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Abstract: In this paper we propose a novel semi-supervised classification algorithm from the cluster-and-label frame-
work. A small amount of labeled examples is used to automatically label the extracted clusters, so that the
initial labeled seed is implicitely ”augmented” to the whole clustered data. The optimum cluster labelling is
achieved by means of the Hungarian algorithm, traditionally used to solve any optimisation assignment prob-
lem. Finally, the augmented labeled set is applied to train a SVM classifier. This semi-supervised approach
has been compared to a fully supervised version. In our experiments we used an artificial dataset (mixture
of Gaussians) as well as other five real data sets from the UCI repository. In general, the experimental re-
sults showed significant improvements in the classification performance under minimal labeled sets using the
semi-supervised algorithm.

1 INTRODUCTION

Semi-supervised classification is a framework of al-
gorithms proposed to improve the performance of su-
pervised algorithms through the use of both labeled
and unlabeled data (Design et al., ). One reported lim-
itation of supervised techniques is their requisite of
available training corpora of considerable dimensions
order to achieve accurate predictions on the test data.
Furthermore, the high effort and cost associated to la-
beling large amount of training samples by hand -a
typical example is the manual compilation of labeled
text documents- is a second limiting factor, which led
to the development of semi-supervised techniques. It
has been shown in numerous studies how the knowl-
edge learned from unlabeled data can dramatically re-
duce the size of labeled data required to achieve ap-
propriate classification performances (Nigam et al.,
2000; Castelli and Cover, 1995).

Different approaches to semi-supervised classifi-
cation have been proposed in the literature, including,
among others, Co-training (Maeireizo et al., 2004),
self-training (Yarowsky, 1995) or generative models
(Nigam et al., 2000; Dempster et al., 1977). Two ex-
tensive surveys on semi-supervised learning are pro-
vided in (Zhu, 2006) and (Seeger, 2001). This pa-
per focuses in a particular case of generative mod-
els, in which cluster algorithms are employed instead
of probabilistic mixture models. This kind of ap-

proaches is commonly referred to as “cluster-and-
label” framework (Zhu, 2006). The algorithm pro-
posed in this paper differs from previous works in
which both clustering and labeling stages are often
integrated in one single process. Previously, the la-
beled seeds have been often used to initialise or guide
the clustering algorithms, in such a way that the clus-
ters’ patterns are implicitely tagged during the clus-
tering process (Demiriz et al., 1999). In this work,
however, the clustering and labeling tasks are sepa-
rated into two independent processes. First, a cluster
partition of the data set is obtained through a fully un-
supervised clustering algorithm. Then, given a small
set of labels (also referred to as prototype of labeled
seed), a cost matrix is computed based on the distri-
bution of labels through the clusters. The cluster la-
beling objective is then formulated as an assignment
problem, which has been solved using the Hungarian
algorithm (Kuhn, 1955). Thereby, an optimum clus-
ter labelinggiven the labeled seedsis ensured. An
extension of the proposed semi-supervised approach
is also presented, using a cluster-pruning algorithm
which is intended to improve the quality of the clus-
ters by pruning such patterns with high probability of
belonging to a overlapping region between classes.

The paper is organised as follows: Section 2 pro-
vides an overview of related work in the field semi-
supervised classification. In Section 3, we outline the
proposed algorithm. One important task in the new
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algorithm is the optimum cluster labeling, which is
explained in more detail in Section 4. In Section 5
we propose an extension to the semi-supervised algo-
rithm described in Section 3. The data sets used in
the experiments are introduced in Section 6. Finally,
we draw conclusions and future directions algorithm
in Section 7.

2 RELATED WORK

Different types of semi-supervised classifiers can be
distinguished in the literature. Among them, in this
section we briefly describe three of the main ap-
proaches: self-training, co-training and generative
models.

2.1 Self-training

In self training, a single classifier is iteratively trained
with a growing set of labeled data, starting from a
small initial seed of labeled samples. Commonly, an
iteration of the algorithm entails the following steps:
1) training on the labeled data available from previ-
ous iterations, 2) Applying the model learned from la-
beled data to predict the unlabeled data and 3) Sorting
the predicted samples according to their confidence
scores and adding the top most confident ones with
their predicted labels to the labeled set.

One example of self training is the work by
Yarowski (Yarowsky, 1995) on word sense disam-
biguation. A self training approach was applied to to
classify a word and its context into the possible word
senses in a polysemic corpus, starting by a tagged
seed for each possible sense of the words.

2.2 Co-training

In a similar way as self-training, co-training ap-
proaches are based on an incremental augmentation
of the labeled seeds by iteratively classifying the unla-
beled sets and attaching the most confident predicted
samples to the labeled set. However, in contrast to
self training, two complementary classifiers are si-
multaneously applied, fed with two different “views”
of the feature set. The prediction of the first classi-
fier is used to augment the labeled set available to the
second classifier and vice-versa. In (Maeireizo et al.,
2004), a co-training strategy was applied to predict
the emotional/non-emotional character of a corpus
of student utterances collected within the ITSPOKE
project (Intelligent Tutoring Spoken dialog system).
The authors selected twohigh-precisionclassifiers.
The first one was trained to recognise the emotional

status of an utterance (e.g. ’1’ emotional vs ’0’ for
non-emotional), while the second one predicted its
non-emotional status (’1’ non-emotional vs. ’0’ emo-
tional). The labeled set was iteratively increased by
attaching the top most confident predicted samples to
the labeled set from previous iterations.

2.3 Generative Models

Given a data set of observationsX , with the corre-
sponding set of class labels,Y , a generative model
assumes that the observations and labels are drawn
according to a modelp(x,y) whose parameters should
be “identifiable” (Zhu, 2006). Typically, the Expecta-
tion Maximisation algorithm is applied to estimate the
model parameters (Nigam et al., 2000).

Other strategies attempt to derive the underlying
class distribution by means of clustering techniques.
These approaches are commonly referred to as the
cluster -and- labelparadigm. For example, in (Demi-
riz et al., 1999) agenetick-means clustering was im-
plemented using a genetic algorithm. The goal of the
algorithm was to find a set ofk cluster centres that
simultaneously optimised an internal quality objec-
tive (e.g minimum cluster dispersion) and an exter-
nal criterion based on the available labels (e.g mini-
mum cluster entropy). The simultaneous optimisation
concerning internal and external criteria was attained
through the formulation of a new objective function
as a linear combination of both criteria.

3 NOVEL SEMI-SUPERVISED
ALGORITHM USING THE
CLUSTER AND LABEL
STRATEGY

In this paper we propose a new semi-supervised al-
gorithm, according to a cluster-and-label strategy. As
explained in Section 1, in previous works, the label-
ing task has been often integrated into the clustering
process as a simultaneous optimisation problem. In
other words, the clusters’ patterns are simultaneously
tagged during the clustering process.

Such simultaneous definition of the optimisation
problem (clustering/labeling) produces a certain de-
pendency of the extracted clusters with respect to the
initial labels. Thus, potential labeling errors present
in the labeled seeds may also induce a certain degra-
dation of the clustering solution. In fact, training sets
are not exempt from potential labeling errors. These
may occur depending on the degree of expertise of the
human annotators. Even for expert labelers, the con-
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fidence in annotating patterns with a certain degree
of ambiguity may drop down significantly, as it hap-
pens, for example, with the annotation of non-acted
emotions.

In other to avoid the aforementioned limitation,
the approach proposed in this paper distinguishes the
clustering and labeling processes as two indepen-
dent optimisation problems. Essentially, the data set
(both labeled and unlabeled patterns) is first clustered,
without anya-priory information concerning labels.
Thereby, a fully unsupervised, data-driven solution
is enforced which optimises aninternal quality ob-
jective. Then, the distribution of labels through the
different clusters is taken into consideration in order
to achieve the optimum labeling of the clusters’ pat-
terns. Thereby, higher robustness against possible er-
rors in the labeled seeds is achieved in the proposed
approach.

Data Set. First, the data is divided into a test set
(∼ 10%) and a training set (∼ 90%). Let

XT = {x1,x2, · · · ,xp}, ∀xi ∈ R N.

denote the training data points. This set is in turn
divided by two disjoint subsets:

XT = X
(l)
T ∪X

(u)
T

denotingX
(l)
T the labeled portion ofXT for which

the corresponding set of labelsY l
T is assumed to be

known, andX
(u)
T , the subset of unlabeled patterns in

XT .

Clustering. The first step in the semi-supervised
approach is to find a cluster partitionC of the train-
ing dataXT in to a set ofk disjoint clustersC =
{C1,C2, . . . ,Ck}, wherek is the number of classes
(which is assumed to be known from the labeled
set). In this work, the Partitioning around Medoids
(Pam) algorithm has been selected using the Eu-
clidean distance to compute dissimilarity matrices.
The Pam clustering algorithm provides the cluster so-
lution wich minimises thesum of distancesto the
cluster medoids.

Optimum Cluster Labeling. The labeling block
performs a crucial task in the semi-supervised
algorithm. Given the set of clustersC in which the
training data is divided, the objective of this block
is to find an optimum bijective mapping of labels to
clusters:

L : C → K , K = {1,2,3, · · · ,k}

so that an optimum criterion is fulfilled. Each
cluster is assigned exactly one class label inK . This
mapping of clusters to class labels is equivalent to a
mapping function that assigns, to each clustered pat-
tern, the class label of the cluster where it belongs.
As a result of cluster labeling, the initial labeled seed

(X
(l)
T ,Y

(l)
T ) is extended to the complete training set

(XT ,YT ), denotingYT , the set of augmented labels
corresponding to the observations inXT

Classification. Finally, a Support Vector Machine
(SVM) classifier (Burges, 1998; Joachims et al.,
1997) is trained with the augmented labeled set
(XT ,YT ) obtained after cluster labeling. The SVM
learned model is then applied to predict the labels for
the test set.

Simultaneously, a fully supervised classification
scheme has been compared to the semi-supervised al-
gorithm. In this case, the SVM is directly trained with
the initial labeled seed (X (l), Y (l)).

Both semi-supervised and supervised strategies
have been evaluated in terms of accuracy, by compar-
ing the predicted labels of the test patterns with their
respective manual labels. The evaluation results are
discussed in Section 6.

4 OPTIMUM CLUSTER
LABELING

In this section, we described in more detailoptimum
cluster labelingtask in the proposed semi-supervised
algorithm.

Problem Definition. Given the training data,

XT = X
(l)
T ∪X

(u)
T , the setY (l)

T of labels associated to

the portionX
(l)
T of the training set, the setK of labels

for thek existing classes1, and a cluster partitionC of
XT into disjoint clusters, the optimum cluster label-
ing problem is to find a bijective mapping function, L:

L : C → K , K = {1,2,3, · · · ,k}

that assigns each cluster inC to a class label inK ,
while minimising the total labeling cost. This cost is

defined in terms of the labeled seed (X
(l)
T ,Y

(l)
T ) and

the set of clustersC . Consider the following matrix
of overlapping productsN:

1Although class labels can take any arbitrary value, ei-
ther numeric or nominal, for simplicity in the formulation
and implementation of the cluster labeling problem thek
class labels are transformed to integer values ([1. . .k]).
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N =









ni1 ni2 · · · nik
n21 n22 · · · n2k
...

...
. . .

...
nk1 nk2 · · · nkk









with constituentsni j , denoting the number of la-

beled patterns fromX (l)
T with class labely= i that fall

into clusterCj . The labeling objective is to minimise
the global cost of the cluster labeling denoted by L:

Total Cost(L) = ∑
Ci∈C

wi ·Cost
(

L(Ci)
)

(1)

whereW = (w1, · · · ,wk) is a vector of weights for
the different clusters. For example, it may be used if
clusters sizes show significant differences among the
clusters. In this paper, the weights are assumed to be
equal for all clusters, so thatwi = 1,∀i ∈ 1· · ·k.
The individual of labeling a clusterCi with class j is
defined as the number of samples from classj (in the
labeled seed) that fall outside the clusterCi , i.e.:

Cost
(

L(Ci)
)

= ∑
Ck 6=Ci

nL(Ci),k (2)

by applying Equation 2 into the total cost defini-
tion of Equation 1, yields:

Total Cost(L) = ∑
Ci∈C

∑
Ck 6=Ci

nL(Ci),k (3)

Using a greedy search algorithm, the cost minimi-
sation of Equation 1 requiresk! operations (where
k denotes the number of clusters/classes). Such a
complexity becomes computationally intractable for
k ≥ 10. However, larger number of classes are often
involved in real classification problems. In this pa-
per, the Hungarian algorithm have been used, which
can achieve the optimum cluster labeling with sub-
stantially lower complexities. It requires the def-
inition of a cost matrixC[kxk], whose rows denote
the clusters and the columns are referred to class la-
bels in K . The elementsCi j denote the individual
costs of assigning the clusterCi to class labelj, i.e.
Ci j = Cost(L(Ci) = j).

4.1 The Hungarian Algorithm

The hungarian algorithm was devised by Harold
Huhn in 1955 to solve the optimum assignment prob-
lem in polynomial time. The name “Hungarian” was
given after two hungarian scientists who had previ-
ously established large part of the algorithm’s mathe-
matical background. It finds the optimum assignment
on a matrix of costs where each elementCi, j denotes

the penalty paid for the corresponding individual as-
signment(i, j). A typical example is theworker-job
assignment where the rows represent different work-
ers and the columns are the jobs to which the workers
can be designated to. The original algorithm proposed
by Huhn solved the assignment task inO(k4) opera-
tions, although some extensions of the algorithm have
been proposed, leading to a complexity ofO(k3).

The Hungarian algorithm has been described in
terms of bipartite graphs, or equivalently, as a number
of steps involving certain manipulations of the input
cost matrix, which can be summarised as follows.

1. Substract from each row of the cost matrix, the
values of the smallest element in the row.

2. Proceed as in step 1. columnwise.

3. Cross out the necessary rows and/or columns to
cover all zeros in the modified cost matrix from
step 2. by drawing the minimum number of lines.

4. If a number ofk lines have been drawn, proceed
to perform the assignments in step 5. Otherwise
select the smallest number not covered by any
line drawn in step 3. Substract this value to the
non-covered elements, adding the value to the el-
ements that are covered by two lines.

5. Starting from the first row, if the row contains a
unique zero element in a columnj, assign the
worker in the row to thejth job. Prune the row and
column from the cost matrix and continue scan-
ning the rest of rows. If some of the assignments
are still left at the end of this process, repeat the
procedure columnwise. If still some assignments
are left, it means that a unique assignment is not
possible. In such case, the remaining assignments
can be performed at random.

5 DATA SETS

Mixture of Gaussians. This data set comprises a
mixture seven Gaussians in two dimensions and 1750
instances (250 in each Gaussian), where a certain
amount of overlapping patterns (potential ambigui-
ties) can be observed.

Iris Data Set (Iris). The Iris set is one of the most
popular datasets from the UCI repository (uci, ). It
comprises 150 instances iris of 3 different classes of
iris flowers (Setosa, Versicolor, virginica). Two of
these classes are linearly separable while the third one
is not linearly separable from the second one.
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Wine Data Set (Wine). The wine set is one of the
popular data sets from the UCI repository. It consists
of 178 instances with 13 attributes, representing three
different types of wines.

Wisconsin Breast Cancer Data Set (Breast). This
data set constains 569 instances in 10 dimensions, de-
noting 10 different features extracted from digitised
images of breast masses. The two existing classes are
referred to the possible breast cancer diagnosis (ma-
lignant, benign).

Handwritten Digits Data Set (Pendig). The fourth
real data set is for pen-based recognition of handwrit-
ten digits. In our experiments, we used the test parti-
tion2, composed of 3498 samples with 16 attributes.
Ten classes can be distinguished for the digits 0-9.

Pima Indians Diabetes (Diabetes). This data set
comprises 768 instances with 8 numeric attributes.
Two classes denote the possible diagnostics (the pa-
tients show or not signs of diabetes.).

6 EXTENSION THROUGH
CLUSTER PRUNING

In this section, an alternative to the cluster-and-label
strategy is introduced. Even though the underlying
class structure can be appropriately captured by a
cluster algorithm, the augmented data set derived by
the optimum cluster labeling may contain a number
of “misclassification”3 errors with respect to the real
class labels. This happens specially when two or more
of the underlying classes show a certain overlapping
of patterns. In this case, the errors may be accumu-
lated in the regions close to the cluster boundaries of
adjacent clusters.

The general idea behind the proposed optimisation
method is to improve the (external) cluster quality
by identifying and removing such regions with high
probability of missclassification errors from the clus-
ters. To this aim, the concept ofpattern silhouettes
has been applied to prune the clusters inC .

The silhouette width of an observationxi is an in-
ternal measure of quality, typically used as the first

2due to memory limitations of the R software used in the
experiments

3The term missclassification is not here used to indicate
the predicted errors of the end classifiers but the errors after
the cluster labeling block. Note that, after cluster labeling,
each clustered data pattern is assigned a class label (the la-
bel of its cluster), which can be compared to the real label
if the complete labeled set is available.

step for the computation of average silhouette width
of a cluster partition (Rousseeuw, 1987). It is formu-
lated as:

s(xi) =
b(xi)−a(xi)

max(a(xi),b(xi))
(4)

wherea is the average distance betweenxi and the
elements in its own cluster, whileb is the smallest
average distance betweenxi and other clusters in the
partition. Intuitively, the silhouette of an objects(xi),
can be thought of as the “confidence” to which the
patternxi has been assigned to the clusterC(xi) by
the clustering algorithm. Higher silhouette scores are
observed for patterns clustered with a higher “con-
fidence”, while low values indicate patterns which
lie between clusters or are probably allocated in the
wrong cluster.

The cluster pruning approach can be described as
follows:

Input A cluster partition C of the data set; the
distance matrixD
Output A set of pruned clustersC ′.

1. Given a cluster partitionC and the matrix of
dissimilarities between the patterns in the data set,D,
calculate the silhouette of each object in the data set.

2. Sort the elements in each cluster according to their
silhouette scores, in increasing order.

3. In each cluster, the elements with high silhouettes
can be considered as objects with high “clustering
confidence”. In contrast, such elements with low
silhouette values are clustered with lower confidence.
This latter kind of objects may thus belong to a
class-overlapping region with higher probability.
Using the histograms of silhouette scores within the
clusters, select a minimum silhouette threshold for
each cluster. Further details about the selection of
silhouette thresholds by the cluster pruning algorithm
are provided in Section 6.1.

4. Prune each clusterCi in C by removing patterns
which do not exceed the minimum silhouette thresh-
old for the cluster, chosen in the previous step.

6.1 Determination of Silhouette
Thresholds

In the proposed cluster pruning method, different sil-
houette thresholds are applied according to the dis-
tribution of silhouette values within each cluster, es-
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timated through histograms. Assuming that the un-
derlying class distribution is appropriately captured in
the cluster partition, if a significant distortion of the
original clusters is introduced through cluster prun-
ing, the learned SVM models may also deviate from
the expected models to a certain extent. The objec-
tive is to remove potential clustering errors while pre-
serving to the highest possible extent the shape and
size of the original clusters. In practice, pruning an
amount of patterns from 20% to 30% of the cluster
size has been considered appropriate for the current
purpose. In addition, the selected thresholds also de-
pend on the pattern silhouette values: patterns with a
silhouette score larger than 0.5 are deemed to be clus-
tered with a sufficiently high “confidence”. Thus, the
maximum silhouette threshold applied in the cluster
pruning algorithm issilth = 0.5. In consequence, if
the minimum observed silhouette score in a cluster is
larger than 0.5, the cluster remains unaltered in the
pruned partitions.

The specific criteria to select the silhouette thresh-
olds can illustrated by considering the clusters ex-
tracted from the Breast data set (all 569 data in-
stances). The distribution of silhouette scores has
been estimated by using the histogram function in
the R-software, which also provides the vectors of
silhouette values found as the histogram bin limits
and the counts of occurrences in each bin4. The
silhouette thresholds have been selected to coincide
to histogram bin limits’. In the Breast data set (2
classes/clusters), the vector of silhouette thresholds
for the first and second clusters is [0.5, 0.2]. The value
silth = 0.5 for the first cluster corresponds to the up-
per bound for the silhouette thresholds, as explained
in the previous paragraph. It results in the removal of
5.2% of the cluster’s patterns. For the second clus-
ter, the thresholdsilth = 0.2 is selected. The pruned
section associated tosilth corresponds to the first five
histogram bins, comprising 25% of the patterns in the
cluster. By including the sixth histogram bin in the
pruned section, the next possible silhouette thresh-
old level issilth = 0.3, However, such threshold level
would lead to the removal of a considerable amount
(46.28%) of the cluster patterns, which is considered
unacceptable for preserving the cluster size/shape.

To summarise, the number of histogram bins cor-
responding to rejected patterns is determined accord-
ing to one of these two conditions: (1) the upper limit
of the last rejected bin should not be greater than
silth = 0.5, and (2) The amount of rejected patterns
(total number of occurrences in the rejected bins)

4The bin sizes provided by the R-software histogram
function are estimated according to the Sturges formula
(Freedman and Diaconis, 1981)

should not exceed a ratio of 30% of the total number
of patterns in the cluster.

6.2 Evaluation of the Cluster Pruning
Approach

In this section, the efficiency of the cluster pruning
method for rejecting missclassification errors from
the clustered data is evaluated through an analysis of
the algorithm outcomes on the Iris, Wine, Breast Can-
cer, Diabetes, Pendig and Seven Gaussians data set5.

For the purpose of evaluating the cluster prun-
ing algorithm, the cluster labeling task has been per-
formed using the complete set of labels for each data
set. The resulting misclassification error rates as well
as the NMI results observed in Table 1 confirm the
adequate behaviour of the proposed cluster pruning
algorithm for removing such sections from the clus-
ters with high probability of resulting in misclassi-
fication errors after cluster labeling. For instance,
while the pruned sections comprise around 10−20%
of the patterns in the data sets, the percentage of
remaining misclassification errors has been substan-
tially reduced. As an example, the error rate has
dropped from 10.66% to 4.03% after pruning on the
Iris data set, while error rates have been reduced from
4.09% to 0.99% for the Breast data set, and from
22.40% to 8.98% in the Wine dataset. An exception
to the previous observations is the Diabetes data set,
in which the error rate after cluster pruning (38.16%)
remains very similar to the original missclassification
rate(40.10%) - note that, for 2 clusters as in the case
of the Diabetes data, the worst possible error rate that
can be observed is of 50%. Any error rate larger than
50% is not observed as it just produces an inversion of
the cluster labels. In other words, the original error in
the diabetes data set implies almost a roughly uniform
distribution of patterns from any of the two underly-
ing classes in the extracted clusters. This fact is also
evidenced by the NMI score 0.012. In consequence,
the error rate is roughly the same after cluster prun-
ing, and the removal of patterns by means of cluster
pruning algorithm is just as efficient as removing the
same amount of patterns at random.

7 SIMULATIONS AND RESULTS

In the experimental setting, SVMs have been used as
the baseline classifier. First, each data set has been

5note that the cluster partitions obtained in this experi-
ments comprise all instances of the data sets (without prior
partitions into test/training).
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Table 1: Some details about the cluster pruning approach in the Iris, Wine, Breast cancer, Diabetes, pendig and Seven
Gaussians data set.

Data Set
Silhouette % Removed

Error 1 (%) Error 2 (%) NMI 1 NMI 2
thresholds patterns

Iris [0.5 0.3 0.4] 17.33% 10.66 % 4.03% 0.758 0.888
Wine [0.2 0.14 0.24] 22.40 % 8.98 % 0.72% 0.783 0.967
Breast [0.5 0.2] 11.56 % 4.09 % 0.99% 0.741 0.910

Diabetes [0.5 0.1] 16.35 % 40.10% 38.16% 0.012 0.022
[0.2 0.3 0.2 0.2

Pendig 0.25 0.2 0.15 0.15 20.10 % 31.93% 21.22% 0.701 0.796
0.25 0.2]

Seven [0.4 0.5 0.4 0.4
Gaussians 0.4 0.4 0.4] 11.77 % 0.27% % 0.02% 0.944 0.993

divided into two training (∼ 90%) and test (∼ 10%)
subsets. In order to avoid possible biases of a single
test set or labeled seed, such partition of the data set
into a training and test portions has been randomly
repeated to generate 20 different partitions. Also,
for each one of these partitions, 20 different random
seeds of labeled prototypes (n labels /category) have
been selected. In total, 400 different prototype seeds
(20x20) have been obtained. In the experiments, only
prototype labels are assumed to be known a-priory.
No other class label knowledge has been applied to
any of the algorithm stages. Each prototype seed has
been used as the availabe training set for the super-
vised SVM. In the semi-supervised approach, these
labeled prototype seeds have been used to trigger the
automatic cluster labeling.

Both supervised and semi-supervised SVM clas-
sifiers have been evaluated on an accuracy basis, con-
sidering different number of labeled prototypes (sam-
ples) per category, fromn = 1 to nmax= 30. The ac-
curacy results obtained on the different data sets are
shown in Figures 1 and 2. In particular, left plots are
referred to the supervised and the semi-supervised ap-
proach without cluster pruning, while right plots are
referred to the semi-supervised approaches by incor-
porating the cluster pruning approach.

Note that the right and left plots are obtained from
different experiments (in each experiment a differ-
ent labeled seed is involved) so that the mean ac-
curacy values of the supervised approach in left and
right plots can slightly differ. In all cases, horizontal
axes are referred to the sizes of the initial prototype
seeds, whereas vertical axes indicate the mean accu-
racy scores, averaged over the 400 prototype initiali-
sations.

As it can be observed in Figures 1 and 2, the mean
accuracy curves of the semi-supervised algorithm are
roughly constant or slowly increasing with the labeled
set size. Certain random variations can be observed,

since the experiment outcomes for different seed sizes
are referred to different random prototype seeds (note,
however, that for each labeled set size, both super-
vised and semi-supervised outcomes have been simul-
taneously obtained with identical sets of prototypes,
so that their respective accuracy curves can be com-
pared). In contrast, accuracy curves of the supervised
approach show stronger increasing trends with the la-
beled set sizes. In the Seven Gaussians, Iris, Pendig,
Wine and Breast Cancer data sets, the mean accuracy
curves for the supervised and semi-supervised algo-
rithms intersect at certain labeled set sizes,n′. For
smaller labeled seed sizes(n< n′), the training “infor-
mation” available in the augmented labeled sets (af-
ter cluster labeling) is clearly superior than the the
small labeled seeds. Therefore, although the aug-
mented labels are not exempt from misclassifications
due to clustering errors, higher prediction accuracies
are achieved by the semi-supervised approach with re-
spect to the supervised classifier. For(n ≥ n′), the
information in the increasing labeled seeds compen-
sates for the missclassification errors present in the
augmented sets and thus the supervised classifier out-
performs the semi-supervised approach. As shown in
the previous section, these errors present in the aug-
mented data sets can be notably reduced by means
of cluster pruning. In consequence, an improvement
in the prediction accuracies achieved by the semi-
supervised algorithm is generally observed by incor-
porating the cluster-pruning algorithm. Note that the
values ofn shown in the plots range fromn = 0 to
values slightly larger than the respective intersection
pointsn′.

Unlike the accuracy results observed in the Seven
Gaussians, Iris, Pendig, Wine and Breast Cancer data
sets, a degradation in the semi-supervised classifica-
tion performance with respect to the supervised clas-
sifier is observed in the Diabetes data set, regard-
less of the initial labeled seed sizes. This observa-
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Figure 1: Mean accuracy curves obtain by the supervised (blue curves) and semi-supervised (red curves)classifiers. Left plots
are referred to the basic semi-supervised approach, while right plots are obtained with the extension of the semi-supervised
approach by means of cluster pruning.

.

tion is strictly associated to the NMI scores of the
extracted clusters presented in the previous section
(NMI=0.012), which corresponds to a missclassifica-
tion rate of 40.10%. This means that almost no infor-
mation concerning class labels is present in the aug-
mented data sets used to train the SVM models. As a
consequence, the semi-supervised performance on the
diabetes data set is thus comparable to the a classifier
which just performs random predictions, as it corre-
sponds to the use of “unlabeled data alone” (Castelli
and Cover, 1995).

8 CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper, a semi-supervised approach has been
presented based on the cluster-and-label paradigm.
In contrast to previous works in the semi-supervised
classification literature, in which labels are commonly
integrated in the clustering process, in this work,
the cluster and labeling processes are independent
from each other. First, a conventional unsupervised
clustering algorithm, the partitioning around medoids
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Figure 2: Mean accuracy curves obtain by the supervised (blue curves) and semi-supervised (red curves)classifiers.

.

(PAM) (Kaufmann and Rousseeuw, 1990) is used to
obtain a cluster partition. Then, the output cluster par-
tition, as well a small set of labeled prototypes (also
referred to as labeled seeds) are used to decide the op-
timum cluster labeling given the labeled seed. The
cluster labelling problem has been formulated as a
typical assingment optimisation problem, whose so-
lution is obtained by means of the Hungarian algo-
rithm. Experimental results have shown significant
improvements in the classification accuracy for mini-
mum labeled sets, in such data sets where the under-
lying classes can be appropriately captured by means

of unsupervised clustering.
In addition, an optimisation of the semi-

supervised algorithm has been also developed by dis-
carding the patterns clustered with small silhouette
scores. Thereby, it has been shown that the quality
of the pruned clusters can be improved, as significant
reductions of the missclassification errors present in
the clustered data are achieved through the removal
of relatively small amounts of patterns from the clus-
ters.

Future work is to investigate other possible alter-
natives for the definition of the cost matrix used by the
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Hungarian algorithm. For example, probabilistic def-
inition of the cost matrix by estimating class-cluster
probabilities given the labeled seeds.

A further issue to be analysed is the choice of the
number of clustersk, to be larger than the number
of predefined categories. We believe such an strat-
egy may provide better classification performances -
specially for larger numbers of categories - as clus-
ters can be more “specified” (lower Entropy values)
with members of one category. In such case, the clus-
ter sizes should be also taken into account for the
definition of labeling costs. Moreover, this strategy
would result in rectangular (non-square) cost matri-
ces for which the Hungarian algorithm does not apply.
A suitable alternative would be to solve the labeling
problem given the cost matrices by means of genetic
algorithms.
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