A LINGUISTIC GROUP DECISION MAKING METHOD BASED ON DISTANCES

Edurne Falcó and José Luis García-Lapresta
PRESAD Research Group, Dept. of Applied Economics, University of Valladolid, Valladolid, Spain

Keywords: Group decision making, Linguistic assessments, Distances.

Abstract: It is common knowledge that the political voting systems suffer inconsistencies and paradoxes such that Arrow has shown in his well-known Impossibility Theorem. Recently Balinski and Laraki have introduced a new voting system called Majority Judgement (MJ) which tries to solve some of these limitations. In MJ voters have to assess the candidates through linguistic terms belonging to a common language. From this information, MJ assigns as the collective assessment the lower median of the individual assessments and it considers a sequential tie-breaking method for ranking the candidates. The present paper provides an extension of MJ focused to reduce some of the drawbacks that have been detected in MJ by several authors. The model assigns as the collective assessment a label that minimizes the distance to the individual assessments. In addition, we propose a new tie-breaking method also based on distances.

1 INTRODUCTION

Social Choice Theory shows that there does not exist a completely acceptable voting system for electing and ranking alternatives. The well-known Arrow Impossibility Theorem (Arrow, 1963) proves with mathematical certainty that no voting system simultaneously fulfills certain desirable properties\(^1\).

Recently (Balinski and Laraki, 2007a; Balinski and Laraki, 2007c) have proposed a voting system called Majority Judgement (MJ) which tries to avoid these unsatisfactory results and allows the voters to assess the alternatives through linguistic labels, as Excellent, Very good, Good, . . . , instead of rank order the alternatives. Among all the individual assessments given by the voters, MJ chooses the median as the collective assessment. Balinski and Laraki also describe a tie-breaking process which compares the number of labels above the collective assessment and those below of it. These authors also have an experimental analysis of MJ (Balinski and Laraki, 2007b) carried out in Orsay during the 2007 French presidential election. In that paper the authors show some interesting properties of MJ and they advocate that this voting system is easily implemented and that it avoids the necessity for a second round of voting.

Desirable properties and advantages have been attributed to MJ against the classical Arrow framework of preferences’ aggregation. Among them are the possibility that voters show more faithfully and properly their opinions than in the conventional voting systems, anonymity, neutrality, independence of irrelevant alternatives, etc. However, some authors (Felsenthal and Machover, 2008), (García-Lapresta and Martínez-Panero, 2009) and (Smith, 2007) have shown several paradoxes and inconsistencies of MJ.

In this paper we propose an extension of MJ which diminishes some of the MJ inconveniences. The approach of the paper is distance-based, both for generating a collective assessment of each alternative and in the tie-breaking process that provides a weak order on the set of alternatives. As in MJ we consider that individuals assess the alternatives through linguistic labels and we propose as the collective assessment a label that minimizes the distance to the individual assessments. These distances between linguistic labels are induced by a metric of the parameterized Minkowski family. Depending on the specific metric we use, the discrepancies between the collective and the individual assessments are weighted in a different manner, and the corresponding outcome can be different.

The paper is organized as follows. In Section 2,
the MJ voting system is formally explained. Section 3 introduces our proposal, within a distance-based approach (the election of the collective assessment for each alternative and the tie-breaking method). In Section 4 we include an illustrative example showing the influence of the metric used in the proposed method and its differences with respect to MJ and Range Voting (Smith, 2007). Finally, in Section 5 we collect some conclusions.

2 MAJORITY JUDGEMENT

We consider a finite set of voters \(V = \{1, \ldots, m\} \), with \(m \geq 2 \), who evaluate a finite set of alternatives \(X = \{x_1, \ldots, x_n\} \), with \(n \geq 2 \). Each alternative is assessed by each voter through a linguistic term belonging to an ordered finite scale \(L = \{l_1, \ldots, l_k\} \), with \(l_1 < \cdots < l_k \), and granularity \(g \geq 2 \). Each voter assesses the alternatives in an independent way and these assessments are collected by a matrix \(\{v_{ij}\} \), where \(v_{ij} \in L \) is the assessment that the voter \(i \) gives to the alternative \(x_j \).

MJ chooses for each alternative the median of the individual assessments as the collective assessment. To be precise, the single median when the number of voters is odd and the lower median in the case that the number of voters is even. We denote with \(l(x_j) \) the collective assessment of the alternative \(x_j \). Given that several alternatives might share the same collective assessment, Balinski and Laraki (Balinski and Laraki, 2007a) propose a sequential tie-breaking process. This can be described through the following terms (García-Lapresta and Martínez-Panero, 2009):

\[
\begin{align*}
N^+(x_j) &= \#\{i \in V \mid v_{ij} > l(x_j)\}, \\
N^-(x_j) &= \#\{i \in V \mid v_{ij} < l(x_j)\}
\end{align*}
\]

and

\[
t(x_j) = \begin{cases}
-1, & \text{if } N^+(x_j) < N^-(x_j), \\
0, & \text{if } N^+(x_j) = N^-(x_j), \\
1, & \text{if } N^+(x_j) > N^-(x_j).
\end{cases}
\]

Taking into account the collective assessments and the previous indices, we define a weak order \(\succeq \) on \(X \) in the following way: \(x_j \succeq x_k \) if and only if one of the following conditions hold:

1. \(l(x_j) > l(x_k) \).
2. \(l(x_j) = l(x_k) \) and \(t(x_j) > t(x_k) \).
3. \(l(x_j) = l(x_k) \) and \(t(x_j) = t(x_k) = 1 \) and \(N^+(x_j) > N^+(x_k) \).
4. \(l(x_j) = l(x_k) \) and \(t(x_j) = t(x_k) = 1, N^+(x_j) = N^+(x_k) \) and \(N^-(x_j) \leq N^-(x_k) \).
5. \(l(x_j) = l(x_k) \), \(t(x_j) = t(x_k) = 0 \) and \(m - N^+(x_j) - N^+(x_j) \geq m - N^+(x_k) - N^+(x_k) \).
6. \(l(x_j) = l(x_k) \), \(t(x_j) = t(x_k) = -1 \) and \(N^-(x_j) < N^-(x_k) \).
7. \(l(x_j) = l(x_k) \), \(t(x_j) = t(x_k) = -1, N^-(x_j) = N^-(x_k) \) and \(N^+(x_j) \geq N^+(x_k) \).

The asymmetric and symmetric parts of \(\succeq \) are defined in the usual way:

\(x_j \succeq x_k \Leftrightarrow \text{not } x_k \succeq x_j \)

\(x_j \sim x_k \Leftrightarrow (x_j \succeq x_k \text{ and } x_k \succeq x_j) \).

Next an example of how MJ works is shown.

Example 1. Consider three alternatives \(x_1, x_2, x_3 \) that are evaluated by seven voters through a set of six linguistic terms \(L = \{l_1, \ldots, l_6\} \), the same set used in MJ (Balinski and Laraki, 2007b), whose meaning is shown in Table 1.

\(l_1 \)	To reject
\(l_2 \)	Poor
\(l_3 \)	Acceptable
\(l_4 \)	Good
\(l_5 \)	Very good
\(l_6 \)	Excellent

The assessments obtained for each alternative are collected and ranked from the lowest to the highest in Table 2.

\(x_1 \)	\(l_1 \)	\(l_1 \)	\(l_3 \)	\(l_5 \)	\(l_5 \)	\(l_6 \)
\(x_2 \)	\(l_1 \)	\(l_4 \)	\(l_4 \)	\(l_4 \)	\(l_5 \)	\(l_6 \)
\(x_3 \)	\(l_1 \)	\(l_4 \)	\(l_4 \)	\(l_5 \)	\(l_5 \)	\(l_5 \)

For ranking the three alternatives, first we take the median of the individual assessments, that will be the collective assessment for each one of the mentioned alternatives: \(l(x_1) = l_5 \), \(l(x_2) = l_4 \) and \(l(x_3) = l_4 \). Given that \(x_1 \) has the best collective assessment, it will be the one ranked in first place. However, the alternatives \(x_2 \) and \(x_3 \) share the same collective assessment, we need to turn to the tie-breaking process, where we obtain \(N^+(x_2) = 2 \), \(N^-(x_2) = 1 \) and
t(x_2) = 1; \ N^+(x_3) = 3, \ N^-(x_3) = 2 \ and \ t(x_3) = 1. \ Since \ both \ alternatives \ have \ the \ same \ t (t(x_2) = t(x_3) = 1), \ we \ should \ compare \ their \ N^+: \ N^+(x_2) = 2 < 3 = N^+(x_3). \ Therefore, \ the \ alternative \ x_3 \ defeats \ the \ alternative \ x_2, \ and \ the \ final \ order \ is \ x_1 \succ x_3 \succ x_2.

3 DISTANCE-BASED METHOD

In this section the alternative method to MJ that we propose through a distance-based approach is introduced. The first step for ranking the alternatives is to assign a collective assessment \(l(x_j) \in L \) to each alternative \(x_j \in X \). For its calculation, the vectors \((v_1^j, \ldots, v_n^j)\) that collect all the individual assessments for each alternative \(x_j \in X \) are taken into account.

The proposal, that is detailed below, involves how to choose a \(l(x_j) \in L \) that minimizes the distance between the vector of individual assessments \((v_1^j, \ldots, v_n^j)\) and the vector \((l(x_1), \ldots, l(x_j)) \in \mathbb{L}^m\). The election of that term is performed in an independent way for each alternative. This guarantees the fulfillment of the independence of irrelevant alternatives principle\(^3\).

Once a collective assessment \(l(x_j) \) has been associated with each alternative \(x_j \in X \), we rank the alternatives according to the ordering of \(L \). Given the possible existence of ties, we also propose a sequential tie-breaking process based on the difference between the distance of \(l(x_j) \) to the assessments higher than \(l(x_j) \) and the distance of \(l(x_j) \) to the assessments lower than \(l(x_j) \).

3.1 Distances

A distance or metric on \(\mathbb{R}^m \) is a mapping
\[
d : \mathbb{R}^m \times \mathbb{R}^m \rightarrow \mathbb{R}
\]
that fulfills the following conditions for all \((a_1, \ldots, a_m), (b_1, \ldots, b_m), (c_1, \ldots, c_m) \in \mathbb{R}^m\):

1. \(d((a_1, \ldots, a_m), (b_1, \ldots, b_m)) \geq 0 \).
2. \(d((a_1, \ldots, a_m), (b_1, \ldots, b_m)) = 0 \Leftrightarrow (a_1, \ldots, a_m) = (b_1, \ldots, b_m) \).
3. \(d((a_1, \ldots, a_m), (b_1, \ldots, b_m)) = d((b_1, \ldots, b_m), (a_1, \ldots, a_m)) \).

4. \(d((a_1, \ldots, a_m), (b_1, \ldots, b_m)) \leq d((a_1, \ldots, a_m), (c_1, \ldots, c_m)) + d((c_1, \ldots, c_m), (b_1, \ldots, b_m)) \).

Given a distance \(d : \mathbb{R}^m \times \mathbb{R}^m \rightarrow \mathbb{R} \), the distance on \(\mathbb{L}^m \) induced by \(d \) is the mapping \(\bar{d} : \mathbb{L}^m \times \mathbb{L}^m \rightarrow \mathbb{R} \) defined by
\[
\bar{d}((l_1, \ldots, l_m), (l_1, \ldots, l_m)) = \frac{1}{m} \sum_{i=1}^{m} |a_i - b_i|^p \]
for all \((a_1, \ldots, a_m), (b_1, \ldots, b_m) \in \mathbb{R}^m\).

We choose this family due to the fact that it is parameterized and it includes from the well-known Manhattan \((p = 1)\) and Euclidean \((p = 2)\) distances, to the limit case, the Chebyshev distance \((p = \infty)\). The possibility of choosing among different values of \(p \in (1, \infty) \) gives us a very flexible method, and we can choose the most appropriate \(p \) according to the objectives we want to achieve with the election.

Given a Minkowski distance on \(\mathbb{R}^m \), we consider the induced distance on \(\mathbb{L}^m \) which works with the assessments vector through the subindexes of the corresponding labels:
\[
\bar{d}_p((l_1, \ldots, l_m), (l_1, \ldots, l_m)) = d_p((a_1, \ldots, a_m), (b_1, \ldots, b_m)).
\]

Clearly, this approach means that the labels that form \(L \) are equidistant. In this sense, the distance between two labels’ vectors is based on the number of positions that we need to cover to go from one to another, in each of its components. To move from \(l_{a_i} \) to \(l_{b_i} \) we need to cover \(|a_i - b_i|\) positions. For instance between \(l_3 \) and \(l_2 \) we need to cover \(|5 - 2| = 3\) positions.

3.2 Election of a Collective Assessment for each Alternative

Our proposal is divided into several stages. First we assign a collective assessment \(l(x_j) \in L \) to each alternative \(x_j \in X \) which minimizes the distance between the vector of the individual assessments, \((v_1^j, \ldots, v_n^j) \in \mathbb{L}^m\), and the vector of \(m \) replicas of the desired collective assessment, \((l(x_1), \ldots, l(x_j)) \in \mathbb{L}^m\).

For this, first we establish the set \(L(x_j) \) of all the labels \(l_k \in L \) satisfying
\[
\bar{d}_p((v_1^j, \ldots, v_n^j), (l_k, \ldots, l_k)) \leq \bar{d}_p((v_1^j, \ldots, v_n^j), (l_{h_1}, \ldots, l_{h_l})),
\]

\(^3\)This principle says that the relative ranking between two alternatives would only depend on the preference or assessments on these alternatives and must not be affected by other alternatives, that must be irrelevant on that comparison.
A LINGUISTIC GROUP DECISION MAKING METHOD BASED ON DISTANCES

for each \(b \in L \), where \((l_0, \ldots, l_s) \) and \((l_{s+1}, \ldots, l_g) \) are the vectors of \(m \) replicas of \(l_0 \) and \(l_s \), respectively. Thus, \(L(x_j) \) consists of those labels that minimize the distance to the vector of individual assessments. Notice that \(L(x_j) = \{l_{r}, \ldots, l_{r+s}\} \) is always an interval, because it contains all the terms from \(l_r \) to \(l_{r+s} \), where \(r \in \{1, \ldots, g\} \) and \(0 \leq s \leq g - r \). Two different cases are possible:

1. If \(s = 0 \), then \(L(x_j) \) contains a single label, which will automatically be the collective assessment \(l(x_j) \) of the alternative \(x_j \).
2. If \(s > 0 \), then \(L(x_j) \) has more than one label. In order to select the most suitable label of \(L(x_j) \), we now introduce \(L^*(x_j) \), the set of all the labels \(l_b \in L(x_j) \) that fulfill

\[
\bar{d}_p((l_{b}, \ldots, l_{b}), (l_{r}, \ldots, l_{r+s})) \leq d_p((l_{b}, \ldots, l_{b}), (l_{r}, \ldots, l_{r+s})),
\]

for all \(b \in L(x_j) \), where \((l_{b}, \ldots, l_{b}) \) and \((l_{r}, \ldots, l_{r+s}) \) are the vectors of \(s + 1 \) replicas of \(l_b \) and \(l_{r+s} \), respectively.

(a) If the cardinality of \(L(x_j) \) has a unique label, the median term, that will be the collective assessment \(l(x_j) \).
(b) If the cardinality of \(L(x_j) \) is even, then \(L^*(x_j) \) has two different labels, the two median terms. In this case, similarly to the proposal of (Balinski and Laraki, 2007a), we consider the lowest label in \(L^*(x_j) \) as the collective assessment \(l(x_j) \).

It is worth pointing out two different cases when we are using induced Minkowski distances.

1. If \(p = 1 \), we obtain the same collective assessments that those given by MJ, the median\(^4\) of the individual assessments. However, the final results are not necessarily the same that in MJ because we use a different tie-breaking process, as is shown later.
2. If \(p = 2 \), each collective assessment is the closest label to the “mean” of the individual assessments\(^5\), which is the one chosen in the Range Voting (RV) method\(^6\) (see (Smith, 2007)).

Notice that when we choose \(p \in (1, 2) \), we find situations where the collective assessment is located between the median and the “mean”. This allows us to avoid some of the problems associated with MJ and RV.

3.3 Tie-breaking Method

Usually there exist more alternatives than linguistic terms, so it is very common to find several alternatives sharing the same collective assessment. But irrespective of the number of alternatives, it is clear that some of them may share the same collective assessment, even when the individual assessments are very different. For these reasons it is necessary to introduce a tie-breaking method that takes into account not only the number of individual assessments above or below the obtained collective assessment (as in MJ), but also the positions of these individual assessments in the ordered scale associated with \(L \).

As mentioned above, we will calculate the difference between two distances: one between \(l(x_j) \) and the assessments higher than \(l(x_j) \) and another one between \(l(x_j) \) and the assessments lower than the \(l(x_j) \).

Let \(v_j^+ \) and \(v_j^- \) the vectors composed by the assessments \(v_j^+ \) from \(\{v_1, \ldots, v_m\} \) higher than the term \(l(x_j) \), respectively. First we calculate the two following distances:

\[
D^+(x_j) = \bar{d}_p \left(v_j^+, (l(x_j), \ldots, l(x_j))\right),
\]

\[
D^-(x_j) = \bar{d}_p \left(v_j^-, (l(x_j), \ldots, l(x_j))\right),
\]

where the number of components of \(l(x_j), \ldots, l(x_j) \) is the same that in \(v_j^+ \) and in \(v_j^- \), respectively (obviously, the number of components of \(v_j^+ \) and \(v_j^- \) can be different).

Once these distances have been determined, a new index \(D(x_j) \in \mathbb{R} \) is calculated for each alternative \(x_j \in X \): the difference between the two previous distances:

\[
D(x_j) = D^+(x_j) - D^-(x_j).
\]

By means of this index, we provide a kind of compensation between the individual assessments that are bigger and smaller than the collective assessment, taking into account the position of each assessment in the ordered scale associated with \(L \).

For introducing our tie-breaking process, we finally need the distance between the individual assessments and the collective one:

\[
E(x_j) = d_p \left((v_j^1, \ldots, v_j^m), (l(x_j), \ldots, l(x_j))\right).
\]
Notice that for each alternative \(x_j \in X\), \(E(x_j)\) minimizes the distance between the vector of individual assessments and the linguistic labels in \(L\), such as has been considered above in the definition of \(L(x_j)\).

The use of the index \(E(\cdot)\) is important in the tie-breaking process because if two alternatives share the same couple \((l(\cdot),D(\cdot))\), the alternative with the lower \(E(\cdot)\) is the alternative whose individual assessments are more concentrated around the collective assessment, i.e., the consensus is higher.

Summarizing, for ranking the alternatives we will consider the following triplet \(T(x_j) = (l(x_j),D(x_j),E(x_j)) \in L \times R \times [0,\infty)\) for each alternative \(x_j \in X\). The sequential process works in the following way:

1. We rank the alternatives through the collective assessments \(l(\cdot)\). The alternatives with higher collective assessments will be preferred to those with lower collective assessments.
2. If several alternatives share the same collective assessment, then we break the ties through the \(D(\cdot)\) index. The alternatives with a higher \(D(\cdot)\) will be preferred.
3. If there are still ties, we break them through the \(E(\cdot)\) index, in such a way such that the alternatives with a lower \(E(\cdot)\) will be preferred.

Formally, the sequential process can be introduced by means of the lexicographic weak order \(\succeq\) on \(X\) defined by \(x_j \succeq x_k\) if and only if

1. \(l(x_j) \geq l(x_k)\) or
2. \(l(x_j) = l(x_k)\) and \(D(x_j) > D(x_k)\) or
3. \(l(x_j) = l(x_k), D(x_j) = D(x_k)\) and \(E(x_j) \leq E(x_k)\).

Remark. Although it is possible that ties still exist, whenever two or more alternatives share \(T(\cdot)\), these cases are very unusual when considering metrics with \(p > 1\). For instance, consider seven voters that assess two alternatives \(x_1\) and \(x_2\) by means of the set of linguistic terms given in Table 1. Table 3 includes these assessments arranged from the lowest to the highest labels.

Table 3: Individual assessments.

| \(x_1\) | \(l_2\) | \(l_2\) | \(l_2\) | \(l_4\) | \(l_4\) | \(l_6\) |
| \(x_2\) | \(l_2\) | \(l_2\) | \(l_2\) | \(l_3\) | \(l_5\) | \(l_6\) |

It is easy to see that for \(p = 1\) we have \(T(x_1) = T(x_2) = (l_2,8,8)\), then \(x_1 \sim x_2\) (notice that MJ and RV also provide a tie). However, if \(p > 1\), the tie disappears. So, we have \(x_2 \succ x_1\), excepting wherever \(p \in (1.179,1.203)\), where \(x_1 \succ x_2\).

4 AN ILLUSTRATIVE EXAMPLE

This section focuses on how the election of the parameter \(p\) is relevant in the final ranking of the alternatives. We show this fact through an example. We consider a case where the median of the individual assessments is the same for all the alternatives. In this example we use the set of six linguistic terms \(L = \{l_1,...,l_6\}\) whose meaning is shown in Table 1.

As mentioned above, the sequential process for ranking the alternatives is based on the triplet \(T(x_j) = (l(x_j),D(x_j),E(x_j))\) for each alternative \(x_j \in X\). However, by simplicity, in the following example we only show the first two components, \((l(x_j),D(x_j))\). In this example we also obtain the outcomes provided by MJ and RV.

Example 2. Table 4 includes the assessments given by six voters to four alternatives \(x_1, x_2, x_3\) and \(x_4\) arranged from the lowest to the highest labels.

Table 4: Assessments in Example 2.

\(x_1\)	\(l_1\)	\(l_2\)	\(l_4\)	\(l_4\)	\(l_4\)	\(l_6\)
\(x_2\)	\(l_1\)	\(l_1\)	\(l_3\)	\(l_4\)	\(l_6\)	\(l_6\)
\(x_3\)	\(l_2\)	\(l_2\)	\(l_2\)	\(l_4\)	\(l_5\)	\(l_6\)
\(x_4\)	\(l_1\)	\(l_1\)	\(l_5\)	\(l_5\)	\(l_5\)	

Notice that the mean of the individual assessments’ subindexes is the same for the four alternatives, 3.5. Since RV ranks the alternatives according to this mean, it produces a tie \(x_1 \sim x_2 \sim x_3 \sim x_4\). However, it is clear that this outcome might not seem reasonable, and that other rankings could be justified. Using MJ, where \(l(x_1) = l(x_4) = l_4 > l_3 = l(x_2) > l_2 = l(x_3)\) and, according to the MJ tie-breaking process, we have \(t(x_1) = -1 < 1 = t(x_4)\). Thus, MJ produces the outcome \(x_4 \succ x_1 \succ x_2 \succ x_3\).

Table 5: \((l(x_j),D(x_j))\) in Example 2.

\(l_{x_1}\)	\(l_{x_2}\)	\(l_{x_3}\)	\(l_{x_4}\)
\(p = 1\)	\(1.25\)	\(1.5\)	
\(x_1\)	\(l_{4,-3}\)	\(l_{4,-2.375}\)	\(l_{4,-2.008}\)
\(x_2\)	\(l_{3,10}\)	\(l_{3,2.264}\)	\(l_{3,1.888}\)
\(x_3\)	\(l_{2,9}\)	\(l_{3,2.511}\)	\(l_{3,2.254}\)
\(x_4\)	\(l_{4,-3}\)	\(l_{4,-2.815}\)	\(l_{4,-2.682}\)

We now consider the distance-based procedure for six values of \(p\). In Table 6 we can see the influence of these values on \((l(x_j),D(x_j))\), for \(j = 1,2,3,4\).
A LINGUISTIC GROUP DECISION MAKING METHOD BASED ON DISTANCES

Table 6: \(\langle l(x_i), D(x_i) \rangle \) in Example 2.

<table>
<thead>
<tr>
<th></th>
<th>(p = 1.75)</th>
<th>(p = 2)</th>
<th>(p = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(l_4, 1.770)</td>
<td>(l_3, 1.228)</td>
<td>(l_3, 0.995)</td>
</tr>
<tr>
<td>(x_2)</td>
<td>(l_3, 1.669)</td>
<td>(l_3, 1.530)</td>
<td>(l_3, 1.150)</td>
</tr>
<tr>
<td>(x_3)</td>
<td>(l_3, 2.104)</td>
<td>(l_3, 2.010)</td>
<td>(l_4, -0.479)</td>
</tr>
<tr>
<td>(x_4)</td>
<td>(l_4, -2.585)</td>
<td>(l_3, 0.777)</td>
<td>(l_3, 0.199)</td>
</tr>
</tbody>
</table>

For \(p = 1 \) we have \(T(x_1) = \langle l_4, -3, 7 \rangle \), \(T(x_2) = \langle l_3, 10, 11 \rangle \), \(T(x_3) = \langle l_2, 9, 9 \rangle \) and \(T(x_4) = \langle l_4, -3, 9 \rangle \). Then, we obtain \(x_1 \succ x_4 \succ x_2 \succ x_3 \), a different outcome than obtained using MJ. For \(p = 1.25 \), \(p = 1.5 \) and \(p = 1.75 \) we obtain \(x_1 \succ x_4 \succ x_3 \succ x_2 \) and for \(p = 2 \) and \(p = 5 \) we have \(x_3 \succ x_2 \succ x_1 \succ x_4 \).

5 CONCLUDING REMARKS

In this paper we have presented an extension of the Majority Judgement voting system developed by Balinski and Laraki (2007a; Balinski and Laraki, 2007b; Balinski and Laraki, 2007c). This extension is based on a distance approach but it also uses linguistic labels to evaluate the alternatives. We choose as the collective assessment for each alternative a label that minimizes the distance to the individual assessments. It is important to note that our proposal coincides in this aspect with Majority Judgement whenever the Manhattan metric is used.

We also provide a tie-breaking process through the distances between the individual assessments higher and lower than the collective one. This process is richer than the one provided by Majority Judgement, that only counts the number of alternatives above or below the collective assessment, irrespectively of what they are. We also note that our tie-breaking process is essentially different to Majority Judgement even when the Manhattan metric is considered.

It is important to note that using the distance-based approach we pay attention to all the individual assessments that have not been chosen as the collective assessment. With the election of a specific metric of the Minkowski family we are deciding how to evaluate these other assessments. This aspect provides flexibility to our extension and it allows to devise a wide class of voting systems that may avoid some of the drawbacks related to Majority Judgement and Range Voting without losing their good features. This becomes specially interesting when the value of the parameter \(p \) in the Minkowski family belongs to the open interval \((1, 2)\), since \(p = 1 \) and \(p = 2 \) correspond to the Manhattan and the Euclidean metrics, respectively, just the metrics used in Majority Judgement and Range Voting. For instance, the election of \(p = 1.5 \) allows us to have a kind of compromise between both methods.

As shown in the previous examples, when the value of parameter \(p \) increases, the distance-based procedure focuses more and more on the extreme assessments. However, if the individual assessments are well balanced on both sides, the outcome is not very affected by the parameter \(p \).

In further research we will analyze the properties of the presented extension of Majority Judgement within the Social Choice framework.

REFERENCES

