountering term T in documents 
from a corpus. This probability function can be 
estimated using the frequencies of terms from the 
corpora (Resnik, 1995; Manning, Schütze, 1999). A 
formal definition that will be used in the sequel is as 
follows: 

An Ontology or a Hierarchical Indexing 
Thesaurus is an acyclic graph with hierarchical 
relationships described above, together with a prior 
probability function (ܶ) that is monotonic: if term ଵܶ is a parent of term ܶ, then (ܶ) ≤ ) ଵܶ) (Resnik, 
1995); in case of multiple parents and if the number 
of parents equals ்ܰ we will assume that ୮(்)ே  ≤ 
p( ଵܶ) for each parent ଵܶ. Nodes on the graph are 
labeled with words or phrases from the documents’ 
database. The graph has a root node called “Root”, 
with p(Root) = 1. All other nodes have at least one 
parent. Some nodes may have multiple parents, 
which represent the equivalence or associative 
relationships between nodes. Figure 1 shows an 
example of an acyclic graph from the MeSH 
Indexing Thesaurus. 
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3 ENTROPY ON ONTOLOGY 

The State of the Document, as defined in the 
introduction, is a set of terms from ontology with 
weights that provides an implicit semantic meaning 
of the document, and, in most cases, is unknown. 
Having multiple estimations of the State of the 
Document, we need to have a measurement that 
would allow us to distinguish different estimations 
in order to find the one most closely describing the 
document.  

3.1 Weight Entropy 

Examples discussed in the introduction (Walker, 
1987; Medelyan, Witten, 2006a; Nelson et al., 2001) 
demonstrate the importance of measuring the 
concentration of information presented in a set of 
weights and the entropy ܪ({ݔ}) (Shannon, 1948) 
for a distribution {ݔ}, ݔ ≥ 0, ∑ ݔ = 1, is a 
unique such measurement. In IR, the input set of 
weights { ܹ} is usually not a distribution and 
replacement of weights with normalized weights ቄ ௐೖ∑ ௐೖೖ ቅ, ∑ ܹ ≠ 0, leads to a loss of several 
important weight features. Intuitively, when sum ∑ ܹ → 0 , the weights vanish and provide less 
substance for consideration, or less information. 
Similarly, if we have two sets of weights with the 
same distribution after normalization, we cannot 
distinguish them based on normalized weights and 
classical entropy H. However, one of the weights’ 
sums could be much bigger than the other and we 
should choose first one as an estimation of the State 
of the Document. Also, in the simplest situation, 
when we want to compare sets each of which 
consists of just one term, all normalized weights will 
have zero entropy H, and again, the term with bigger 
weight would be preferable. After these simple 
considerations, we define Weight Entropy for 
weights ∑ ܹ ≠ 0 as  ܹܧ({ ܹ}) = 1∑ ܹ  ൬1 +  H ൬൜ ܹ∑ ܹ ൠ൰ ൰ 

=  1∑ ܹ  ൭1 −  ܹ∑ ܹ logଶ ܹ∑ ܹ ൱. 
As we see from the definition, in addition to the 

features of classic entropy, this formula allows us to 
utilize the substance of the sum of the weights when 
comparing sets of weights. We also see that for ∑ ܹ = 1  we have ܹܧ({ ܹ}) = 1 + })ܪ  ܹ})|∑ ௐೖೖ ୀଵ, 

and so in this case the weight entropy is classic 
entropy plus 1. Slight modification of the definition 
of ܹܧ({ ܹ}) would result in ܹ({ ܹ}) = })ܪ ܹ})|∑ ௐೖೖ ୀଵ, 
but this is not important for our considerations 
below. 

3.2 Semantic Similarity 

Semantic similarity is another important concept 
emphasized in the introduction. Let’s assume that 
we evaluate semantic similarity between two sets of 
terms in ontology presented in Figure 1. Let set ଵܵ  = 
{“Community Health Nursing”, “Nursing 
Research”, “Nursing Assessment”} = { ଵܶ, ଶܶ, ଷܶ}. 
We would like to compare ଵܵ with the set ܵଶ = { ଵܶ, ଶܶ, ସܶ}, where ସܶ= “Clinical Competence”; we want 
to focus only on the topologies of sets ଵܵ and ܵଶ in 
ontology without weights. Empirically, we may be 
able to tell that the terms in set ଵܵ  are much more 
similar in a given ontology than the terms in set ܵଶ. 
We may also evaluate the level of similarity based 
on the Similarity Measure (Resnik, 1995) or the 
Edge Counting Metric (Lee, Kim, Lee, 1993) to 
formally prove our empirical choice. 

In general, we compose a Semantic Similarity 
Cover for set S by constructing a set ST of sub trees 
in ontology which have all their elements from S. 
Only these elements are leaf nodes and each two 
nodes from S have a path of links leading from one 
node to another; all are in ST. We can always do this 
because each node from the ontology has a (grand) 
parent as a root node. If a sub tree from ST has a root 
node as an element, we can try to construct another 
extension for set S to exclude the root node. If at 
least one such continuation does not have a root 
node as an element, we say that set S has a semantic 
similarity cover SSC(S), or that the elements of set S 
are semantically related. If S cannot be extended to 
SSC, let SP = { ܵ} be a partition of S, where each set ܵ has SSC( ܵ). Some of ܵ may consist of only one 
term. In this case ܵ itself would be SSC for ܵ . We 
may assume that  ܵܵܥ( ܵ) ⋂ ൫ܥܵܵ ܵ൯ =  ∅ for ݅ ≠ ݆. 
We say that set S consists of semantically related 
terms, or is semantically related, if set S has a 
semantic similarity cover SSC(S). Below we list 
several properties of semantic similarity that we will 
use, such as: 

If set S is semantically related, then any cover 
SSC(S) is semantically related. 

If set ଵܵ is semantically related to ܵଶ, i.e. ଵܵ ∪ ܵଶ 
is semantically related, then SSC( ଵܵ) is semantically 
related to SSC(ܵଶ). 

ENTROPY ON ONTOLOGY AND INDEXING IN INFORMATION RETRIEVAL

559



If set ଵܵ is semantically related to ܵଶ, then for 
each cover SSC( ଵܵ) and SSC(ܵଶ), SSC( ଵܵ) ∩ ܵܵܥ(ܵଶ) =  ∅, there are ଵܶ ∈ SSC( ଵܵ) and ଶܶ ∈ SSC(ܵଶ) that are semantically related. Thus, they 
have a common parent that is not Root. (See proof in 
Appendix B). 

To measure semantic similarity for terms from 
set S in ontology with prior probability function p 
we define the following: ݉݅ݏ(ܵ) =  ,((ܶ)logଶ−)ௌௌ(ௌ)்݉݅݊∈ௌௌ(ௌ)ݔܽ݉ 
where max is taken over all semantic similarity 
covers SSC(S). If S does not have SSC then we put 
sim(S) = 0.  

The notion SSC for a set S is a generalization of 
Resnik’s construction of semantic similarity for a 
pair of terms and ݉݅ݏ(ܵ) for the pairs equals the 
similarity measure introduced in (Resnik, 1995). It is 
not used in further constructions and is presented 
here only for comparison purposes. 

3.3 Weight Extension 

Finally, we need to extend the initial weights { ܹ} 
for semantically related terms { ܶ} over SSC({ ܶ}) 
using the prior probability function p. This will 
allow us to view SSC as a connected component and 
involve ontology as a topological space in the 
entropy definition. We assign a posterior weight 
continuation value PW(T) for each term T from 
SSC({ ܶ}) starting from leaf terms that are all from { ܶ} by construction. We would like to carry on 
value of ∑ ܹ  for extension to maintain important 
features of weights.  

For each leaf term T where T = ܶ, we define the 
initial weight IW(T) = ܹ.  

Using IW(T) we recursively define a posterior 
weight PW(T) for each term T, starting from the leaf 
terms and a posterior weight PW(P | T) for all 
parents of term T from SSC({ ܶ}) . 

If term T does not have a parent from SSC({ ܶ}), 
we define posterior weight PW(T) = IW(T) and move 
to the next term from current level.  

Let ்ܰ be the number of parents and let ଵܲ , … , ேܲ, ܰ ≤  ்ܰ, be the parents from SSC({ ܶ}) for 
term T with the defined initial weight IW(T). We 
define posterior weights as 

ܹܲ(ܶ) = (ܶ)ܹܫ ൭1 − 1ܰ ்ܰ   )(ܶ) ܲ)ே
ୀଵ ൱, 

ܹܲ( ܲ |ܶ) = (ܶ)ܹܫ  ) ்ܰ ܰ(ܶ) ܲ) , ݊ = 1, … ܰ 

Particularly, these formulas define PW(T) for all 
leaf terms T and PW(P|T) for all their parents from 
SSC({ ܶ}) for the first level. Now we may move 
from leaf terms to the next level which is a set of 
their parents in SSC({ ܶ}), to define posterior 
weights. 

Let T be equal to a term from SSC({ ܶ}) for 
which we have PW(T C) for all its children C from 
SSC({ ܶ}). For this term we define initial weight as: ܹܫ(ܶ) =  ܹ +   (்)∈ௌௌ({்ೖ})∩ௗ,(ܥ|ܶ)ܹܲ  

if T is one of ܶ  ∈  { ܶ}, otherwise ܹܫ(ܶ) =   (்)∈ௌௌ({்ೖ})∩ௗ,(ܥ|ܶ)ܹܲ  

where Children(T) is the set of all children of node 
T.  

If term T does not have a parent in SSC({ ܶ}), 
then we define PW(T) = IW(T) and the process stops 
for the branch with the root T. Otherwise we have to 
recursively calculate the posterior weights PW(T) 
and PW(P | T) like we did earlier for T and all its 
parents P derived from SSC({ ܶ}). 

The process should continue until the weight 
continuation value PW(T) is defined for all terms 
from SSC({ ܶ}) and by construction  ܹܲ(ܶ)்∈ௌௌ({்ೖ}) =   ܹ . 

Now we can define Entropy on Ontology with 
the prior probability function p for any pair of ({ ܶ}, 
{ ܹ}), when { ܶ} are semantically related terms, as:  ܱܧ({ ܶ}, { ܹ}) = minୗୗେ({்ೖ})ܹܧ൫{ܹܲ(ܶ)}் ∈ ୗୗେ({்ೖ})൯ = =  minୗୗେ({்ೖ}) 1∑ ܹ  × 

ቌ1 −  ܹܲ(ܶ)∑ ்ܹ ∈ ୗୗେ({்ೖ}) logଶ ܹܲ(ܶ)∑ ܹ ቍ, 
where PW(T) is the weight extension for T, and the 
minimum is taken over all possible covers 
Sܵܥ({ ܶ}).  
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4 OPTIMAL ESTIMATION OF 
THE STATE OF THE 
DOCUMENT 

The above defined notion of Entropy on Ontology 
(EO) provides an efficient way to measure the 
semantic similarity between given terms with 
posterior weights. It allows us to evaluate different 
estimations and define the best one or the optimal 
one for this measurement.  

When we process a document D, we observe 
words with their frequencies {ܳ}. This observation 
gives us a set of terms S(D) from ontology that have 
one or more words from this document. The 
observation weight W of the term T that has a word 
from the document is calculated based on the words’ 
frequencies {ܳ}. For example, if we want to take 
into consideration not only frequencies but also how 
many words from a document are presented in term 
T we would use the following: ܹ(ܶ) =  ቀ݉ ℎ݉ +  1ቁ  ܳ

ୀଵ , 
where h is number of words in T and words ݓଵ, … , ݓ, m ≤ h, from T have positive frequencies ܳଵ, … 
, ܳ. The observation weight W could be more 
sophisticated. In addition, we may set W(T) = 0 if 
some specific word from term T is not presented in 
the document. We leave this discussion for the next 
publication where we present document processing 
using our Automated Index Assignment System. For 
now we need to know that for each term T and given 
frequencies {ܳ} of words from D we can calculate 
observation or posterior weight W = W(T). 

Some words may participate in many terms from 
set S(D)= { ܶ}. Let {ܴ} be a partition of {ܳ} 
among terms { ܶ} with ∑ ܴ =  ܳ, ܳ ∈ {ܳ}. 
There may be many different partitions {ܴ} of 
words frequencies {ܳ} for document D. For each 
partition we calculate the observation, or posterior, 
set of weights {ܹ(ܶ, {ܴ})}்ఢ ௌ() to find out how 
words from the document should be distributed 
among the terms in order to define its state.  

For each partition {ܴ} we consider a set of 
terms { ܶ} and their weights { ܹ}, where  ܹ =  ܹ( ܶ, {ܴ})  > 0. Let { ܵ} be a partition 
{ ܶ} where each ܵ has a semantic similarity cover. 
An optimal estimation of the State of the Document 
is a semantic similarity cover {SSC( ܵ)} with its 
posterior weights minimizing the Entropy on 
Ontology 

 )ܱܧ ܵ, {ܹ(ܶ, {ܴ})}் ∈ ௌೕ)  

over all partitions {ܴ} of words frequencies {ܳ} 
among terms S(D) with ∑ ܴ =  ܳ, ܳ ∈ {ܳ} and 
over all partitions { ܵ} for set of terms T where ܹ(ܶ, {ܴ})  > 0 and ܵ consists of semantically 
related terms. Last partition { ܵ} we need not only to 
split by sets that consist of semantically related 
terms. This also allows to discover different 
semantic topics that may be presented in a document 
even if they are semantically related. 

We can rewrite the optimal estimation of the 
state in terms of the functional:  ܩ({ܴ}, ܵ, SSC൫ ܵ൯) = ܧܹ  ቀ{ܹܲ(ܶ)}் ∈ ୗୗେ(ௌೕ)ቁ =  1∑ ܹ(ܶ, {ܴ})்∈ௌೕ  ( 1 − 

 ܹܲ(ܶ)∑ ܹ(ܶ, {ܴ})்∈ௌೕ்∈ୗୗେ൫ௌೕ൯  logଶ ܹܲ(ܶ)∑ ܹ(ܶ, {ܴ})்∈ௌೕ ) 

by adding parameter {ܵܵܥ൫ ܵ൯)} to the 
minimization area that was hidden in the definition 
of the Entropy on Ontology.  

Finding the minimum of such a functional to 
construct the optimal estimation for documents from 
a database and a large ontology is still challenging 
for mathematicians and instead, below we consider a 
quasi solution. 

5 QUASI OPTIMAL 
ESTIMATION ALGORITHM 

Functional G, introduced in the previous section, 
provides a metric defined by ൛ ܴൟ, ܵ, and ܵܵܥ( ܵ) 
to evaluate what group of terms and their weights 
are closer to optimal estimation and therefore have 
less Entropy on Ontology or are more informative 
compared with others. Based on this metric we will 
use a “greedy” clustering algorithm that defines 
groups or clusters { ܵ} for set of terms S(D), where 
the observation weight W(T) > 0, words distribution ൛ ܴൟ among the terms inside each group ܵ, a cover SSC( ܵ), that for each step creates an approximation 
to the optimal estimation of the State of the 
Document.  

1. We start from separate cluster for each term 
from S(D) and calculate functional G for each ܵ = {T}, T  S(D). Set ܵ consists of one term 
T and ൛ ܴൟ would be {ܳ}, because there is no 

ENTROPY ON ONTOLOGY AND INDEXING IN INFORMATION RETRIEVAL

561



need to have a partition for cluster T and ܵܵܥ( ܵ) = {T}. Having these in place we see 
that for each T  S(D) G(൛ ܴൟ, ܵ, ܵܵܥ( ܵ)) = 
1 / W(T).  

2. Recursively, we assume that we have 
completed several levels and obtained set ܥଵ = 
{ ܵ} of clusters with defined word distribution { ܴ( ܵ)} and a semantic similarity cover 
SSC( ܵ) for each ܵ ∈ } ଵ whereܥ ܴ( ܵ)} 
provides the minimum for G(൛ ܴൟ, ܵ, ܵܵܥ( ܵ)) over all partitions ൛ ܴൟ of words 
frequencies {ܳ}. 

3. In the next level we try to cluster each 
pair ଵܵ, ܵଶ  ∈ ଵ, ଵܵܥ  ≠  ܵଶ that are 
semantically related to low values 
G(൛ ܴൟ, ܵ, SSC( ܵ)), i = 1, 2. 
3.1. New cluster construction. 

3.1.1. If semantic similarity covers for ଵܵ 
and ܵଶ have common terms we 
choose SSC( ଵܵ) ⋃  as the (ଶܵ)ܥܵܵ
semantic similarity cover for ଵܵ ∪ ܵଶ and recalculate ൛ ܴ( ଵܵ ∪ܵଶ )} to minimize G(൛ ܴൟ, ଵܵ ∪ܵଶ , ܵܵܥ( ଵܵ) ⋃  over all ( (ଶܵ)ܥܵܵ
partitions ൛ ܴൟ. 

3.1.2. If the semantic similarity covers 
SSC( ଵܵ) and SSC(ܵଶ) do not have 
common terms, we first construct 
SSC( ଵܵ ∪ ܵଶ) using the 
semantically related pairs of ଵܶ ∈ SSC( ଵܵ) and ଶܶ ∈ SSC(ܵଶ) 
with common parent that we know 
exist. For pair { ଵܶ, ଶܶ} consider set 
P({ ଵܶ, ଶܶ}) of all of the closest 
parents, i.e. parents that do not 
have other common parent for ଵܶ 
and ଶܶ on their branch. For each 
such parent we may construct 
SSC({ ଵܶ, ଶܶ}) and evaluate 
G(൛ ܴൟ, ଵܵ ∪ ܵଶ , ܵܵܥ( ଵܵ) ⋃ (ଶܵ)ܥܵܵ })ܥܵܵ∪ ଵܶ, ଶܶ}). The cover ܵܵܥ( ଵܵ) ⋃ (ଶܵ)ܥܵܵ })ܥܵܵ∪ ଵܶ, ଶܶ}) and partition ൛ ܴ( ଵܵ ∪ ܵଶ )ൟ that provide 
minimum for G over all such 
covers SSC({ ଵܶ, ଶܶ}) and 
partitions ൛ ܴൟ is the new cluster 
for ଵܵ ∪ ܵଶ. 

3.2. Let cluster ଵܵ ∈  ଵ have the minimumܥ
value for functional G over all clusters in ܥଵ and ܥଶ = ܥଵ.  
3.2.1. For each cluster ܵଶ ∈ ଵ, ଵܵܥ  ≠  ܵଶ, 

semantically related ݐ ଵܵ, we 
construct new SSC( ଵܵ ∪ ܵଶ ) like it 
is done in 3.1. If G(൛ ܴ( ଵܵ )ൟ, ଵܵ, ܵܵܥ( ଵܵ)) + G(൛ ܴ(ܵଶ )ൟ, ܵଶ, ܵܵܥ(ܵଶ)) ≥ G(൛ ܴ( ଵܵ ⋃ ܵଶ)ൟ, ଵܵ ⋃ ܵଶ, SSC( ଵܵ) ⋃ (ଶܵ)ܥܵܵ ∪SSC({ ଵܶ, ଶܶ}), then we mark value 
G(൛ ܴ( ଵܵ ⋃ ܵଶ)ൟ, ଵܵ ⋃ ܵଶ, SSC( ଵܵ) ⋃ (ଶܵ)ܥܵܵ ∪SSC({ ଵܶ, ଶܶ}) for comparison. We 
exclude cluster ܵଶ from set ܥଵ. 

3.2.2. We repeat step 3.2.1, until all 
elements from ܥଵ are processed, to 
choose a cluster with the lowest 
value G(൛ ܴ( ଵܵ ⋃ ܵଶ)ൟ, ଵܵ ⋃ ܵଶ, SSC( ଵܵ) ⋃ (ଶܵ)ܥܵܵ ∪SSC({ ଵܶ, ଶܶ}) for joined cluster. 

3.2.3. If the cluster in 3.2.2 exists, we 
exclude from ܥଶ clusters ଵܵ and ܵଶ 
that we chose in step 3.2.2 and 
include new joined cluster ଵܵ ⋃ ܵଶ 
with constructed distribution ൛ ܴ( ଵܵ ⋃ ܵଶ)ൟ, and cover ܵܵܥ( ଵܵ ⋃ ܵଶ)) in set ܥଷ. 

3.2.4. If the cluster in 3.2.2 does not 
exist, inequality in 3.2.1 holds for 
any cluster ܵଶ ∈  ଵ, we excludeܥ
cluster ଵܵ from ܥଶ and include it in ܥଷ. 

3.2.5. We rename ܥଵ = ܥଶ. At this point 
we have set ܥଵ reduced at least by 
one element and we have to go 
back to step 3.2 from the 
beginning until set ܥଵ is empty and 
set ܥଷ consists of clusters for the 
next level. 

4. We rename ܥଵ = ܥଷ. If number of clusters in 
newly built level ܥଵ did not change compared 
with previous level and we cannot further 
combine terms to reduce value of functional 
G, we stop the recursion process. Otherwise, 
we go back to step 3 to build clusters for the 
next level. 

5. At this point we have set ܥଵ that consists of 
clusters S with defined words distribution ൛ ܴ(ܵ)ൟ and semantic similarity cover 
SSC(S). Each cluster has its own words 
distribution and we have to construct one 
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distribution for the whole set ܥଵ. We assume 
that in each document there is no more than 
one topic with the same vocabulary. 
5.1. Let cluster ଵܵ have the lowest value of 

G(൛ ܴൟ, ܵ, ܵܵܥ( ܵ)) among all clusters 
from ܥଵ which indicates that cluster ଵܵ is 
the main topic in document. We exclude ଵܵ from ܥଵ and include it into final set ܥଶ.  

5.2. We exclude all frequencies of words that 
are part of terms from clusters in ܥଶ from 
all clusters in ܥଵ to create reduced set of 
frequencies ൛ܳൟ. We then recalculate 
functional G for all clusters in ܥଵ based 
on a new set of frequencies ൛ܳൟ, and 
exclude from ܥଵ clusters with zero values 
for functional G after recalculation. 

5.3. Now set ܥଵ is reduced at least by one 
element and we have to repeat steps 5.1 
and 5.2 until set ܥଵ is empty and ܥଶ 
contains the final set of clusters.  

The final set of clusters, their semantic similarity 
covers, and the distribution of words built in steps 1 
- 5, compose an approximation or Quasi Optimal 
Estimation for the State of the Document. The 
algorithm in steps 1 – 5 is one of the possible 
approximations to the optimal estimation of the State 
of the Document. It shows how semantic similarity 
cover and words distribution could be built 
recursively based on the initial frequencies of words 
in a document.  

6 ALGORITHM EVALUATION 

The implementation of the algorithm described in 
previous sections does not depend on any particular 
indexing thesaurus or ontology and can be tuned for 
indexing documents from any database. The 
algorithm is the main part of our Automated Index 
Assignment System (AIAS) that is very fast in 
processing documents based on new XML 
technology (Guseynov, 2009).  

For algorithm evaluation we use the MeSH 
Indexing Thesaurus and the medical abstract 
database. The entire MeSH, over 25,000 records in 
2008 release, was downloaded from the 
http://www.nlm.nih.gov/mesh/filelist.html into 
AIAS to build a hierarchical thesaurus for our 
experiments. Also the file medsamp2008a with 
30,000 random MEDLINE citations was 
downloaded from the MEDLINE site at 
http://www.nlm.nih.gov/bsd/sample_records_avail.h
tml as a sample data to be processed by our 

algorithm. For each MEDLINE citation (document) 
from this file, the estimation of State of the 
Document, that is the MeSH terms (MTs) and their 
weights, was performed. The field “Mesh Heading 
List” from MEDLINE citations containing terms 
assigned to abstracts by human MeSH Subject 
Analysts was used for comparison against terms 
assigned by our algorithm. Thus, the entire 
experiment was based on 30,000 documents 
randomly extracted from a large corpus of over 16 
million abstracts, a manually built MeSH 
hierarchical indexing thesaurus as ontology, existing 
human estimation of the documents, and an 
estimation of the same documents produced by our 
algorithm. 

We evaluate the algorithm based on statistics for 
three indicators which are similar to characteristics 
for the identification consistency of Index 
Assignments between two professional indexers 
(Rolling, 1981; Medelyan, Witten, 2006b).  

One of the main indicators for evaluation is the 
ratio Matched Hierarchically. Two MeSH terms are 
said to be matched hierarchically, if they are on the 
same hierarchical branch in ontology. For example, 
MT “Nursing Methodology Research” with 
MN=G02.478.395.634 as node hierarchy and 
“Nursing”, MN= G02.478, are on the same 
hierarchical branch and are topologically close 
(Figure 1). The MT “Nursing Methodology 
Research” will always be chosen if MT “Nursing” is 
present. The Matched Hierarchically indicator is the 
ratio of the number of MTs from MEDLINE, each 
of which matched hierarchically to some MT chosen 
by AIAS, to the total number of MEDLINE terms.  

The second indicator is Compare Equal. For term ଵܶ assigned by AIAS and term ଶܶ assigned by the 
MEDLINE indexer that are matched hierarchically 
we calculate the minimum number of links between 
them on the MeSH hierarchy. We assign a plus sign 
to the number of links if term ଵܶ is a child of ଶܶ, and 
a minus sign, if ଵܶ is a parent of ଶܶ. For each 
document the average number of signed links for 
matched hierarchically terms represents the 
Compare Equal indicator.  

The third indicator is Ratio AIAS to MEDLINE 
Terms which for each document is the ratio of the 
total number of terms chosen by AIAS to the total 
number of terms chosen by the MEDLINE indexer.  

The meanings of all these indicators are evident 
in vector space model for IR systems (Manning et 
al., 2008; Wolfram, Zhang, 2008). The most 
important characteristics for retrieval process are the 
relevance indexes to a document, the preciseness of 
the indexing terms, in our case the deeper in 
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hierarchy a term appears, the more precise the term 
is said to be, and the depth of indexing, representing 
the number of terms used to index the document. 
They directly affect the index storage capacity, 
performance, and relevance of retrieval results. We 
would like the Matched Hierarchically indicator to 
be close to 1. It is always less than or equal to 1, and 
the closer it is to 1 the more terms from MEDLINE 
will have the same topics chosen by AIAS or the 
AIAS and MEDLINE indexer will have a close 
understanding of the document. Having this 
indicator close to 1 also means that the terms 
assigned by AIAS are relevant to the documents as 
MEDLINE terms are proven to be most relevant to 
MEDLINE citations based on people judgment and 
extensive use in biomedical IR. We would like the 
Compare Equal indicator to be close to 0. Having it 
less than 0 means that AIAS chose more general 
topics to describe the document than the MEDLINE 
indexer did; if it is greater than 0, the AIAS choice is 
more elaborate which is preferable. In the latter case, 
terms reside deeper in MeSH hierarchy and appear 
rarely in MEDLINE collection with a greater 
influence in the choice of relevant documents in IR. 
It is desirable for the ratio AIAS to MEDLINE 
Terms to equal to 1. In this case, the AIAS and 
MEDLINE indexer will choose the same number of 
topics to describe the document that leads to the 
same storage capacity and performance in IR.  

The averaged output statistics after the whole 
medsamp2008a file was processed was: 

Matched Hierarchically 0.71; 
Compare Equal  -0.41; 
Ratio AIAS to MEDLINE 2.08. 
The result 0.71 for the Matched Hierarchically is 

very encouraging. This indicates that in general, for 
all 30,000 processed citations and, for more than 
seven MeSH terms out of ten assigned by Subject 
Analysts, AIAS chose the corresponding MeSH 
terms on the same hierarchical branch. This means 
that in seven cases out of ten, the AIAS and MeSH 
Subject Analysts had the same understanding of the 
documents’ main topics which shows high level of 
relevance between them. This result also indicates 
that estimations of the State of the Document in 
general are slightly different (three out of ten) 
between AIAS and the Subject Analysts. 

The result -0.41 for the Compare Equal indicator 
means that AIAS chooses more general terms on the 
hierarchy in comparison to the terms from 
MEDLINE. This means that a greater number of 
documents needs to be retrieved based on AIAS, and 
this would make it more difficult for the users to 
choose a relevant document. A partial explanation 

for this trend is that the current release of AIAS is 
set to pick up more general term if two candidates 
have the same properties. We must prove this or find 
a more effective explanation. 

The ratio 2.08 for the AIAS to MEDLINE 
indicator is too high and IR system based on AIAS 
would need double the storage capacity and have 
lower performance. This ratio means that for each 10 
terms chosen by MeSH Subject Analysts to describe 
MEDLINE citation, AIAS needs more than 20 terms 
to describe the same document and many of those 
terms could be redundant. We can easily reduce this 
indicator but this will affect the Matched 
Hierarchically statistics. This ratio is very sensitive 
to the internal notion of “Stop Words” that AIAS 
uses now and we intend to significantly change it in 
the next AIAS release along with the whole 
approach to calculation of terms weights through 
words frequencies for documents. This will 
significantly improve our output statistics.  

Going back to the MEDLINE abstract used in the 
Introduction in Figure 1, we now can show its 
statistics as: 

Matched Hierarchically 0.75; 
Compare Equal  -0.33; 
Ratio AIAS to MEDLINE 1.75. 
Two terms “Public Health Nursing” and “New 

Zealand” were chosen by Subject Analyst. These 
terms were also chosen by AIAS. “Nursing 
Research” chosen by AIAS is one level more 
general than “Nursing Methodology Research” 
which was chosen by the Subject Analyst. The term 
“Clinical Competence”, which did not have words 
from the abstract, was not chosen by AIAS. In 
addition to these, AIAS chose “Models, Nursing”, 
“Nursing Assessment”, “Statistics”, and “Nurse 
Practitioners”. All these were summarized in the 
statistics above.  

The terms chosen for this abstract by AIAS and 
the MeSH Subject Analyst show different points of 
view on how a document state could be estimated. It 
also emphasizes, once again, the necessity of a 
uniform approach to the Index Assignment process. 

Our evaluation of the algorithm presented in this 
paper was founded on a human judgment which is 
usually considered a “gold standard”. In general, it is 
very difficult to obtain a large set of reliable 
judgments for comparison and Index Assignment 
processes are usually evaluated with respect to their 
performance with particular IR system based on 
statistical significance of experimental results 
(Salton, 1991; Aronson et al., 2004). In the last few 
years this type of evaluations became increasingly 
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demanding for IR systems and we intend to conduct 
these experiments in the near future. 

7 CONCLUSIONS 

The notion of Entropy on Ontology, introduced 
above, involves a topology of entities in a 
topological space. This feature was realized through 
a weight extension on the semantic similarity cover 
as a connected component on ontology and can be 
used as a pattern to similarly define entropy for 
entities from other topological spaces to formalize 
some semantics like similarity, closeness, or 
correlation between entities. This new notion can be 
used to measure information in a message or 
collection of entities when we know weights of 
entities that compose a message and, in addition, 
how entities “semantically” relate to each other in a 
topological space.  

The quality of the presented algorithm that 
allows us to estimate Entropy on Ontology and the 
State of the Document depends entirely on the 
correctness and sufficiency of the hierarchical 
thesaurus on which it is based. As mentioned earlier, 
there are many thesauruses and their maintenance 
and evolution are vital for the proper functioning of 
such algorithms. The world also has acquired a great 
deal of knowledge in different forms, like 
dictionaries, and it is very important to convert them 
into a hierarchy to be used for the proper 
interpretation of texts that contain special topics. 

The minimum that defines Entropy on Ontology 
and the State of the Document may not be unique or 
there may be multiple local minima. For developing 
approximations it is important to find conditions on 
ontology or terms topology under which the 
minimum is unique. 

 Current release of AIAS uses MeSH Descriptors 
vocabulary and WordWeb Pro general purpose 
thesaurus in electronic form to select terms from 
ontology using words from a document. Many 
misunderstandings of documents by AIAS that were 
automatically caught were the result of 
insufficiencies of these sources when processing 
MEDLINE abstracts. The next release will integrate 
the whole MeSH thesaurus, Descriptors, Qualifiers, 
and Supplementary Concept Records, to make AIAS 
more educated regarding the subject of chemistry. 
Also, any additional thesaurus made available 
electronically would be integrated into AIAS. 

The algorithm that was presented in Section 5 
was only tested on the MEDLINE database and 
MeSH ontology. Its implementation does not depend 

on a particular indexing thesaurus or ontology and it 
would be interesting to try it on other existing text 
corpora and appropriate ontology such as WordNet 
(http://wordnet.princeton.edu) or others. 

REFERENCES 

Agrawal, R., Chakrabarti, S., Dom, B.E., Raghavan, P., 
2001. Multilevel taxonomy based on features derived 
from training documents classification using fisher 
values as discrimination values. United State Patent 
6,233,575. 

Aronson, A.R., Mork, J.G., Gay, C.W., Humphrey, S.M., 
Rogers, W.J., 2004. The NLM indexing initiative’s 
Medical Text Indexer, Stud Health Technol Inform 
107 (Pt 1), pp. 268–272. 

Calmet, J., Daemi, A., 2004. From entropy to ontology. 
Fourth International Symposium "From Agent Theory 
to Agent Implementation", R. Trappl, Ed., vol. 2, pp. 
547 – 551. 

Cho, M., Choi, C., Kim, W., Park, J., Kim, P., 2007. 
Comparing Ontologies using Entropy. 2007 
International Conference on Convergence Information 
Technology, Korea, 873-876. 

Grobelnik, M., Brank, J., Fortuna, B., Mozetič, I., 2008. 
Contextualizing Ontologies with OntoLight: A 
Pragmatic Approach. Informatica 32, 79–84. 

Guseynov, Y., 2009. XML Processing. No Parsing. 
Proceedings WEBIST 2009 - 5th  International 
Conference on Web Information Systems and 
Technologies, INSTICC, Lisbon, Portugal, pp. 81 – 
84. 

Klein, D., Manning, C.D., 2003. Accurate Unlexicalized 
Parsing. Proceedings of the 41st Meeting of the 
Association for Computational Linguistics, pp. 423-
430. 

Lee, J.H., Kim, M.H., Lee, Y.J., 1993. Information 
retrieval based on conceptual distance in IS-A 
hierarchies. Journal of Documentation, 49(2):188-207, 
June. 

Lindberg, D.A.B., Humphreys, B.L., McCray, A.T., 1993. 
The Unified Medical Language System. Methods of 
Information in Medicine, 32(4): 281-91. 

Manning, C.D., Schütze, H., 1999. Foundations of 
Statistical Natural Language Processing. The MIT 
Press. 

Manning, C. D., Raghavan, P., Schütze, H., 2008. 
Introduction to Information Retrieval. Cambridge 
University Press.  

Medelyan, O., Witten, I.H., 2006a. Thesaurus Based 
Automatic Keyphrase Indexing. JCDL’06, June 11–
15, Chapel Hill, North Carolina, USA. 

Medelyan, O., Witten, I.H., 2006b. Measuring Inter-
Indexer Consistency Using a Thesaurus. JCDL’06, 
June 11–15, Chapel Hill, North Carolina, USA. 

MEDLINE®, Medical Literature, Analysis, and Retrieval 
System Online. http://www.nlm.nih.gov/databases/ 
databases_medline.html. 

ENTROPY ON ONTOLOGY AND INDEXING IN INFORMATION RETRIEVAL

565



Nelson, S.J., Johnston, J., Humphreys, B.L., 2001. 
Relationships in Medical Subject Headings. In: Bean, 
Carol A.; Green, Rebecca, editors. Relationships in the 
organization of knowledge. New York: Kluwer 
Academic Publishers. p.171-184. 

Névéol, A., Shooshan, S.E., Humphrey, S.M., Mork, J.G., 
Aronson, A.R., 2009. A recent advance in the 
automatic indexing of the biomedical literature. J 
Biomed Inform. Oct;42(5):814-23.  

Qiu, Y., Frei, H.P., 1993. Concept based query expansion. 
In Proc. SIGIR, pp. 160–169. ACM Press. 

Rasmussen, E., 1992. Clustering algorithms. In William B. 
Frakes and Ricardo Baeza-Yates (eds.), Information 
Retrieval, pp. 419-442. Englewood Cliffs, NJ: Prentice 
Hall.  

Resnik, P., 1995. Using information content to evaluate 
semantic similarity in a taxonomy. In Proceedings of 
IJCAI, pages 448–453. 

Resnik, P., 1999. Semantic Similarity in a Taxonomy: An 
Information-Based Measure and its Application to 
Problems of Ambiguity in Natural Language. Journal 
of Artificial Intelligence Research, 11, 95-130. 

Rolling, L., 1981. Indexing consistency, quality and 
efficiency. Information Processing and Management, 
17, 69–76. 

Salton, G., 1989. Automatic Text Processing. Addison-
Wesley. 

Salton, G., 1991. The Smart project in automatic 
document retrieval. In Proc. SIGIR, pp. 356–358. 
ACM Press. 173, 530 

Shannon, C.E., 1948. A Mathematical Theory of 
Communication. Bell System Technical Journal. 27:3 
pp 379-423. 

Schütze, H., 1998. Automatic word sense discrimination. 
Computational Linguistics 24(1):97–124.  

Tudhope, D., Alani, H., Jones, C., 2001. Augmenting 
thesaurus relationships: possibilities for retrieval. 
Journal of Digital Information, Volume 1 Issue 8, 2. 

Walker, D.E., 1987. Knowledge resource tools for 
accessing large text files. In Sergei Nirenburg (ed.), 
Machine Translation: Theoretical and methodological 
issues. pp.247-261. Cambridge: Cambridge University 
Press 

Wiener, N.,1961. Cybernetics, or Control and 
Communication in the Animal and the Machine. New 
York and London: M.I.T. Press and John Wiley and 
Sons, Inc. 

Wolfram, D., Zhang, J., 2008. The Influence of Indexing 
Practices and Weighting Algorithms on Document 
Spaces. Journal of The American Society for 
Information  Science and Technology, 59(1):3–11. 

APPENDIX A 

Medline abstract ID = 21116432. 
Title: Expert public health nursing practice: a 
complex tapestry.  

Abstract: The research outlined in this paper used 
Heideggerian phenomenology, as interpreted and 
utilised by Benner (1984) to examine the 
phenomenon of expert public health nursing practice 
within a New Zealand community health setting. 
Narrative interviews were conducted with eight 
identified expert practitioners who are currently 
practising in this speciality area. Data analysis led to 
the identification and description of themes which 
were supported by paradigm cases and exemplars. 
Four key themes were identified which captured the 
essence of the phenomenon of expert public health 
nursing practice as this was revealed in the practice 
of the research participants. The themes describe the 
finely tuned recognition and assessment skills 
demonstrated by these nurses; their ability to form, 
sustain and close relationships with clients over 
time; the skillful coaching undertaken with clients; 
and the way in which they coped with the dark side 
of their work with integrity and courage. It was 
recognised that neither the themes nor the various 
threads described within each theme exist in 
isolation from each other. Each theme is closely 
interrelated with others, and integrated into the 
complex tapestry of expert public health nursing 
practice that emerged in this study. Although the 
research findings supported much of what is 
reported in other published studies that have 
explored both expert and public health nursing 
practice, differences were apparent. This suggests 
that nurses should be cautious about using models or 
concepts developed in contexts that are often vastly 
different to the New Zealand nursing scene, without 
carefully evaluating their relevance. 

APPENDIX B 

“First” Theorem on Ontology. If set ଵܵ is 
semantically related to ܵଶ, then for each cover 
SSC( ଵܵ) and SSC(ܵଶ), SSC( ଵܵ) ∩  SSC(ܵଶ) =  ∅, 
there are ଵܶ ∈ SSC( ଵܵ) and ଶܶ ∈ SSC(ܵଶ) that are 
semantically related. 
Proof. Let L be the path of links from ܶ ∈ ଵܵ to ܶ ∈ ܵଶ that are in SSC( ଵܵ ∪  ܵଶ) and ܶ be the last 
node from ܵܵܥ( ଵܵ) before next node on L is not 
from ܵܵܥ( ଵܵ) when moving from ܶ to ܶ. We 
reassign ܶ = ܶ. Let next node on L after ܶ be a 
child for ܶ; the opposite case when next node is a 
parent for ܶ is considered analogously. If next node 
for ܶ is ܶ  then ܶ and ܶ are semantically related 
and the proof is complete. Otherwise, let ܶ be the 
last child for ܶ on L before next node on L is a 
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parent for ܶ. By construction, ܶ ∈ SSC( ଵܵ ∪  ܵଶ) 
thus there is a child T ∈ ଵܵ ∪  ܵଶ for ܶ. Again, if T ∈ ܵଶ, the proof is complete, else we reassign ܶ = ܶ 
having ܶ ∈ ଵܵ, ܶ is a child for ܶ, and next node on 
L after ܶ is a parent for ܶ. Now let T be the last 
parent for ܶ on L before next node is a child for T 
that is not in ܵଶ. T ∈ SSC( ଵܵ ∪  ܵଶ) and we will 
repeat our argument until after finite number of steps 
we either complete the proof, or reach ܶ ∈ ܵଶ 
which is a child of a parent T on L that is also a 
parent of ܶ ∈ ଵܵ by previous constructions, and this 
finally completes the proof.  
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