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Abstract: Solving a CSP (Constraint Satisfaction Problem) is NP-Complete in general. However, there are various
classes of CSPs that can be solved in polynomial time. Some of them can be identified by analyzing their
structure. It is theoretically well established that a tree (or hypertree) structured CSP can be solved in a
backtrack-free way leading to tractability. Different methods exist for converting CSPs in a tree (or hypertree)
structured representation. Among these methodsHypertree Decompositionhas been proved to be the most
general one for non-binary CSPs. Unfortunately, in spite of its good theoretical bound, the unique algorithm
for solving CSP from its hypertree structure is inefficient in practice due to its memory explosion. To overcome
this problem, we propose in this paper a new approach exploiting aGeneralized Hypertree Decomposition.
We present the so called HDDBT algorithm (Dual BackTracking algorithm guided by an order induced by
a generalized Hypertree Decomposition). Different heuristics and implementations are presented showing its
practical interest.

1 INTRODUCTION

Many important real world problems can be formu-
lated as Constraint Satisfaction Problems (CSPs). The
most usual complete method for solving CSPs is
based on a backtracking search. This approach has an
exponential worst-case time complexity ofO(m.dn)
for a CSP instance withm the number of constraints,
n the number of variables andd the largest size of
variable domains. Solving a CSP is NP-Complete
in general but there are various classes of CSPs that
can be solved in polynomial time. Freuder (Freuder,
1982) proved that a tree-structured CSP can be solved
efficiently and many efforts have been made to de-
fine tree-like decomposition methods that lead to
tractability. Methods deriving from the Database area
have been successfully used to characterize some new
tractable classes (Jeavons et al., 1994; Gyssens et al.,
1994; Gottlob et al., 2000; Gottlob et al., 2005). Their
main common principle is to decompose the CSP into

a number of subproblems organized in a tree or an hy-
pertree structure. These subproblems are then solved
independently and the solutions are propagated in a
backtrack-free manner to solve the initial CSP as de-
scribed in (Dechter and Pearl, 1989). Numerous other
decomposition methods have been proposed, to cite
some of the most important ones: biconnected com-
ponents (Freuder, 1982), hinge decomposition com-
bined with tree clustering (Gyssens et al., 1994) and
spread-cut decomposition (David Cohen, 2005). A
more recent work (Greco and Scarcello, 2010) pro-
posed a deep study on different versions of structural
decompositions deriving from binary representations
of general (non-binary) CSPs. This study gives a the-
oretical comparison of structural decompositions on
binary representations with direct non-binary ones.
All these methods are characterized by their compu-
tational complexity in terms of the tree (resp. hyper-
tree) width they generate. Among them Gottlob et
al. (Gottlob et al., 2000) have shown the hypertree
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decomposition dominates all the other structural de-
composition methods excepted the methods recently
introduced in (Grohe and Marx, 2006).

Most of works on structural decompositions are
purely theoretical to define new general tractable
classes. However, the main drawback of these ap-
proaches from a practical viewpoint is the memory
space explosion due to the expression of relations as-
sociated to constraints by tables and the storage of all
the solutions resulting from join operations as well.
The representation of relations by tables is adequate
for the Database processing using auxiliary memory
disks to save all the relations, but is not realistic for
solving a CSP which requires to save all the structure
in RAM. This is the main reason why the first basic
algorithm (Gottlob et al., 2001) proposed in the liter-
ature to solve CSP with an hypertree is inefficient in
practice. To use more efficiently the structural decom-
position in the search algorithm, thejoin and semi-
join operationshave to be discarded. This idea has
been introduced by different researchers.

In (Pang and Goodwin, 1997; Pang and Goodwin,
2003) Pang et al. have proposed aw-CBDT algo-
rithm combining both merits of Constraint-Directed
Backtracking and structural decompositions, but the
authors do not consider optimal structural decom-
positions. Jegou et al. (Jégou and Terrioux, 2003)
have introduced the successfull method called BTD
(Backtracking with Tree Decomposition) which is an
enumerative search algorithm guided by some pre-
established order induced by a tree decomposition.
This paper goes forward in the same direction to solve
non-binary CSPs directly using efficiently hypertree
decomposition.

We propose an alternative approach to BTD called
HD DBT for Dual BackTracking algorithm guided
by an order induced by an Hypertree Decomposition.
The main idea of this approach is that search will be
guided for the choice of the partial solution by the hy-
pertree structure. HDDBT is more adapted to solve
non-binary CSPs represented as hypergraphs. Given
a CSP and its hypergraph representation, HDDBT
computes one Hypertree Decomposition and it looks
for a solution by using a dual backtracking search al-
gorithm. We propose and compare different heuristics
to achieve “the best” depth-first traversal of the hyper-
tree decomposition wrt. CSP solving complexity. The
hypertree decomposition properties make the general-
isation of BTD to HDDBT non obvious. Informally,
HD DBT is guided by an order on theclusters of con-
straintsand not on the clusters of variables while (as
BTD) the connectivity property concerns the clusters
of variables. Moreover BTD is based on a tree decom-
position which is complete while HDDBT is based

on hypertree decomposition which is not. Thus be-
fore solving a CSP using an hypertree decomposition
we have to complete the resulting hypertree.

The paper is organized as follows: section 2 gives
the preliminary and necessary notions on CSP and
decomposition methods with a special focus on the
hypertree decomposition which is the most general
one. Section 3 presents the basic algorithm exploit-
ing an hypertree decomposition to solve CSPs. Sec-
tion 4 presents our new HDDBT approach. Sec-
tion 5 gives the first experimental results of HDDBT
compared with the basic algorithm proposed in (Got-
tlob et al., 2001). Then we present an improved
HD DBT+FC implementation together with different
heuristics guiding the resolution. Finally, Section 6
gives a conclusion.

2 PRELIMINARIES

In this section we recall the basic definitions of con-
straint satisfaction problems, hypergraphs, hypertree
and generalized hypertree decompositions.

2.1 Constraint Satisfaction Problems

The notion of Constraint Satisfaction Problems (CSP)
was formally defined by U. Montanari (Montanari,
1974).

Definition 1 (Constraint Satisfaction Problem). A
CSP is defined as a triple P=< X,D,C > where :
X = {x1,x2, ...,xn} is a set of n variables.
D = {d1,d2, ...,dn} is a set of finite domains; each
variable xi takes its value in its domain di .
C = {c1,c2, ...,cm} is a set of m constraints. Each
constraint ci is a pair (S(ci),R(ci)) where S(ci) ⊆ X,
is a subset of variables, called the scope of ci and
R(ci) ⊆ ∏xk∈S(ci) dk is the constraint relation, that
specifies the legal combinations of values.

A solution to a CSP is an assignment of values
to all the variables such that all the constraints
are satisfied. Solving a CSP means to find a so-
lution if it exists. Binary CSPs are those defined
where each constraint involves only two variables
∀i ∈ 1. . .m : |S(ci)|= 2.

In order to study the structural properties of a
CSP, we need to present the following definitions.
For more detailed descriptions see eg. (Dechter,
2003), (Gottlob et al., 2001) and (Gottlob et al.,
2002).
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Definition 2 (Hypergraph). A hypergraph is a struc-
ture H =< V,E > that consists of a set of vertices
V and a set of hyperedges E where each hyperedge
h ∈ E is a subset of vertices of V . The hyperedges
differ from edges of graphs in that they may connect
more than two vertices.

The structure of a CSPP=< X,D,C> is entierely
captured by its associated hypergraphH =< V,E >

where the set of verticesV is the set of variablesX
and the set of hyperedgesE corresponds to the set of
constraintsC. For any subset of hyperedgesK ⊆ E
let be vars(K) =

⋃
e∈K e the set of the variables

occuring in the edges ofK. For any subsetL ⊆ V
let beedgevars(L) = vars({e|e∈ E,e∩ L 6= /0}) the
set of all variables occuring in any edge intersectingL.

Definition 3 (Hypertree). Let H =< V,E > be a
hypergraph. A hypertree for hypergraphH is a triple
< T,χ,λ > where T= (N,B) (the sets of nodes and
branche-edges) is a rooted tree andχ andλ are two
labelling functions on nodes of T . The functionsχ
and λ map each node p∈ N on two setsχ(p) ⊆ V
andλ(p)⊆ E.

A tree is a pair< T,χ > where T= (N,B) is a
rooted tree andχ is a labelling function as previously
defined. Tp denotes the subtree of T rooted at node p.

Definition 4 (Hypertree decomposition). A hypertree
decomposition of a hypergraphH =<V,E >, is a hy-
pertree< T,χ,λ > which satisfies the following con-
ditions:

1. For each (hyper)edge h∈ E, there exists p∈ N
such that vars(h)⊆ χ(p). We say that p covers h.

2. For each vertex v∈ V, the set{p ∈ N|v ∈ χ(p)}
induces a (connected) subtree of T.

3. For each node p∈ N,χ(p)⊆ vars(λ(p)).
4. For each node p∈ N, vars(λ(p))

⋂
χ(Tp)⊆ χ(p)

The width of a hypertree decomposition
< T,χ,λ > is maxp∈N|λ(p)|. The hypertree-
width htw(H ) of a hypergraphH is the minimum
width over all its possible hypertree decompositions.

Definition 5 (Generalized hypertree decomposition).
A generalized hypertree decomposition is a hypertree
which satisfies the first three conditions of the hyper-
tree decomposition (see Definition 4).

The width of a generalized hypertree decompo-
sition < T,χ,λ > is maxp∈N|λ(p)|. The generalized
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Figure 1: A hypergraph and one of its hypertree decompo-
sition.

hypertree-width ghw(H ) of a hypergraphH is the
minimum width over all its possible generalized
hypertree decompositions.

Definition 6. A hyperedge h of a hypergraph
H =<V,E > is strongly covered in HD=< T,χ,λ >

if there exists p∈ N such that all the vertices in h are
contained inχ(p) and h∈ λ(p).

Definition 7. A hypertree decomposition< T,χ,λ >

of a hypergraphH =<V,E > is a complete hypertree
decomposition if every hyperedge h ofH =< V,E >

is strongly covered in HD=< T,χ,λ >.

2.2 Computing an Hypertree
Decomposition

In this section we briefly present the two main ap-
proaches proposed in the literature to compute hy-
pertree decompositions: the exact methods and the
heuristics ones.

2.2.1 Exact Methods

Given a hypergraphH =< V,E >, exact algorithms
aim at finding a hypertree decomposition with width
w less than or equal to a constantk, if such a de-
composition exists. The first exact algorithm named
opt-k-decompfor the generation of an optimal hy-
pertree decomposition is due to Gottlob et al. (Got-
tlob et al., 1999). This algorithm builds a hyper-
tree decomposition in two steps: it finds if a hyper-
graphH =< V,E > has a hypertree decomposition
HD =< T,χ,λ > with width less than or equal to a
constantk. If it is the case it finds a hypertree decom-
position of smallest possible width. The algorithm
opt-k-decompruns inO(m2kV2) wherem is the num-
ber of hyperedges, V is the number of vertices andk
is a constant.

Among the number of improvements toopt-
k-decompwe can citeRed-k-decomp(Harvey and
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Ghose, 2003) and the Subbarayan and Anderson al-
gorithm (Sathiamoorthy and Andersen, 2007) which
is a backtracking version ofopt-k-decomp. How-
ever these exact methods have an important drawback
which is the huge amount of memory space needed
and the bad running time resulting in inefficiency in
practice for large instances. To overcome these lim-
itations some heuristics have been proposed to com-
pute hypertree decompositions.

2.2.2 Heuristics

Heuristics aim at finding a hypertree decomposition
with the smallest possible width (tree-width) but with-
out any theoretical guaranty to succeed. There are
several heuristics to compute a hypertree decomposi-
tion. Korimort (Korimort, 2003) proposed one heuris-
tics based on the vertices connectivity of the given hy-
pergraph. Samer (Samer, 2005) explored the use of
branch decomposition for constructing hypertree de-
compositions. Dermaku et al. (Dermaku et al., 2005)
proposed the following heuristics: BE (Bucket Elim-
ination), DBE (Dual Bucket Elimination) and Hyper-
graph partitioning. Musliu and Schafhauser (Musliu
and Schafhauser, 2005) explored the use of genetic al-
gorithms for generalized hypertree decompositions.
We outline the two successful BE and DBE heuristics
for generating hypertree decompositions.

The Bucket Elimination (BE) Heuristics
(Dechter, 1999) was successfully used to compute
a tree decomposition of a given graph (or a primal
graph of a hypergraph). BE has been extended by
Dermaku et al. (Dermaku et al., 2005) to compute
a hypertree decomposition or more precisely a
generalized hypertree decomposition. The simple
idea behind this extension derives from the fact that
a generalized hypertree decomposition satisfies the
properties of a tree decomposition. Consequently, for
computing a generalized hypertree decomposition,
BE proceeds as follows. First, it builds a tree
decomposition using (basic) BE. Then, it creates
the λ− labels for each node of this tree in order to
satisfy the third condition of generalized hypertree
decomposition according to theDefinition5. This is
done greedily by attempting to cover the variables
of each node by hyperedges. In practice the BE
heuristics requires a good vertices ordering to be
efficient.

The Dual Bucket Elimination (DBE) Heuris-
tics was proposed by Dermaku et al. (Dermaku et al.,
2005). DBE simply applies the BE heuristics on the
dual graph of the hypergraph. The idea behind using
the dual graph structure instead of the primal graph

is that BE minimizes theχ− labelswhile the width
of a hypertree decomposition is determined by the
λ− labels. This is exactly what is done when apply-
ing BE to the dual graph of the hypergraph.

3 SOLVING CSP USING AN
HYPERTREE
DECOMPOSITION

To solve any CSP using a generalized hypertree de-
composition, the first step consists in computing the
generalized hypertree decomposition either with an
exact or with an heuristic method. The next step trans-
forms the generalized hypertree decomposition into
a complete one in order to cover each constraint by
at least one node of the hypertree. Consequently the
complete generalized hypertree decomposition may
be seen as a join tree of an equivalent (wrt. its so-
lutions) acyclic CSP. Each node of the join tree repre-
sents a subproblem of the new acyclic CSP. The third
step of the resolution is described in algorithm 1 due
to Gottlob et al. (Gottlob et al., 2001). In algorithm 1,
each subproblem is solved independently and it can
be done by a parallel algorithm. The Acyclic solving
algorithm is used for finding a complete consistent so-
lution of the initial CSP.

Algoritm 1: Gottlob Algorithm (Gottlob et al., 2001).

Input : a complete generalized hypertree
decomposition< T,χ,λ > associated to a
given CSP.

Output : a solutionA of the CSP if it is satisfiable
begin

σ = {n1,n2, . . . ,nm} a node ordering withn1 the
root of the hypertree and each node precedes all
its sons inσ;
foreach p a node inσ do

Rp = (⊲⊳Cj∈λ(p) Rj)[χ(p)] ;
end
for i = m to 2 do

Let v j the father ofvi in σ ;
Rj = Rj ∝ Ri ;

end
for i = 2 to m do

Build a solutionA by choosing a tupleRi
compatible with all the previous assignments

end
return A ;

end

Although this algorithm is theoretically interest-
ing, its practical interest has unfortunately not yet
been proved. The main drawback of this algorithm
is its space complexity. Indeed a lot of memory is
needed to save the intermediate results of join and
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semi-join operations. Saving all the intermediate re-
sults is useful only when we are looking for all the
solutions. Therefore if we look for a single solution,
this approach proves to be inefficient and much mem-
ory consuming. In this case, an enumerative approach
should be more appropriate. To take into account
both the advantages of decomposition methods and
enumerative search techniques Jégou et al. proposed
in (Jégou and Terrioux, 2003) an original and success-
ful method called BTD (BackTrack algorithm guided
by an order induced from a Tree Decomposition). In
this work we propose a new approach deriving from
the BTD idea to use a generalized hypertree decom-
position. The new algorithm called HDDBT (Dual
Backtracking Algorithm guided by an order induced
from a Hypertree Decomposition) is detailed in next
Section.

4 THE NEW METHOD HD DBT

4.1 Informal Presentation

We mentioned in the previous section the main draw-
back of the basic algorithm proposed by Gottlob et
al. (Gottlob et al., 2001) for solving CSP using an
hypertree decomposition. The memory space explo-
sion due to the join operations (on partial solutions)
are unnecessary when only one solution is required.
In this work, we propose a new approach for solv-
ing CSP exploiting the properties of Generalized hy-
pertree decomposition together with the advantages
of the enumerative search algorithms. Our approach
called HDDBT for Dual BackTrack using a Gener-
alized Hypertree Decomposition, is an enumerative
search algorithm guided by a partial order on the clus-
ters of constraints derived from the Generalized hy-
pertree decomposition. HDDBT is called “Dual” be-
cause it works directly on tuples in the relations. In
other words, HDDBT looks for a solution by assign-
ing simultaneously a set of variables instead of one
single variable like in the classical algorithms. The
assignment of this set of variables represents a par-
tial solution of the whole problem and corresponds
to a solution of one node of the hypertree. A so-
lution of the CSP by HDDBT can be expressed as
(⊲⊳i=1...N si)[x1x2 . . .xn] where the symbol⊲⊳ corre-
sponds to the join operator,n is the number of vari-
ables of the CSP,N is the number of nodes of the hy-
pertree andsi is a solution of a given nodeNi . Clearly,
the performance of HDDBT is highly dependent on
the number of nodes and on the order in which the
nodes are explored, particularly the choice of the first
root node.

4.2 Formal Presentation of HDDBT

The HD DBT approach is formally described by al-
gorithm 2. It considers as input a complete hypertree
decomposition according to Definition 7 and it con-
sists of the following steps:

Algoritm 2: Generic Procedure HDDBT.

Input : a complete hypertree decomposition
H D =< T,χ,λ > associated to a given CSP.

Output : a solutionA of the CSP if it is satisfiable
begin

ChooseRoot ( H D , root ) ;
σ←− Induced Order ( H D , root ) ;
cn←− root
while cn 6= /0 do

consistent←− FALSE ;
while ¬ consistentdo

cs← Resolution( λ (cn),χ(cn));
if Compatible(cs,sol(father(cn))then

A ← A ∪{xi ← vi : ∀xi ∈ χ(cn)};
consistent← TRUE ;

end
end
if ¬ consistentthen

A ← A−{xi ← vi : ∀xi ∈ χ(cn)} ;
cn← f ather(cn) ;

end
else

cn← succ(cn) ;
end

end
return A ;

end

Step1 (Choice of the Root):the choice of the root
made by the procedureChooseRoot is crucial
for the performance of HDDBT. As the resulting
hypertree decomposition of a CSP is not a rooted
tree, any node could be choosen as root. The
hypertree decomposition quality depends both on
the choice of the root and on the induced nodes
ordering to be visited. In section 5 we present
different heuristics for choosing the root.
Figure 2 shows two different hypertree decompo-
sitions (nodes orderings) of the same hypergraph
given in Figure 1 induced by different choices of
the root. The left one is the hypertree given by
the BE heuristic with noden1 as root and the the
right one considers arbitrarily the noden4 as root.

Step2 (The Nodes Order): the choice of the root
node induces a partial orderingσ on the other
nodes. This ordering built from the hypertree
decomposition and the root using the proce-
dure Induced Order respects the connectivity

ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence

150



n5

n1

n2 n3

n4

n4

n3

n2

{g, i, k}, {c5}

{g, i, k}, {c5}

{k, j, l}, {c6}

{f, g, h}, {c4} {f, g, h}, {c4}

{a, d, f, c, e, h}, {c2, c3}

{a, d, f, c, e, h}, {c2, c3}

{a, b, c}, {c1}

n5

n1

{a, b, c}, {c1}

{k, j, l}, {c6}

Figure 2: Two different hypertree decompositions (nodes
orderings) for a same hypergraph.

property of the hypertree decomposition (Def-
inition 4). For both hypertree decompositions
given by Figure 2, we can associate the following
depth-first orderings:σ1 = n1n2n3n4n5 for the
left andσ2 = n4n3n1n2n5 for the right hypertrees.

Step3 (Looking for One Solution): this step is
an enumerative search algorithm guided by the
orderingσ. For each current nodecn with label
(λ(cn),χ(cn)) in σ, HD DBT looks for a partial
solution by calling the procedureResolution.
The basic HDDBT algorithm is the generic one
using the generic BackTrack algorithm for the
resolution but it can be easily generalized to FC,
MAC, etc.

Proposition 1. HD DBT is correct, complete and it
terminates .

The proof is straightforward.

Proposition 2. The worst time complexity of
HD DBT is in O(|r|w×N) where r is the size of the
largest relation, w is the hypertree width and N is the
number of nodes inσ.

Proof. In the worst case HDDBT visits all the N
nodes of the tree and at each node it checks in worst
caseO(|r|w) tuples.

Proposition 3. The space complexity of HDDBT is
in O(N) where N is the number of nodes of the hyper-
tree.

Proof. Let t be the size of the largest scope, w the
width of the hypertree decomposition and N the num-
ber of the nodes of the hypertree. Then we have to
save in the worst case the numbert ∗w∗N values lead-
ing to a linear complexity wrt. N.

4.3 How to Complete HTD

As already mentioned in the description of HDDBT,
the resulting hypertree decomposition obtained by

BE or any other method is not necessarily com-
plete. Before solving the CSP, the first step con-
sists in completing the hypertree. In (Gottlob et al.,
2001), Gottlob et al. proposed a procedure to com-
plete one hypertree decomposition by adding for each
not strongly covered constraintci a new node with la-
bel{ci},{var(ci)} as a son of a noden j verifying the
conditionvar(ci) ⊆ χ(n j). The idea behind this pro-
cedure is to not increase the hypertree width while the
number of nodes of the hypertree obviously increases.
We experimented another way to complete the hyper-
tree decomposition. Instead of adding a new node, we
add the constraintci not strongly covered in theλ of
the noden j satisfying the conditionvar(ci) ⊆ χ(n j).
This makes the hypertree width increases, while the
number of nodes of the hypertree remains the same.

Let be a CSP defined as the following set of con-
straintsC = {c1,c2,c3,c4,c5,c6,c7,c8} . Figure 3(a)
shows one of its hypertree decompositions. The vari-
ables are deliberately omitted here because they are
not useful for this example. This hypertree decompo-
sition is not complete because the constraintsc4 and
c7 are not strongly covered. Figure 3(b) corresponds
to its completion by using the procedure of Gottlob.
Two new nodesn5 and n6 are created for strongly
covering the constraintsc4 andc7 respectively. Fig-
ure 3(c) illustrates its completion by using our proce-
dure. No new node has been created but the nodesn1
andn3 are modified. In the noden1 we add the con-
straintc4 to its λ and in the noden3 we add the con-
straintc7 to itsλ. We have obviously assumed that the
variables of the non strongly covered constraintsc4
andc7 are present in theχ(n1) andχ(n3) respectively.
Figure 3(d) is another way to treat the non-covered
constraints. As we can observe, we keep the incom-
plete hypertree decomposition in one hand and in an-
other hand we consider a cluster of all non-covered
constraints. This third idea has not been explored in
this work.
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a)  HTD

d) Complete HTD 3

Figure 3: Different ways to complete a hypertree decompo-
sition HTD.
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5 EXPERIMENTAL RESULTS

In this section, we present and analyze some of the ex-
periments we perform to validate our approach from
a practical point of view.

5.1 The Experimental Considerations

We implemented the different versions of our ap-
proach using C++ language. The experiments were
performed on a 1,7 GHZ PC with 2 GO of RAM run-
ning under Linux Fedora. Our tests have been ex-
ecuted on benchmarks downloaded from the follow-
ing URL Benchmarks site1. We used the BE heuris-
tics (Dermaku et al., 2005) to compute the general-
ized hypertree decomposition of any CSP. BE is well
known to be the best one giving a nearly optimal gen-
eralized hypertree decomposition within a reasonable
CPU time. In the sequel, we experiment and compare
our approach in different ways:

• subsection 5.2 compares HDDBT with the basic
and unique resolution Algorithm 1 due to Gottlob
et al. (Gottlob et al., 2001) using an hypertree de-
composition (see Section 3).

• In subsection 5.3, we compare HDDBT with
(HD DBT + FC) algorithm which is the Forward
Checking version of HDDBT, in order to mea-
sure the gain offered by the filtering operations.

• In subsection 5.4, we study the behavior of differ-
ent heuristics for choosing the root.

• In subsection 5.5, we study different heuristics for
choosing the next son node to be visited.

• Finally in subsection 5.6, we compare HDDBT
with BTD (Jégou and Terrioux, 2003).

In all the experiments, the resolution time includes the
time for building the generalized hypertree decompo-
sition using the BE heuristic.

5.2 Comparing HD DBT with Gottlob
et al. 2001 Algorithm

Table 1 presents the results of HDDBT compared
with the first proposed algorithm to solve CSP using
an hypertree decomposition. HDDBT outperforms
the basic approach of Gottlob (Gottlob et al., 2001)
for all the considered benchmarks (exceptedhanoi−
6−ext). The row Got. corresponds to the CPU time
obtained with Gottlob algorithm. Unfortunately the
naive preliminary version of our approach was also
limited when large instances of CSP were considered.

1http://www.cril.univ-artois.fr/lecoutre/research/
benchmarks

Table 1: HDDBT vs. Gottlob approach.

Problem Size Time (in seconds)
|V| |E| HD DBT Got.

Renault1 101 134 2 3
series−6−ext 11 30 0,04 2,18
series−7−ext 12 41 0,1 /
domino−100−100−ext 100 100 0,12 2,59
domino−100−200−ext 100 100 0,30 18,37
domino−100−300−ext 100 100 0,4211 60
hanoi−5−ext 30 29 0,55 0,88
hanoi−6−ext 62 61 120 14
hanoi−7−ext 126 125 58 59
Lang f ord 8 32 0,20 2,52
geom−30a−4−ext 30 81 0,1 0,1
pigeons−7−ext 7 21 2 26

5.3 Comparing HD DBT with HD DBT
+ FC

To improve the HDDBT approach, we implemented
the algorithm called ( HDDBT + FC). As the clas-
sical FC algorithm does, this algorithm consists in
adding a filtering step at each node of the hypertree.
When we are cheking a tuplet, solution of a given
subproblem at nodei, for each descendant nodej of
i we remove from each relationRk corresponding to
a constraintCk (whereCk ∈ λ( j)) the tuples inconsis-
tent with t. This filtering step is crucial thanks to the
connectivity property of the hypertree decomposition.

Table 2 shows the gain obtained by (HDDBT +
FC) over HDDBT. Clearly the filtering always im-
proves considerably HDDBT. Moreover HDDBT +
FC can find a solution when HDDBT fails. Thus in
the following experiments we will consider only this
improved version.

Table 2: HDDBT vs. HD DBT + FC.

Problems Size Time(s)
|V| |E| HD DBT HD DBT + FC

series−6−ext 11 30 1,54 0,09
series−7−ext 12 41 2,02 0,08
domino−100−100−ext 100 100 0,20 0,125
domino−100−200−ext 100 100 5,90 0,24
domino−100−300−ext 100 100 12,77 0,35
lang f ord−2−4−ext 8 32 0,54 0,03
geom−30a−4−ext 30 81 > 20 0,03
pigeons−7−ext 7 21 > 20 4,34
haystacks−06−ext 36 96 > 20 3,33
Renault1 101 134 3,40 3,38
Renault2 101 113 / 8,87
Renault−Modi f ied−6 111 147 / 32,07
Renault−Modi f ied−24 111 159 / 21,25
Renault−Modi f ied−30 111 154 / 24,28
Renault−Modi f ied−33 111 154 / 25,42
Renault−Modi f ied−47 108 149 / 19,64

Notice here that we implemented two methods to
complete the hypertree decomposition (the Gottlob
approach and our method). Not surprinsingly, we ob-
served that our approach of completion is better than
Gottlob’s one when we consider the HDDBT algo-
rithm (without filtering), but when we used (HDDBT
+FC) the two approaches of completion are equiva-
lent.
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5.4 Heuristics to Choose the Root Node

To improve further the performance of HDDBT we
introduce different heuristics based on the way the
nodes of the hypertree are explored. The nodes are
traversed in a depth-first order from one given root.
But the choice of the root is not unique, and a ratio-
nal choice of the root may considerably improve the
overall performance of the resolution. For choosing
the root node, the three following methods may be
distinguished: structural, semantic and hybrid heuris-
tics.

Structural Heuristics depend on the size of the
clusters at each node. We will consider the fol-
lowing structural heuristics:

• LC (Largest Cluster): the node with the largest
number of constraints.
• SC (Smallest Cluster): the node with the small-

est number of constraints.
• LNS (Largest Number of Sons): the node with

the largest number of sons.
• LS (Largest Separator): the node with the

largest separator with one of its sons.

Semantic Heuristicsexploit the data properties (the
size of relations, the density of nodes, the hard-
ness of constraints . . . ). Here we consider that we
have already computed the number of solutions of
any nodei denoted byNbsol(i). This step is not
expensive thanks to the small number of variables
at each node. We will consider the following se-
mantic heuristics:

• MCN (Most Constrained Node): the node with
the smallest number of solutions.
• LCN (Least Constrained Node): the node with

the largest number of solutions.
• HN (Hardest Node): the “hardest node”.

Hardness of a node corresponds toNbsol
NbMax

where Nbsol is the exact number of solutions
and NbMax is the number of possible tuples
of a node (cartesian product of the variables
domains).

Hybrid Heuristics combine in different ways struc-
tural and semantic heuristics eg. HN & LNS , LG
& HN , HN & LC heuristics.

Table 3 shows the results for the different struc-
tural heuristics for the choice of the root. Recall this
choice induces an orderσ on the nodes and the row
BE corresponds to the order induced by BE. We re-
mark that the best orders (for the hardest problems of
the test) are the one returned by BE and SC.

Table 3: Comparing different structural orders.

Problems Order
BE LC SC LNS LS

series−6−ext 0,09 0,07 0,43 0,07 0,12
series−7−ext 0,08 3,48 3,18 3,5 0,96
domino−100−100−ext 0,125 0,14 0,49 0,13 0,22
domino−100−200−ext 0,24 0,23 0,27 0,23 0,28
domino−100−300−ext 0,35 0,36 0,69 0,34 0,51
Lang f ord 0,03 0,31 0,91 8,73 1,02
geom−30a−4−ext 0,03 0,03 5 0,23 1,02
pigeons−7−ext 4,34 4,19 3,5 12 4,23
haystacks−06−ext 3,33 3,35 3,33 3,22 3,21
Renault1 3,38 3,02 4,41 3,03 3,31
Renault2 8,87 9,02 8,88 / /
Renault−Modi f ied−6 32,07 / 36,09 / /
Renault−Modi f ied−24 21,25 / 18,32 / /
Renault−Modi f ied−30 24,28 / 22,05 / /
Renault−Modi f ied−33 25,42 / 26,01 / /
Renault−Modi f ied−47 19,64 / 21,02 / /

Table 4 shows the results for the different semantic
heuristics for the choice of the root. We remark that
the better choice is given by the MCN heuristic.

Table 4: Comparing different semantic orders.

Problems Size Orders
|V| |E| MCN LCS HN

series−6−ext 11 30 0,10 0,38 0,43
series−7−ext 12 41 0,55 3,48 0,13
domino−100−100−ext 100 100 0,12 0,70 0,49
domino−100−200−ext 100 100 0,23 2,32 0,76
domino−100−300−ext 100 100 0,36 5,14 0,75
Lang f ord 8 32 0,14 0,36 0,09
geom−30a−4−ext 30 81 7 1,23 0,03
pigeons−7−ext 7 21 11 4,23 4,2
haystacks−06−xt 36 96 6,96 3,32 3,31
Renault1 101 134 3,03 3,02 3,04
Renault2 101 113 7,90 8,36 8,34
Renault−Modi f ied−6 111 147 22,07 / /
Renault−Modi f ied−24 111 159 19,04 / /
Renault−Modi f ied−30 111 154 28,02 / /
Renault−Modi f ied−33 111 154 27,03 / /
Renault−Modi f ied−47 108 149 12,02 / /

Finally, we combine the best structural heuristic
with the best semantic one resulting in BE with MCN
hybrid heuristic. The results are given in Table 5
showing that execution times are always better with
an hybridation of heuristics.

5.5 Heuristics for Choosing Son Nodes

In this section, we experiment different heuristics to
choose the best successor node (functionSuccof Al-
gorithm 2) to be solved from the sons of the current
node. We suppose here the root has been already cho-
sen and heuristics have only the choice for the first
son, and it may be considered statically or dynami-
cally.

• Static Choice: the first son to be chosen is the
one with the largest hypertree-width.

• Dynamic Choice:since the best strategy from the
static viewpoint is the one with the minimum of
number of tuples in its relations, we evaluate here
the impact of choosing the next son with the min-
imum number of tuples dynamically. Thus to be
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Table 5: Combining structural and semantic heuristics.

Problems Size Method

|V| |E| BE & MCN

series−6−ext 11 30 0,07

series−7−ext 12 41 0,06

domino−100−100−ext 100 100 0,10

domino−100−200−ext 100 100 0,20

domino−100−300−ext 100 100 0,30

Lang ford 8 32 0,04

geom−30a−4−ext 30 81 0,04

pigeons−7−ext 7 21 3,34

haystacks−06−ext 36 96 2,59

Renault1 101 134 3,38

Renault2 101 113 8,87

Renault−Modi f ied−6 111 147 22,07

Renault−Modi f ied−24 111 159 15,2

Renault−Modi f ied−30 111 154 18,28

Renault−Modi f ied−33 111 154 19,42

Renault−Modi f ied−47 108 149 16,64

consistent with this general strategy we adopt the
same heuristic for choosing the root.

Table 6 gives the results obtained with a static
choice of the successor node and Table 7 gives the
results obtained with a dynamic choice. We observe
here that dynamic choice are better thant the static
one.

Table 6: Static choice of the sons.

Problems Time(s)
BE LC SC LNS LS

series−6−ext 0,09 0,07 0,06 0,07 1,01
series−7−ext 0,10 12,48 3,18 11,50 9,80
domino−100−100−ext 0,12 0,14 0,49 0,132 0,09
domino−100−200−ext 0,24 0,23 0,27 0,23 0,27
domino−100−300−ext 0,35 0,36 0,69 0,34 0,34
haystacks6 3,33 3,35 4,01 3,22 3,29
Lang f ord2−4 0,03 0,51 0,05 9,73 1,02
geom−30a−4−ext 0,03 0,125 5 0,15 0,19
pigeons−7−ext 2,54 4,46 3,5 9,71 5,22
Renault1 3,26 3,63 3,35 3,25 3,32
Renault2 8,71 20 9,25 7,39 > 30
Renault−Modi f ied−6 21 18,07 / / /
Renault−Modi f ied−24 17,09 15,2 / / /
Renault−Modi f ied−30 22,11 28,02 / / /
Renault−Modi f ied−33 24,12 27,03 / / /
Renault−Modi f ied−47 13,01 12,02 / / /

5.6 Comparing with the BTD
Algorithm (J égou et al., 2009)

This section compares our results with the one ob-
tained by BTD for some benchmarks of the Modi-
fied Renault family in Table 8. Due to the fact that
two different machines are used to experiment BTD
and HDDBT (PC Pentium IV 3,4 Ghz for BTD, lap-
top HP Compact 6720 s, 1,7 Ghz for HDDBT) the
reported computational times in the row HDDBT
are normalized according to two benchmarks (Spe, ;
GeB, ). According to these benchmarks, the pentium
IV is 4,5 times faster than the HP Compact 6720s.

Table 7: Dynamic choice of the sons.

Problems Size Method

|V| |E| Dynamic MCN

series−6−ext 11 30 0,1

series−7−ext 12 41 0,86

domino−100−100−ext 100 100 0,10

domino−100−200−ext 100 100 0,20

domino−100−300−ext 100 100 0,30

Lang ford 8 32 0,9

geom−30a−4−ext 30 81 1,04

pigeons−7−ext 7 21 4,34

haystacks−06−ext 36 96 3,59

Renault1 101 134 3,38

Renault2 101 113 8,87

Renault−Modi f ied−6 111 147 13,07

Renault−Modi f ied−24 111 159 13,2

Renault−Modi f ied−30 111 154 17,28

Renault−Modi f ied−33 111 154 15,42

Renault−Modi f ied−47 108 149 14,64

The reported results for BTD are the best ones found
in (Jégou et al., 2009) and HDDBT present nearly
comparable results. But we have to mention this last
test is not very significative since the detailed imple-
mentation of our approach could be much improved
by using more adequate data structures and general
implementation optimization techniques such the one
used in BTD which is more mature. Notice that the
enumerative algorithms to solve CSP suffer to solve
the modified renault family of benchmarks2 because
these problems are much structured. Notice that the
symbol / in the table 8 means that we have no result
for the considered instance in (Jégou et al., 2009).

Table 8: BTDHMIN(HD) vs. HD DBT.

Problems Size Time(s)
|V| |E| HD DBT BTD HMIN(HD)

Renault−Modi f ied−4 111 147 16 /
Renault−Modi f ied−6 111 147 4,5 2,70
Renault−Modi f ied−9 111 147 10 /
Renault−Modi f ied−13 111 149 13 /
Renault−Modi f ied−17 111 149 22 3.41
Renault−Modi f ied−24 111 159 3, 7 7,67
Renault−Modi f ied−30 111 154 7, 2 8,25
Renault−Modi f ied−33 111 154 6, 5 /
Renault−Modi f ied−42 108 149 7 2,50
Renault−Modi f ied−47 108 149 3 80,25

6 CONCLUSIONS

In this paper we have presented HDDBT a new al-
gorithm exploiting Hypertree Decomposition to solve
non-binary Constraint Satisfaction Problems. This
algorithm clearly improves the first and basic Algo-
rithm 1 due to Gottlob et al. (Gottlob et al., 2001).

2http://www.cril.univ-artois.fr/lecoutre/research/
benchmarks
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This last one suffers from the memory explosion
problem and it is consequently inefficient face to large
instances of CSP. Even if HDDBT improves the ba-
sic approach, it is also limited to small structured in-
stances. To improve HDDBT we propose its For-
ward Checking version (HDDBT+FC) which clearly
improves the previous one as FC does for BT. More-
over we proposed and compared several strategies to
achieve the best depth-first traversal of the Hypertree
Decomposition. These strategies concern the choice
of the root, that is the first node and the order between
the sons of a given node to be visited by the algorithm.
The experimental results show that:

• the best choice of the root corresponds to the hard-
est node, meaning the node which mimizes the ra-
tio between the number of solutions and the max-
imal number of solutions;

• the best way to visit the sons of a given node cor-
responds to the dynamic heuristic based on the re-
maining tuples in their associated relations;

• combining the best heuristic for choosing the root
with a dynamic heuristic for choosing the next son
of a given node leads to appreciable results.

Finally we compare our approach with the BTD algo-
rithm (Jégou et al., 2009). From a theoretical point
of view the two approaches are similar in the sense
they are both enumerative algorithms exploiting some
structural decomposition. Our approach differs by
exploring in a dual manner an hypertree decompo-
sition instead of a tree decomposition. We compare
our HD DBT with the best BTD version on different
benchmarks showing HDDBT and BTD have com-
parable performance. To conclude notice that our ap-
proach can gained over with several improved data
structures and different technical optimizations that
we have not yet implemented.
As main perspectives, it would be interesting to ap-
ply HD DBT approach to other structural decompo-
sition methods and to improve the structural decom-
position by taking into account semantic properties of
the CSPs.
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