
SPEEDING UP LATENT SEMANTIC ANALYSIS
A Streamed Distributed Algorithm for SVD Updates

RadimŘehůřek
NLP lab, Masaryk University in Brno, Brno, Czech Republic

Keywords: Distributed LSA, Streamed SVD, One-pass SVD, Matrix decomposition, Subspace tracking.

Abstract: Since its inception 20 years ago, Latent Semantic Analysis (LSA) has become a standard tool for robust,
unsupervised inference of semantic structure from text corpora. At the core of LSA is the Singular Value
Decomposition algorithm (SVD), a linear algebra routine for matrix factorization. This paper introduces a
streamed distributed algorithm for incremental updates, which allows the factorization to be computed rapidly
in a single pass over the input matrix on a cluster of autonomous computers.

1 INTRODUCTION

The purpose ofLatent Semantic Analysis (LSA)is to
find hidden (latent) structure in a collection of texts
represented in the Vector Space Model (Salton, 1989).
LSA was introduced in (Deerwester et al., 1990) and
has since become a standard tool in the field of Nat-
ural Language Processing and Information Retrieval.
At the heart of LSA lies theSingular Value Decom-
position algorithm, which makes LSA (sometimes
also called Latent Semantic Indexing, or LSI) really
just another member of the broad family of applica-
tions that make use of SVD’s robust and mathemat-
ically well-founded approximation capabilities1. In
this way, although we will discuss our results in the
perspective and terminology of LSA and Natural Lan-
guage Processing, our results are in fact applicable to
a wide range of problems and domains across much
of the field of Computer Science.

1.1 Singular Value Decomposition

Latent Semantic Analysis assumes that each docu-
ment (observation) can be described using a fixed set
of real-valued features (variables). These features
capture the usage frequency of distinct words in the
document, and are typically re-scaled by some TF-
IDF scheme (Salton, 1989). However, no assumption

1Another member of that family is thediscrete KarhunenLove
Transform, from Image Processing; or Signal Processing, where
SVD is commonly used to separate signal from noise. SVD is
also used in solving shift-invariant differential equations, in Geo-
physics, in Antenna Array Processing, . . .

is made on what the particular features are or how
to extract them from raw data—LSA simply repre-
sents the input data collection ofn documents, each
described bym features, as a matrixA∈ R

m×n, with
documents as columns and features as rows.

In theory, the term-document matrixA can be di-
rectly mapped to physical memory and processed.
However,A is commonly left implicit, as it is often
distributed among many computers, unknown in its
entirety and/or computed partially on-demand. In-
deed, in many cases the implied matrix is even infinite
in size, gradually growing as the collection grows.

Nevertheless, there is a reason why it is worth-
while to view the collection as a single gigantic ma-
trix. It allows us to consider linear algebra decompo-
sition algorithms that provide succint, mathematically
well-founded ways of discovering latent structure of
the matrix and, thereby, of the original data collection.
In case of LSA, the algorithm of choice is theSingu-
lar Value Decomposition, SVD. Assumingn≫m, the
SVD of A yieldsAm×n = Um×mSm×mVT

m×n, whereU ,
V are orthogonal matrices (calledleft and right sin-
gular vectors) andS is a diagonal matrix ofsingular
valueswith diagonal entries in decreasing order.

Here and elsewhere, we use the subscriptsAx×y to
denote that matrixA hasx rows andy columns but
omit the subscripts whenever there is no risk of con-
fusion.

1.2 Related Work

Historically, most research on SVD optimization has
gone into Krylov subspace methods, such as Lanczos-

446 Řehůřek R..
SPEEDING UP LATENT SEMANTIC ANALYSIS - A Streamed Distributed Algorithm for SVD Updates.
DOI: 10.5220/0003191304460451
In Proceedings of the 3rd International Conference on Agents and Artificial Intelligence (ICAART-2011), pages 446-451
ISBN: 978-989-8425-40-9
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

based iterative solvers (see e.g. (Vigna, 2008) for
a recent large-scale SVD effort). Our problem is,
however, different in that we can only afford asin-
gle passover the input corpus (iterative solvers re-
quire O(k) passes in general). Our scenario, where
the decomposition must be updated on-the-fly and
in constant memory, as the stream of observations
cannot be repeated or even stored in off-core mem-
ory, can be viewed as an instance ofsubspace track-
ing. See (Comon and Golub, 1990) for an excellent
overview on the complexity of various forms of ma-
trix decomposition algorithms in the context of sub-
space tracking.

An explicitly formulatedO(m(k + c)2) method
(wherec is the number of newly added documents)
for incremental LSA updates is presented in (Zha and
Simon, 1999). They also give formulas for updating
rows ofA as well as rescaling row weights. Their al-
gorithm is completely streamed and runs in constant
memory. It can therefore also be used for online sub-
space tracking, by simply ignoring all updates to the
right singular vectorsV. The complexity of updates
was further reduced in (Brand, 2006) who proposed
a linearO(mkc) update algorithm by a series ofc fast
rank-1 updates. However, in the process, the ability to
track subspaces is lost (despite their tentative claim to
the contrary). Their approach is akin to thek-Nearest
Neighbours (k-NN)method of Machine Learning: the
lightning speed during training is offset by memory
requirements of storing the intermediate model.

These incremental methods concern themselves
with adding new documents to an existing decompo-
sition. What is needed for a distributed version of
LSA is a slightly different task: given two existing
decompositions, merge them together into one. We
did not find any explicit, efficient algorithm for merg-
ing decompositions in the literature. In this research
paper we therefore seek to close this gap, provide
such algorithm and use it for computing distributed
LSA. The following section describes the algorithm
and states conditions under which the merging makes
sense when dealing with only truncated rank-k ap-
proximation of the decomposition.

2 DISTRIBUTED LSA

In this section, we derive an algorithm for distributed
computing of LSA over a cluster of autonomous com-
puters.

2.1 Algorithm Overview

Parallel computation will be achieved by column-

partitioning the input matrix A into several
smaller submatrices, called jobs, Am×n =
[

Am×c1
1 ,Am×c2

2 , · · · ,A
m×cj
j

]

, ∑ci = n. Since columns

of A correspond to documents, each jobAi amounts to
processing a chunk ofci input documents. The sizes
of these chunks are chosen to fit available resources
of the processing nodes: bigger chunks mean faster
overall processing but on the other hand consume
more memory.

Jobs are then distributed among the available clus-
ter nodes, in no particular order, so that each node will
be processing a different set of column-blocks fromA.
The nodes need not process the same number of jobs,
nor process jobs at the same speed; the computations
are completely asynchronous and independent. Once
all jobs have been processed, the decompositions ac-
cumulated in each node will be merged into a single,
final decompositionP = (U,S).

What is needed are thus two algorithms:

1. FindPi = (Um×ci
i ,Sci×ci

i) eigen decomposition of
a single jobAm×ci

i such thatAiAT
i = UiS2

i U
T
i .

ThesePi decompositions will form the base case
for merging.

2. Merge two decompositionsPi = (Ui ,Si), Pj =
(U j ,Sj) of two jobsAi , A j into a single decom-

positionP = (U,S) such that
[

Ai ,A j
][

Ai ,A j
]T

=

US2UT .

We’d like to highlight the fact that the first algo-
rithm will perform decomposition of asparseinput
matrix; the second algorithm will merge twodense
decompositions into another dense decomposition.
This is in contrast to incremental updates discussed
in the literature (Levy and Lindenbaum, 2000; Zha
and Simon, 1999; Brand, 2006), where the existing
decomposition and the new documents are mashed to-
gether into a single matrix, losing any potential bene-
fits of sparsity.

2.2 Solving the Base Case

In LSA (using the same notation introduced in Sec-
tion 1), the truncation factork is typically in the hun-
dreds or thousands, the number of featuresm be-
tween 104 to 106 and the number of documentsn
tends to infinity, so thatk≪ m≪ n. Density of the
job matrices is well below 1%, so a sparse solver is
called for, that makes efficient use of the sparse ma-
trix structure. Also, a direct sparse SVD solver ofAi
is preferable to the roundabout eigen decomposition
of AiAT

i , for memory-conserving as well as numeri-
cal accuracy reasons (see e.g. (Golub and Van Loan,
1996)). Finally, becausek≪ m, a partial decompo-
sition is required which only returns thek greatest

SPEEDING UP LATENT SEMANTIC ANALYSIS - A Streamed Distributed Algorithm for SVD Updates

447

factors—computing the full spectrum would be a ter-
rible overkill.

For these reasons, we solve base cases with a
“black-box” in-core sparse partial SVD algorithm.

2.3 Merging Decompositions

No explicit algorithm (as far as we know) exists for
merging two truncated eigen decompositions (or SVD
decompositions) into one. We therefore propose our
own, novel algorithm here, starting with its derivation
and summing up the final version in the end.

The problem can be stated as follows. Given two
truncated eigen decompositionsP1 = (Um×k1

1 ,Sk1×k1
1),

P2 = (Um×k2
2 ,Sk2×k2

2), which come from the (by now
lost and unavailable) input matricesAm×c1

1 , Am×c2
2 ,

k1 ≤ c1 andk2 ≤ c2, find P = (U,S) that is the eigen
decomposition of

[

A1,A2
]

.
Our first approximation will be the direct naive

U,S2 eigen
←−−−

[

U1S1,U2S2
][

U1S1,U2S2
]T

. (1)

This is terribly inefficient, and forming the ma-
trix product of sizem×m on the right hand side is
prohibitively expensive. Writing SVDk for truncated
SVD that returns only thek greatest singular numbers
and their associated singular vectors, we can equiva-
lently write:

Algorithm 1: SVD merge.

Input: Truncation factork, Decay factorγ,
P1 = (Um×k1

1 ,Sk1×k1
1), P2 = (Um×k2

2 ,Sk2×k2
2)

Output: P = (Um×k,Sk×k)

U,S,VT SVDk←−−−
[

γU1S1,U2S2
]

1

This is more reasonable, with the added bonus of
increased numerical accuracy over the related eigen
decomposition. Note, however, that the computed
right singular vectorsVT are not used at all, which
is a sign of further inefficiency. This leads us to break
the algorithm into several steps:

Algorithm 2: QR merge.

Input: Truncation factork, Decay factorγ,
P1 = (Um×k1

1 ,Sk1×k1
1), P2 = (Um×k2

2 ,Sk2×k2
2)

Output: P = (Um×k,Sk×k)

Q,R
QR
←−−

[

γU1S1,U2S2
]

1

UR,S,VT
R

SVDk←−−− R2

Um×k←Qm×(k1+k2)U (k1+k2)×k
R3

On line 1, an orthonormal subspace basisQ is
found which spans both of the subspaces defined by

columns ofU1 and U2, span(Q) = span(
[

U1,U2
]

).
Multiplications byS1, S2 andγ provide scaling forR
only and do not affectQ in any way, asQ will always
be orthogonal (with columns of unit length). Our al-
gorithm of choice for constructing the new basis is
QR factorization, because we can use its other prod-
uct, the upper trapezoidal matrixR, to our advantage.
Now we’re almost ready to declare(Q,R) our target
decomposition(U,S), exceptR is not diagonal. To
diagonalizeR, we perform an SVD on it, on line 2.
This gives us the singular valuesS we need as well
as the rotation ofQ necessary to represent the ba-
sis in this new subspace. The rotation is applied on
line 3. Finally, both output matrices are truncated to
the requested rankk. The costs areO(m(k1 + k2)

2),
O((k1 + k2)

3) andO(m(k1 + k2)
2) for line 1, 2 and 3

respectively, for a combined total ofO(m(k1 +k2)
2).

Although more elegant than Algorithm 1, the
baseline algorithm is only marginally more efficient
than a direct SVD. This comes as no surprise, as the
two algorithms are quite similar and SVD of rectangu-
lar matrices is often internally implemented by means
of QR in exactly this way. Luckily, we can do better.

First, we observe that the QR decomposition
makes no use of the fact thatU1 andU2 are already
orthogonal. Capitalizing on this will allow us to
representU as an update to the existing basisU1,
U =

[

U1,U ′
]

, dropping the complexity of the first
step toO(mk2

2). Secondly, the application of rota-
tionUR toU can be rewritten asUUR =

[

U1,U ′
]

UR =
U1R1+U ′R2, dropping the complexity of the last step
to O(mkk1 +mkk2). Plus, the algorithm can be made
to work by modifying the existing matricesU1,U2 in
place inside BLAS routines, which is a considerable
practical improvement over Algorithm 2, which re-
quires allocating additionalm(k1 +k2) floats.

Algorithm 3: Optimized merge.

Input: Truncation factork, Decay factorγ,
P1 = (Um×k1

1 ,Sk1×k1
1), P2 = (Um×k2

2 ,Sk2×k2
2)

Output: P = (Um×k,Sk×k)

Zk1×k2 ←UT
1 U21

U ′,R
QR
←−−U2−U1Z2

UR,S,VT
R

SV Dk←−−−

[

γS1 ZS2
0 RS2

](k1+k2)×(k1+k2)

3
[

Rk1×k
1

Rk2×k
2

]

= UR
4

U ←U1R1 +U ′R25

The first two lines construct orthonormal basisU ′

for the component ofU2 that is orthogonal toU1,

ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence

448

span(U ′) = span((I −U1U
T
1)U2) (2)

= span(U2−U1(U
T
1 U2)). (3)

As before, we use QR factorization because the
upper trapezoidal matrixR will come in handy when
determining the singular vectorsS.

Line 3 is perhaps the least obvious, but follows
from the requirement that the updated basis

[

U,U ′
]

must satisfy

[

U1S1,U2S2
]

=
[

U1,U ′
]

X, (4)

so that

X =
[

U1,U ′
]T [

U1S1,U2S2
]

. (5)

By multiplying,

[

UT
1

U ′T

]

[

U1S1,U2S2
]

=

[

UT
1 U1S1 UT

1 U2S2

U ′TU1 U ′TU2S2

]

(6)

and using the equalitiesR = U ′TU2, U ′TU1 = 0
andUT

1 U1 = I (all by construction) we obtain

X =

[

S1 UT
1 U2S2

0 U ′TU2S2

]

=

[

S1 ZS2
0 RS2

]

. (7)

Line 4 is just a way of saying that on line 5,U1
will be multiplied by the firstk1 rows ofUR, whileU ′

will be multiplied by the remainingk2 rows.
Finally, line 5 seeks to avoid realizing the full

[

U1,U ′
]

matrix in memory and is a direct application
of the equality

[

U1,U ′
]m×(k1+k2)U (k1+k2)×k

R = U1R1 +U ′R2. (8)

As for complexity of this algorithm, it is again
dominated by the matrix products and the dense
QR factorization, but this time only of a matrix of
size m× k2. The SVD of line 3 is a negligible
O(k1 + k2)

3, and the final basis rotation comes up to
O(mkmax(k1,k2)). Overall, withk1 ≈ k2 ≈ k, this is
anO(mk2) algorithm.

2.4 Effects of Truncation

While the equations above are provably correct when
using matrices of full rank (putting aside the techni-
cal question of gradual loss of accuracy due to finite
machine precision and rounding errors for now), it is
not at all clear how to justify truncating all interme-
diate matrices to rankk in each update. What effect
does this have on the merged decomposition? How do
these effects stack up as we perform several updates
in succession?

In (Zha and Zhang, 2000), the authors did the hard
work and identified conditions under which operating

with truncated matrices produces exact results. More-
over, they show by way of perturbation analysis that
the results are stable (though no longer exact) even
if the input matrix only approximately satisfies this
condition. They investigate matrices of the so-called
low-rank-plus-shiftstructure, which (approximately)
satisfy

ATA/m≈CWCT + σ2In, (9)

where C, W are of rankk, W positive semi-
definite,σ2 the variance of noise. That is,ATA can
be expressed as a sum of a low-rank matrix and a
multiple of the identity matrix. They show that ma-
trices coming from natural language corpora do in-
deed possess this structure and that in this case, a
rank-k approximation ofA can be expressed as a com-
bination of rank-k approximations of its submatrices
A =

[

A1,A2
]

without a serious loss of precision.

2.5 Putting It Together

Let N = {N1, . . . ,Np} be thep available cluster nodes.
Each node will be processing incoming jobs sequen-
tially, running the base case decomposition from Sec-
tion 2.2 followed by merging the result with the cur-
rent decomposition by means of Algorithm 1, 2 or 3:

Algorithm 4: LSA Node.

Input: Truncation factork, Queue of jobsA1,A2, . . .
Output: P = (Um×k,Sk×k) decomposition of

[

A1,A2, . . .
]

P = (U,S)← 0m×k,0k×k1
foreach job Ai do2

P′ = (U ′,S′)← BaseCaseDecomposition(k,Ai)3

P←MergeAlgo{1,2,3}(k,P,P′)4

end5

To construct decomposition of the full matrixA,
we let the nodes work in parallel, distributing the jobs
as soon as they arrive, to whichever node seems idle.
We do not describe the technical issues of load bal-
ancing and recovery from node failure here, but stan-
dard practices apply. Once we have processed all the
jobs (or temporarily exhausted the input job queue, in
the infinite streaming scenario), we merge their indi-
vidual results into one:

Algorithm 5: Distributed LSA.

Input: Truncation factork, Queue of jobs
A =

[

A1,A2, . . .
]

Output: P = (Um×k,Sk×k) decomposition ofA

Pi = (Ui ,Si)← LSA Node Algo4(k, subset of jobs1
from A), for i = 1, . . . , p
P← Reduce(MergeAlgo,

[

P1, . . . ,Pp
]

)2

SPEEDING UP LATENT SEMANTIC ANALYSIS - A Streamed Distributed Algorithm for SVD Updates

449

Here, line 1 is executed in parallel, making use of
all p nodes at once, and is the source of parallelism of
the algorithm. On line two,Reduceapplies the func-
tion that is its first argument cummulatively to the se-
quence that is its second argument, so that it effec-
tively mergesP1 with P2, followed by merging that
result withP3, etc.

We note that other divide-and-conquer schemes
are also possible, such as one where the merging in
line 2 of Algorithm 5 happens on pairs of decompo-
sitions coming from approximately the same number
of input documents, so that the two sets of singular
values are of comparable magnitude. Doing so could
lead to improved numerical properties, but we have
not investigated this effect yet.

The algorithm is formulated in terms of a (poten-
tially infinite) sequence of jobs, so that when more
jobs arrive, we can continue updating the decomposi-
tion in a natural way. The whole algorithm can in fact
act as a continuous daemon service, providing decom-
position of all the jobs processed so far on demand.

3 EXPERIMENTS

In this section, we describe a set of experiments mea-
suring numerical accuracy of the proposed algorithm.

In all experiments, the decay factorγ is set to 1.0,
that is, there is no discounting in favour of new obser-
vation. The number of requested factors isk = 200 in
all cases.

3.1 Set Up

We will be comparing four implementations for par-
tial Singular Value Decomposition:
SVDLIBC A direct sparse SVD implementation due

to Douglas Rohde2. SVDLIBC is based on the
SVDPACK package by Michael Berry (Berry,
1992). We use the LAS2 routine (Lanczos of the
related implicitATA or AAT matrix with selective
orthogonalizations) to retrieve only thek domi-
nant singular triplets. The implementation works
in-core and therefore doesn’t scale.

ZMS Implementation of the incremental one-pass al-
gorithm from (Zha et al., 1998). The right singular
vectors and their updates are completely ignored
so that our implementation of their algorithm also
realizes subspace tracking.

DLSA Our proposed method. We will be evalu-
ating three different versions of merging, Algo-
rithms 1, 2 and 3, calling themDLSA1, DLSA2 and

2http://tedlab.mit.edu/∼dr/SVDLIBC/

DLSA3 in the results, respectively. Sparse SVD
during base case decomposition is realized by an
adapted LAS2 routine from SVDLIBC, see above.

With the exception of SVDLIBC, all the other al-
gorithms operate in a streaming fashion (ehek and So-
jka, 2010), so that the corpus need not reside in core
memory all at once. Although memory footprint of
all algorithms is independent of the size of the cor-
pus, it is still linear in the number of features,O(m).
It is assumed that the decomposition(Um×k,Sk×k) fits
entirely into core memory.

For the experiments, we will be using a corpus of
3,494 mathematical articles collected from the digi-
tal libraries of NUMDAM, arXiv and DML-CZ. Af-
ter the standard procedure of pruning out word types
that are too infrequent (hapax legomena, typos, OCR
errors, etc.) or too frequent (stop words), we are
left with 39,022 distinct features. The final matrix
A39,022×3,494 has 1.5 million non-zero entries. This
corpus was chosen so that it fits into core memory of
a single computer and its decomposition can there-
fore be computed directly. This will allow us to es-
tablish the “ground-truth” decomposition and set an
upper bound on achievable accuracy and speed.

3.2 Accuracy

Figure 1 plots the relative accuracy of singular val-
ues found by DLSA, ZMS, SVDLIBC and HEBB al-
gorithms compared to known, “ground-truth” values
SG. We measure accuracy of the computed singular
valuesS asr i = |s i− s G i|/s G i, for i = 1, . . . ,k.
The ground-truth singular valuesSG are computed di-
rectly with LAPACK’s DGESVD routine.

We observe that the largest singular values are
practically always exact, and accuracy quickly de-
grades towards the end of the returned spectrum. This
leads us to the following refinement: When request-
ing x factors, compute the truncated updates fork> x,
such ask= 2x, and discard the extrax−k factors only
when the final projection is actually needed. The er-
ror is then below 5%, which is comparable to the ZMS
algorithm (while DLSA is at least an order of magni-
tude faster even without any parallelization).

4 CONCLUSIONS

We developed and presented a novel single-pass eigen
decomposition method, which runs in constant mem-
ory w.r.t. the number of observations. The method is
embarrassingly parallel, so we also give its distributed
version.

ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence

450

0 50 100 150 200
singular values i

0.00

0.05

0.10

0.15

0.20

re
la

ti
v
e
 e

rr
o
r
r i

DLSA3 , c =10

DLSA3 , c =100

DLSA3 , c =1000

DLSA3 , c =100, k=400

SVDLIBC
ZMS, c=10

ZMS, c=200

ZMS, c=1000

Figure 1: Accuracy of singular values for various decomposition algorithms.

This method is suited for processing extremely
large (possibly infinite) sparse matrices that arrive as a
stream of observations, where each observation must
be immediately processed and then discarded. It is
therefore best suitable for environments where the in-
put stream cannot be repeated and must be processed
in constant memory.

Future work will include a more thorough eval-
uation of the algorithm’s accuracy and performance,
with a side-by-side comparison to other decomposi-
tion algorithms.

ACKNOWLEDGEMENTS

This study was partially supported by the LC536
grant of MMT CR.

REFERENCES

Berry, M. (1992). Large-scale sparse singular value compu-
tations. The International Journal of Supercomputer
Applications, 6(1):13–49.

Brand, M. (2006). Fast low-rank modifications of the thin
singular value decomposition.Linear Algebra and its
Applications, 415(1):20–30.

Comon, P. and Golub, G. (1990). Tracking a few extreme
singular values and vectors in signal processing.Pro-
ceedings of the IEEE, 78(8):1327–1343.

Deerwester, S., Dumais, S., Furnas, G., Landauer, T., and
Harshman, R. (1990). Indexing by Latent Semantic

Analysis. Journal of the American society for infor-
mation science, 41(6):391–407.

ehek, R. and Sojka, P. (2010). Software Framework for
Topic Modelling with Large Corpora. InProceedings
of LREC 2010 workshop on New Challenges for NLP
Frameworks, pages 45–50.

Golub, G. and Van Loan, C. (1996).Matrix computations.
Johns Hopkins University Press.

Levy, A. and Lindenbaum, M. (2000). Sequential
Karhunen–Loeve basis extraction and its application
to images. IEEE Transactions on Image processing,
9(8):1371.

Salton, G. (1989). Automatic text processing: the transfor-
mation, analysis, and retrieval of information by com-
puter. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA.

Vigna, S. (2008). Distributed, large-scale latent semantic
analysis by index interpolation. InProceedings of the
3rd international conference on Scalable information
systems, pages 1–10. ICST.

Zha, H., Marques, O., and Simon, H. (1998). Large-scale
SVD and subspace-based methods for Information
Retrieval.Solving Irregularly Structured Problems in
Parallel, pages 29–42.

Zha, H. and Simon, H. (1999). On updating problems in
Latent Semantic Indexing.SIAM Journal on Scientific
Computing, 21:782.

Zha, H. and Zhang, Z. (2000). Matrices with low-rank-
plus-shift structure: Partial SVD and Latent Semantic
Indexing. SIAM Journal on Matrix Analysis and Ap-
plications, 21:522.

SPEEDING UP LATENT SEMANTIC ANALYSIS - A Streamed Distributed Algorithm for SVD Updates

451

