
CONTENT-BASED RECOMMENDATION ALGORITHMS
ON THE HADOOP MAPREDUCE FRAMEWORK

Toon De Pessemier, Kris Vanhecke, Simon Dooms and Luc Martens
IBBT, Ghent University, Gaston Crommenlaan 8 box 201, Ghent, Belgium

Keywords: Recommender systems, Cloud computing, Hadoop, MapReduce, Content-based recommendations.

Abstract: Content-based recommender systems are widely used to generate personal suggestions for content items based
on their metadata description. However, due to the required (text) processing of these metadata, the computa-
tional complexity of the recommendation algorithms is high, which hampers their application in large-scale.
This computational load reinforces the necessity of a reliable, scalable and distributed processing platform for
calculating recommendations. Hadoop is such a platform that supports data-intensive distributed applications
based on map and reduce tasks. Therefore, we investigated how Hadoop can be utilized as a cloud computing
platform to solve the scalability problem of content-based recommendation algorithms. The various MapRe-
duce operations, necessary for keyword extraction and generating content-based suggestions for the end-user,
are elucidated in this paper. Experimental results on Wikipedia articles prove the appropriateness of Hadoop
as an efficient and scalable platform for computing content-based recommendations.

1 INTRODUCTION

Content-based (CB) recommendation techniques are
based on content analysis, usually through metadata
or textual descriptions of the content items previ-
ously consumed by the user (Mladenic, 1999). These
content items might be annotated by the content au-
thors with characteristic attributes to ease the con-
tent retrieval and recommendation process. In the
alternative, CB recommender systems have to rely
on keyword extraction techniques to obtain charac-
teristic properties from the textual description of the
item. These characteristic attributes are then utilized
to build a model or profile of user interests. The at-
tributes of the content items consumed by an indi-
vidual user, together with the associated feedback be-
haviour (i.e. explicit feedback such as star-ratings or
implicit feedback such as reading times) make up the
profile of that user. Although the details of various
systems differ, generating CB recommendations share
in common a need for matching up the attributes of
this user profile against the attributes of the content
items. Finally, the personal suggestions consist of the
content items which are most similar to the content
the user consumed and appreciated in the past. CB
recommendation techniques have been applied in var-
ious domains, such as email , news , and web search.
However, the computational complexity of the text

processing and profile-item matching is high, which
hampers the application of CB recommendation algo-
rithms in large-scale. Tailored implementations can
be designed for specific parallel processing architec-
tures, but the Hadoop framework offers a standardized
solution for data processing on large clusters (Dean
and Ghemawat, 2008).

Previous research on the Hadoop framework
proves its scalability (Brown, 2009) and appropriate-
ness for document processing (Elsayed et al., 2008).
Nevertheless, this paper is the first to our knowledge
to provide details about calculating CB recommen-
dations and pairwise similarities on the framework.
Moreover, we investigated the calculation times of the
various jobs, needed to generate these recommenda-
tions. The remainder of this paper is organized as fol-
lows: Section 2 provides a short introduction to the
Hadoop framework. Section 3 elaborates on how rele-
vant keywords can be extracted from content descrip-
tions using MapReduce operations. Generating CB
recommendations by matching the user profiles and
content descriptions is described in Section 4. Sec-
tion 5 provides some first benchmark results, based
on Wikipedia articles, to investigate the required cal-
culation time. Finally, we offer a brief conclusion and
point out interesting future work in Section 6.

237De Pessemier T., Vanhecke K., Dooms S. and Martens L..
CONTENT-BASED RECOMMENDATION ALGORITHMS ON THE HADOOP MAPREDUCE FRAMEWORK.
DOI: 10.5220/0003193802370240
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (WEBIST-2011), pages 237-240
ISBN: 978-989-8425-51-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



2 HADOOP FRAMEWORK

Hadoop MapReduce is a programming model and
software framework that supports data-intensive dis-
tributed applications. This Apache project is an open-
source framework for reliable, scalable, distributed
computing and data storage. It can rapidly process
vast amounts of data in parallel on large clusters of
computer nodes. Hadoop MapReduce was inspired
by Google’s MapReduce (Lämmel, 2007) and Google
File System (GFS) (Ghemawat et al., 2003) papers.
MapReduce is based on the observation that many
tasks have the same structure: a large number of
records (e.g., documents or database records) is se-
quentially processed, generating partial results which
are then aggregated to obtain the final outcome. Of
course, the per-record computation and aggregation
vary by task, but the fundamental structure remains
the same (Elsayed et al., 2008). MapReduce provides
an abstraction layer which simplifies the development
of these data-intensive applications by defining a map
and reduce operation with the following signature:

map : (kx;vx)! [ky;vy] (1)

The map operation is applied to every input record,
which has the data structure of a key-value pair. This
mapper generates an arbitrary number of key-value
pairs as an intermediate result (indicated in equation
1 by the square brackets). Afterwards, these inter-
mediate results are grouped based on their key. The
reducer gets all values associated with the same in-
termediate key as an input and generates an arbitrary
number of key-value pairs.

reduce : (ky; [vy])! [kz;vz] (2)

3 CONTENT
CHARACTERIZATION

Many CB recommendation algorithms are based on
relevant semantic metadata describing the content
items of the system. However, many online systems
do not dispose of structured metadata, forcing them to
rely on textual descriptions of the content. Therefore,
the proposed MapReduce operations, used for calcu-
lating item similarities or recommendations, are only
dependent on such a set of textual documents describ-
ing the content items of the system. To handle these
content descriptions, the documents are transformed
to characterizing terms and a vector of term weights
wt , which indicate the relevance of each term t for the
item.

To identify these terms t and calculate the term
weights wt , we adopted the Term Frequency - Inverse

Document Frequency (TFIDF) (Salton and McGill,
1983) weighting scheme. Although the ordering of
terms (i.e. phrases) is ignored in this model, it has
proved its efficiency in the context of information re-
trieval and text mining (Elsayed et al., 2008). The
TFIDF can be obtained by calculating the frequency
of each word in each document and the frequency of
each word in the document corpus. The frequency of
a word in a document is defined as the ratio of the
number of times the word appears in the document,
n, and the total number of words in the document,
N. The frequency of a word in the document corpus
stands for the ratio of the number of documents that
contain the word, m, and the total number of docu-
ments in the corpus, D.

To calculate the term weights wt of an item de-
scription as TFIDF, the following four MapReduce
jobs are executed. The first job calculates the num-
ber of times each word appears in a description, n.
Therefore, the map operation of this job takes the item
identifier (i.e. id) as input key and the content of the
description as input value. For every word in the de-
scription, a new key-value pair is produced as output:
the key consists of the combination of the word and
the item identifier; the value is just 1. Afterwards,
a reducer counts the number of appearances of each
word in a description by adding the values for each
word-id combination.

map : (id;content)! [(word; id);1]
reduce : ((word; id); [1])! ((word; id);n)

(3)

The mapper of the second job merely rearranges the
data of the records by moving the word from the key
to the value. In this way, the following reducer is
able to count the number of words in each document,
i.e. N.

map : ((word; id);n)! (id;(word;n))
reduce : (id; [word;n])! [(word; id);(n;N)]

(4)

The third job calculates the number of item descrip-
tions in the corpus that contain a particular word. The
mapper of this job rearranges the data and the re-
ducer outputs the number of descriptions containing
the word, i.e. m.

map : ((word; id);(n;N))! (word;(id;n;N;1))
reduce : (word; [id;n;N;1])! [(word; id);(n;N;m)]

(5)
The fourth job, which only consists of a mapper (i.e.
the reducer is the identity operation), produces the
TFIDF of each id-word pair. The total number of item
descriptions in the document corpus is calculated in
the file system and provided as an input variable of
this MapReduce job. Although it is possible to merge

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

238



this last job with job 3, saving one disk IO cycle, we
omitted this optimisation in this paper for clarity.

map : ((word; id);(n;N;m))! ((word; id); t f id f )
(6)

4 PROFILE MATCHING

CB recommendation algorithms evaluate the appro-
priateness of a content item by matching up the at-
tributes of the content description against the user pro-
file. If the user profile and content description are
characterised by a vector of term weights, this match-
ing process can be performed by a similarity measure.
One of the most commonly used similarity measures
is the cosine similarity (Salton and McGill, 1983),
which calculates the cosine of the angle between the
two vectors. We adopted this similarity measure in
this research because of its simplicity and efficiency
for matching vectors. To calculate the cosine simi-
larity between a user profile and an item description
using MapReduce operations, three jobs are required.
The first job calculates the Euclidean norm of each
vector. The mapper of this job rearranges the data
of the vectors representing the user profiles and item
descriptions. Next, the reducer calculates the norm
of the vector and appends the result to the key of the
records. These operations are performed on the item
descriptions as well as the user profiles, i.e. id stands
for an item or user identifier.

map : ((word; id); t f id f )! (id;(word; t f id f ))
reduce : (id; [word; t f id f ])! [(id;norm);(word; t f id f )]

(7)
The second job identifies the item-user pairs, in which
the item description and the user profile have at least 1
word in common. Again, the mapper just rearranges
the current data records so that the reducer receives
the records ordered by word. Next, every item-user
pair, in which the item description as well as the user
profile contains the current word, are identified and
returned as output. The reducer may distinguish the
items from the users, based on the identifier or another
discriminating attribute of the record.

map : ((id;norm);(word; t f id f ))
! (word;(id;norm; t f id f ))
reduce : (word; [id;norm; t f id f ])

! [word;(idi;normi; t f id fi; idu;normu; t f id fu)]

(8)

Finally, the third job calculates the cosine similarity
of every item-user pair, in which the item description
and the user profile have at least 1 word in common.
The mapper orders the data records by the identified
pairs. Afterwards, the reducer calculates and outputs

the cosine similarity for each of these pairs based on
the previously calculated intermediate results.

map : (word;(idi;normi; t f id fi; idu;normu; t f id fu))
! ((idi; idu);(word;normi; t f id fi;normu; t f id fu))

reduce : ((idi; idu);[word;normi; t f id fi;normu; t f id fu])
! ((idi; idu);sim)

(9)
This way, the top-N recommendations can be gener-
ated for every user by selecting the N items which
have the highest cosine similarity with the user’s pro-
file vector. Moreover, the same MapReduce opera-
tions can be employed to calculate pairwise similari-
ties. By calculating the cosine similarity between ev-
ery pair of item vectors, related content items can be
identified. Like-minded users can be discovered by
executing the MapReduce jobs on the user profiles,
i.e. calculating the most similar users based on the
cosine similarity of their personal profile vectors.

5 RESULTS

To benchmark the performance of the Hadoop
MapReduce framework and test its suitability for cal-
culating CB recommendations, we performed an ex-
periment based on a varying number of input files.
Since we had no data of user profiles at our disposal,
the scenario of a pairwise item comparison, as de-
scribed at the end of Section 4, was evaluated. This
means the framework had to calculate the similarities
of every unique item-item pair that can be composed
from the input files; whereas a CB recommendation
algorithm compares every item-user pair in the sys-
tem. Because this pairwise document comparison re-
quires the same MapReduce operations as an item-
user comparison, similar results may be expected for
benchmarking the calculations of a CB recommender.

For our experiment, we used Hadoop version
0.20.2, the latest stable release at the time of writing
this paper, on a single Linux (Red Hat 4.1.2) machine.
The machine has two quad-core processors running at
2.53GHz, 24GB memory and a solid state disk to save
intermediate results. We utilized a subset of a static
data set of Wikipedia articles, download from the In-
ternet1, as content items for the pairwise document
comparison. The average file size of the articles in the
experiment is 10kB. Since the articles are available in
HTML format, the first mapper was adapted to filter
out the stop words as well as the HTML-tags of the ar-
ticles. In 20 successive iterations, the framework had
to process a varying number of articles ranging from

1http://static.wikipedia.org/downloads/2008-06/en/

CONTENT-BASED RECOMMENDATION ALGORITHMS ON THE HADOOP MAPREDUCE FRAMEWORK

239



100 until 2000 with a step size of 100. After com-
posing the term vectors with their corresponding term
weights, D � (D� 1)=2 similarities were calculated,
where D is the number of input articles.

Detailed analysis of the required computation
times learned that two jobs are responsible for more
than 90% of the processing time, namely the first and
the last job. The first job consists of reading the arti-
cles as well as filtering out the stop words and HTML
tags. The last job calculates the cosine similarity for
every vector pair. Based on this finding, we generated
Figure 1, which shows the processing time spent on
reading and filtering the articles, calculating the sim-
ilarities, and the other jobs required to generate pair-
wise similarities. The total time spent on all jobs to-
gether is indicated in Figure 1 with “Total”. The graph
indicates that the time spent on reading the articles in-
creases linearly, as the number of input files increases.
In contrast, the time required for calculating the sim-
ilarities shows, as expected, a quadratic increase for
the successive iterations.

The calculation times of these jobs have a direct
influence on the evolution of the total processing time.
During the first iterations (i.e. iterations operating on
less than 900 input files), the total processing time
is dominated by the time required for reading and
filtering the articles. As a result, the total process-
ing time seems to increase linearly for the iterations
with less than 900 input files. In contrast, if more
than 900 input files have to be processed, the pro-
cessing time needed for calculating the similarities
exceeds the time spent on reading and filtering the
articles. Given the quadratic increase of the process-
ing time required for calculating the similarities dur-
ing the successive iterations, the total processing time
shows a quadratic increase too. This way, the total
processing time evolves from a linear function to a
quadratic function of the number of articles.

0

2000

4000

6000

8000

10000

12000
Time (s)

Number of articles

Processing Time of the Hadoop Jobs

Total

Calculating Similarities

Reading & Filtering Articles

Sum of Other Jobs

Figure 1: The processing time of the Hadoop jobs.

6 CONCLUSIONS

This paper explains in detail how Hadoop can be used
to calculate content-based recommendations and pair-
wise item/user similarities in a scalable and reliable
manner. Based on experiments with Wikipedia arti-
cles, performed on a single machine, we showed that
for a limited number of input files, most processing
time is spent on reading and filtering the articles. Con-
sequently, the total processing time is a linear function
of the number of processed items. Although if a larger
number of input files have to be processed, the total
processing time evolves to a quadratic function driven
by the increasing processing time of the similarity cal-
culations. In future research, we will benchmark the
MapReduce operations on a cluster of multiple com-
puting nodes. This way, we can investigate the true
scalability potentials of the Hadoop framework.

REFERENCES

Brown, R. A. (2009). Hadoop at home: large-scale comput-
ing at a small college. In SIGCSE ’09: Proceedings of
the 40th ACM technical symposium on Computer sci-
ence education, pages 106–110, New York, NY, USA.
ACM.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simpli-
fied data processing on large clusters. Commun. ACM,
51(1):107–113.

Elsayed, T., Lin, J., and Oard, D. W. (2008). Pairwise doc-
ument similarity in large collections with mapreduce.
In HLT ’08: Proceedings of the 46th Annual Meet-
ing of the Association for Computational Linguistics
on Human Language Technologies, pages 265–268,
Morristown, NJ, USA. Association for Computational
Linguistics.

Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The
google file system. In SOSP ’03: Proceedings of
the nineteenth ACM symposium on Operating systems
principles, pages 29–43, New York, NY, USA. ACM.

Lämmel, R. (2007). Google’s mapreduce program-
ming model — revisited. Sci. Comput. Program.,
68(3):208–237.

Mladenic, D. (1999). Text-learning and related intelligent
agents: A survey. IEEE Intelligent Systems, 14(4):44–
54.

Salton, G. and McGill, M. J. (1983). Introduction to modern
information retrieval. McGraw-Hill computer science
series. McGraw-Hill, New York, NY.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

240


