AN ADAPTIVE SELECTIVE ENSEMBLE FOR DATA STREAMS CLASSIFICATION

Valerio Grossi
Department of Pure and Applied Mathematics, University of Padova, via Trieste 63, Padova, Italy

Franco Turini
Department of Computer Science, University of Pisa, largo B. Pontecorvo 3, Pisa, Italy

Keywords: Data Mining, Data Streams Classification, Ensemble Classifier, Concept Drifting.

Abstract: The large diffusion of different technologies related to web applications, sensor networks and ubiquitous computing, has introduced new important challenges for the data mining community. The rising phenomenon of data streams introduces several requirements and constraints for a mining system. This paper analyses a set of requirements related to the data streams environment, and proposes a new adaptive method for data streams classification. The outlined system employs data aggregation techniques that, coupled with a selective ensemble approach, perform the classification task. The selective ensemble is managed with an adaptive behavior that dynamically updates the threshold value for enabling the classifiers. The system is explicitly conceived to satisfy these requirements even in the presence of concept drifting.

1 INTRODUCTION

The rapid diffusion of brand new technologies, such as smartphones, netbooks, sensor networks, related to communication services, web and safety applications, has introduced new challenges in data management and mining. In these scenarios data arrives online, at a time-varying rate creating the so-called data stream phenomenon. Conventional knowledge discovery tools cannot manage this overwhelming volume of data. The nature of data streams requires the use of new approaches, which involve at most one pass over the data, and try to keep track of time-evolving features, known as concept drifting.

Ensemble approaches are a popular solution for data streams classification (Bifet et al., 2009). In these methods, classification takes advantage of multiple classifiers, extracting new models from scratch and deleting the out-of-date ones continuously. In (Grossi and Turini, 2010; Grossi, 2009), it was stressed that the number of classifiers actually involved in the classification task cannot be constant through time. In the cited works, it was demonstrated that a selective ensemble which, based on current data distribution, dynamically calibrates the set of classifiers to use, provides a better performance than systems using a fixed set of classifiers constant through time. In our former approach, the selection of the models involved in the classification step was chosen by a fixed activation threshold. This choice is the right solution if it is possible to study a-priori what is the best value to assign to the threshold. Unfortunately, in many situations, this information is unavailable, since the stream data behaviour cannot be modeled. In several real domains, such as intrusion detection, data distribution can remain stable for a long time, changing radically when an attack occurs.

This work presents an evolution of the system outlined in (Grossi and Turini, 2010; Grossi, 2009). The new approach introduces a complete adaptive behavior in the management of the threshold required for the selection of the set of models actually involved in the classification. The main contribution of this work is to introduce an adaptive approach for varying the value of the model activation threshold through time, influencing the overall behaviour of the ensemble classifier, based on data change reaction. Our approach is explicitly explained with the use of binary attributes. This choice can be seen as a limitation, but it is worth observing that every nominal attribute can be easily transformed into a set of binary ones. The only inability is the direct treatment of numerical val-
ues. Fortunately, (Gama and Pinto, 2006) represents a general approach to solve the online discretization of numerical attributes. The proposed method is particularly suitable in our context, since it proposes a discretization method based on two layers. The first layer summarizes data, while the second one constructs the final binning. The process of updating the first layer works online and requires a single scan over the data.

Paper Organization: Section 2 introduces our reference scenario. It outlines some requirements that a system working on streaming environments should satisfy. Section 3 describes our approach in details, highlighting how the requirements introduced in Section 2.1 are verified by the proposed model. Furthermore, it present how our adaptive selection is implemented. In Section 4, we present a comparative study to understand how the new adaptive approach guarantees a higher reliability of the system. In this section, our approach is also compared with other well-know works.

2 DATA STREAMS CLASSIFICATION

Data streams represent a new challenge for the data mining community. In a stream scenario, traditional mining methods are further constrained by the unpredictable behaviour of a large volume of data. The latter arrives on-line at variable rates, and once an element has been processed, it must be discarded or archived. In either cases, it cannot be easily retrieved. Mining systems have no control over data generation, and they must be capable of guaranteeing a near real-time response.

Definition 1. A data stream is an infinite set of elements $X = X_1, \ldots, X_i, \ldots$ where each $X_i \in X$ has $a + 1$ dimensions, $(x^1_i, \ldots, x^a_i, y)$, and where $y \in \{\bot, 1, \ldots, C\}$, and $1, \ldots, C$ identify the possible values in a class.

A stream can be divided into two sets based on the availability of class label y. If value y is available in the record ($y \neq \bot$), it belongs to the training set. Otherwise the record represents an element to classify, and the true label will only be available after an unpredictable period of time.

Given Definition 1, the notion of concept drifting can be easily defined. As reported in (Klinkenberg, 2004), a data stream can be divided into batches, namely b_1, b_2, \ldots, b_n. For each batch b_i, data is independently distributed w.r.t. a distribution $P_i()$. Depending on the amount and type of concept drifting, $P_i()$ will differ from $P_{i+1}()$. A typical example is customers’ buying preferences, which can change according to the day of the week, inflation rate and/or availability of alternatives. Two main types of concept drifting are usually distinguished in the literature, i.e. abrupt and gradual. Abrupt changes imply a radical variation of data distribution from a given point in time, while gradual changes are characterized by a constant variation during a period of time. The concept drifting phenomenon involves data expiration directly, and forces stream mining systems to be continuously updated to keep track of changes. This implies making time-critical decisions for huge volumes of high-speed streaming data.

2.1 Requirements

As introduced in Section 2, the stream features influence the development of a data streams classifier radically. A set of requirements must be taken into account before proposing a new approach. These needs highlight several implementation decisions inserted in our approach.

Since data streams can be potentially unbounded in size, and data arrives at unpredictable rates, there are rigid constraints on time and memory required by a system through time:

Req. 1: the time required for processing every single stream element must be constant, which implies that every data sample can be analyzed almost only once.

Req. 2: the memory needed to store all the statistics required by the system must be constant in time, and it cannot be related to the number of elements analyzed by the system.

Req. 3: the system must be capable of updating their structures readily, working within a limited time span, and guaranteeing an acceptable level of reliability.

Given Definition 1, it is clear that the elements to classify can arrive in every moment during the data flow.

Req. 4: the system must be able to classify unseen elements every time during its computation.

Req. 5: the system should be able to manage a set of models that do not necessarily include contiguous ones, i.e. classifiers extracted using adjacent parts of the stream.
2.2 Related Work

Mining data streams has rapidly become an important and challenging research field. As proposed in (Gaber et al., 2005), the available solutions can be classified into data-based and task-based ones. In the former approaches a data stream is transformed into an approximate smaller-size representation, while task-based techniques employ methods from computational theory to achieve time and space efficient solutions. Aggregation (Aggarwal et al., 2003; Aggarwal et al., 2004a; Aggarwal et al., 2004b; Lin and Zhang, 2008), sampling (Domingos and Hulten, 2001) or summarized data structure, such as histograms (Guha et al., 2001; Gilbert et al., 2002), are popular example of data-based solutions. On the contrary, approximation algorithms approaches such as those introduced in (Gama et al., 2006; Domingos and Hulten, 2001) are examples of task-based techniques.

In the context of data streams classification, two main approaches can be outlined, namely instance selection and ensemble learning. Very Fast Decision Trees (VFDT) (Domingos and Hulten, 2000) with its improvements (Hulten et al., 2001; Gama and Pinto, 2006; Pfahringer et al., 2008) for concept drifting reaction and numerical attributes managing represent examples of instance selection methods. In particular, the Hoefding bound guarantees that the split attribute chosen using n examples, is the same with high probability as the one that would be chosen using an infinite set of examples. Last et al. (Cohen et al., 2008) propose another strategy using an info-fuzzy technique to adjust the size of a data window. Ensemble learning employs multiple classifiers, extracting new models from scratch and deleting the out-of-date ones continuously. Online approaches for bagging and boosting are available in (Oza and Russell, 2001; Chu and Zaniolo, 2004; Bifet et al., 2009). Different methods are available in (Street and Kim, 2001; Wang et al., 2003; Scholz and Klinkenberg, 2005; Kolter and Maloof, 2007; Folino et al., 2007), where an ensemble of weighted-classifiers, including an adaptive genetic programming boosting, as in (Folino et al., 2007), is employed to cope with concept drifting. None of the two techniques can be assumed to be more appropriate than the other. (Bifet et al., 2009) provides a comparison between different techniques not only in terms of accuracy, but also including computational features, such as memory and time required by each system. By contrast, our approach proposes an ensemble learning that differs from the cited methods since it is designed to concurrently manage different sliding windows, enabling the use of a set of classifiers not necessarily contiguous and constant in time.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>class value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>no</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>yes</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>yes</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>no</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ind</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ind</td>
</tr>
</tbody>
</table>

(a) A stream chunk of 10 elements

\[
\begin{align*}
S_{10} &= \{(x,2,3), (y,2,3), (z,3,2)\} \quad \text{yes} \\
\quad &\{(x,2,1), (y,2,1), (z,0,5)\} \quad \text{no} \\
\quad &\{(x,2,0), (y,2,0), (z,2,0)\} \quad \text{ind}
\end{align*}
\]

(b) The resulting snapshot

Figure 1: From data stream (a) to snapshot (b).

3. ADAPTIVE SELECTIVE ENSEMBLE

A detailed description of our system is available in (Grossi and Turini, 2010; Grossi, 2009). In the following subsections, we briefly introduce only the main concepts of our approach highlighting the relations between the requirements outlined in Section 2.1 and the aggregate structures introduced. The proposed structures are primarily conceived to capture evolving data features, and guarantee data reduction at the same time. Unfortunately, ensuring a good trade-off between data reduction, and a powerful representation of all the evolving data factors is a non-trivial task.

3.1 The Snapshot

The snapshot definition implies the naïve Bayes classifier directly. In our model, the streaming training set is partitioned into chunks. Each data chunk is transformed into an approximate more compact form, called snapshot.

Definition 2 (Snapshot). Given a data chunk of k elements, with A attributes and C class values, a snapshot computes the distribution of the values of attribute \(a \in A\) with class value \(c\), considering the last \(k\) elements arrived:

\[S_k : C \times A \rightarrow \text{freq}(a, k, c), \forall a \in A, c \in C\]

The following properties are directly derived from Definition 2.
Property 1. Given a stream with C class values and A attributes, a snapshot is a set of $C \times A$ tuples.

Property 2. Building a snapshot S_k requires k accesses to the data stream. Every element is accessed only once. Computing a snapshot is linear to the k number of elements.

Figure 1 shows an example of snapshot creation. The latter implies only a single access to every stream element. A snapshot is built incrementally accessing the data one by one, and updating the respective counters. Properties 1 and 2 guarantee that a snapshot requires a constant time and memory space, satisfying requirements 1 and 2.

3.1.1 Snapshots of Higher Order

The only concept of snapshot is not sufficient to guarantee all the features needed for data managing and drift reaction. The concept of high-order snapshot is necessary to maximize data availability for the mining task guaranteeing only one data access.

Definition 3 (High-Order snapshot). Given an order value $i > 0$, a high-order snapshot, is obtained by summing h snapshots of $i - 1$ order:

$$S_{h \times k}^i = \sum_{j=1}^{h} S_{k,j}^{i-1} \cdot \sum_{j=1}^{h} \left[f_{\text{freq}}_{j}(a,k,c) \right]^{i-1}, \forall a \in A, c \in C$$

where, given a class value c and an attribute a, $\left[f_{\text{freq}}_{j}(a,k,c) \right]^{i-1}$ refers to the distribution of the values of attribute a with class value c of the j-th snapshot of order $i - 1$.

Figure 2 shows the relation between snapshots and their order. The aim is to employ a set of snapshots created directly from the stream to build new ones, representing increasingly larger data windows, simply by summing the frequencies of their elements.

A high-order snapshot satisfies Property 1, since it has the same structure of a basic one. Moreover, it further verifies requirements 3, since the creation of a new high-order snapshot is linear in the number of attributes and class values. Finally, the creation of high-order snapshots does not imply any loss of information. This aspect guarantees that a set of different size sliding windows can be simultaneously managed by accessing data stream only once, enabling the approach to consider every window as computed directly from the stream.

From a snapshot, or a high-order one, the system extracts an approximated decision tree, or employs the snapshot as naive Bayes classifier directly.

3.2 The Frame

Snapshots are stored to maximize the number of elements for training classifiers. A model mined from a small set of elements tends to be less accurate than the one extracted from a large data set. If this observation is obvious in “traditional” mining contexts, where training sets are accurately built to maximize the model reliability, in a stream environment this is not necessarily true. Due to concept drifting, a model extracted from a large set of data can be less accurate than the one mined from a small training set. The large data set can include mainly out-of-date concepts.

Snapshots are then stored and managed, based on their order, in a structure called frame. The order of a snapshot defines its level of time granularity. Conceptually similar to Pyramidal Time Frame introduced by Aggarwal et al. in (Aggarwal et al., 2003) and inherited by logarithmic tilted-time window, our structure sorts snapshots based on the number of elements from which a snapshot was created.

Definition 4 (Frame). Given a level value i, and a level capacity j, a frame is a function that, given a pair of indexes (x,y) returns a snapshot of order x and position y:

$$F_{i,j} : (x,y) \rightarrow \text{Snapshots}_{x,y}$$

where: $x \in \{0,\ldots,i-1\}$ and $y \in \{0,\ldots,j-1\}$.

As shown in Figure 3, level 1 contains snapshots created directly from the stream. Upper levels use the snapshots of the layer immediately lower to create a new one. The maximum number of snapshots available in the frame is constant in time and is defined by the number of levels and the level capacity. For each layer, the snapshot are stored with FIFO policy. The frame memory occupation is constant in time and is linear with the number of snapshots storable in the structure.

3.3 Ensemble Management

The concepts introduced in Section 3.1 and 3.2 are employed to define and manage an ensemble of classifiers. The selective ensemble management can be briefly described as a four phase approach:

1. For each snapshot S_i^j, a triple (C_i,w_i,b_i) representing the classifier, its weight and the classifier enabling variable b_i is extracted from S_i^j.

2. Since data distribution can change through time, the models currently in the structure are re-weighted with the new data distribution, using a test set of complete data taken from the last portion of the stream directly.
As proposed in Section 3.3 our approach has two key factors influencing its behavior, the weight measure to employ and the selection of the θ value. If in the literature, several weight measures, mainly related to classifier accuracy, are available and guarantee a good reliability of the system, the θ threshold represents the real key factor for the quality of our approach.

In our experiments (Grossi, 2009), we noticed that the reliability of the system is heavily influenced by the θ value. As we shall present in Section 4.3, independently from the data set employed, activation values which are too high (or too low) decrease the predictive power of the ensemble. On the one hand, in case of relatively stable data, small activation threshold values limit the use of a large set of classifiers. On the contrary, large threshold values damage the selective ensemble in the case of concept drifts. In the cited experiments, the θ value was fixed by the user and it did not change through time. Only our experience and the experimental results drove the selection of the right value.

The main contribution of this work is to introduce an adaptive approach into our system. In particular, we introduce a new approach for varying the value of the activation threshold through time, thus influencing the overall behaviour of the entire system, based on data change reaction.

The basic idea of the adaptive approach is similar to the additive-increase/multiplicative-decrease algorithm adopted by TCP Internet protocol for managing the transfer rate value used in TCP congestion avoidance.

The pseudo-code of the method for managing the activation threshold is proposed in Figure 5. The idea behind the algorithm is quite simple. When the first model is inserted in the structure, the activation threshold and the number of active models are initialized (Steps 1-5). Successively, every time a new model is inserted in the ensemble, the procedure at Step 6 computes how many models will be activated with the current θ value. If the number of models potentially activatable is higher than the old one (Step
Figure 4: The overall system architecture.

Activation Threshold Algorithm

1: if (oneModel() = true) then
2: \(q \leftarrow 0.00; \) activation threshold initialized
3: oldActModels \(\leftarrow 1 \)
4: return
5: end if
6: actModels \(\leftarrow \) getActiveModel\((q) \)
7: if (actModels > oldActModels) then
8: \(q \leftarrow q + 0.01; \) increment threshold value
9: else if (actModels < oldActModels) then
10: \(q \leftarrow q \div 2; \) decrement threshold value
11: end if
12: oldActModels \(\leftarrow \) actModels
13: return

Figure 5: Pseudo-code of the activation threshold algorithm.

4 COMPARATIVE EXPERIMENTAL EVALUATION

4.1 Data Sets

Several synthetic data sets were introduced in our experiments. This kind of data enables an exhaustive investigation about the reliability of the stream systems involving different scenarios. The data behaviour can be described exactly, characterizing the number of concept drifts, the rate between a change to another and the number of irrelevant attributes, or the percentage of noisy data.

LED24: Proposed by Breiman et al. in (Breiman et al., 1984), this generator creates data for a display with 7 LEDs. In addition to the 7 necessary attributes, 17 irrelevant boolean attributes with random values are added, and 10 percent of noise is introduced, to make the solution of the problem harder. This type of data generates only stable data sets.

Stagger: Introduced by Schlimmer and Granger in (Schlimmer and Granger, 1986), this problem consists of three attributes, namely \(\text{color} \in \{\text{green}, \text{blue}, \text{red}\} \), \(\text{shape} \in \{\text{triangle}, \text{circle, rectangle}\} \), and \(\text{size} \in \{\text{small, medium, large}\} \), and a class \(y \in \{0,1\} \). In its original formulation, the training set includes 120 instances and consists of three target concepts occurring every 40 instances. For each training instance, a test set of 100 elements is randomly generated according to the current concept.

cHyper: Introduced in (Chu and Zaniolo, 2004), geometrically, a data set is generated by using a \(n \)-dimensional unit hypercube, and an example \(x \) is a...
vector of n-dimensions $x_t \in [0, 1]$. The class boundary is a hyper-sphere of radius r and center c. Concept drifting is simulated by changing the c position by a value Δ in a random direction. This data set generator introduces noise by randomly flipping the label of a tuple with a given probability. Two additional data sets, namely Hyper and Cyclic are generated using this approach. Hyper does not consider any drifts, while Cyclic proposes the problem of periodic recurring concepts.

The features of the data sets actually employed are reported in Table 1. The stable LED24 and Hyper are useful for testing whether the mechanism for change reaction has implications for the reliability of the systems. The evolving data sets test different features of a stream classification system. The Stagger problem verifies, if all the systems can cope with concept drifting, without considering any problem dimensionality. Then, the problem of learning in the presence of concept drifting is evaluated with the other data sets, also considering a huge quantity of data with cyber.

4.2 Systems

Different popular stream ensemble methods are introduced in our experiments. All the systems expect the data streams to be divided into chunks based on a defined value. All the approaches are implemented in Java 1.6 with MOA (The University of Waikato, a) and WEKA libraries (The University of Waikato, b) for the implementation of the basic learners and employ complete non-approximate data for the mining task.

Fix: This approach is the simplest one. It considers a fixed set of classifiers, managed as a FIFO queue. Every classifier is unconditionally inserted in the ensemble, removing the oldest one, when the ensemble is full.

SEA: A complete description and evaluation of this system can be found in (Street and Kim, 2001). In this case classifiers are not deleted indiscriminately. Their management is based on a weight measure related to model reliability. This method represents a special case of our selective ensemble, where only one level is defined.

DWM: This system is introduced in (Kolter and Maloof, 2005, Kolter and Maloof, 2007). The approach implemented here considers a set of data as input to the algorithm, and a batch classifier as the basic one. A weight management is introduced, but different from SEA, every classifier has a weight associated with it, when it is created. Every time the classifier makes a mistake, its weight decreases.

Oza: This system implements the online bagging method of Oza and Russell (Oza and Russell, 2001) with the addition of the ADWIN technique (Bifet et al., 2009) as a change detector and as estimator of the weight of the boosting method.

Single: This approach employs an incremental single model with EDDM (Gama et al., 2004; Baena-Garcia et al., 2006) techniques for drift detection. Both Oza and Single were tested using ASHoeffdingTree and naïve Bayes models available in MOA.

4.3 Results

All the experiments were run on a PC with Intel E8200 DualCore with 4Gb of RAM, employing Linux Fedora 10 (kernel 2.6.27) as operating system. Our experiments consider a frame with 8 levels of capacity 3. Every high-order snapshot is built by adding 2 snapshots. This frame size is large enough to consider snapshots that represent big portions of data at higher-levels. For each level, an ensemble of 8 classifiers was used. The tests were conducted comparing the use of the naïve Bayes (NB), and the decision tree (DT) as base classifiers. In all the cases, we compare our Selective Ensemble (SE) (with fixed model activation threshold set to 0.1 and 0.25) with our Adaptive Selection Ensemble ASE. For each data generator, a collection of 100 training sets (and corresponding test sets) are randomly generated with respect to the features outlined in Table 1. Every system is run, and the average accuracy and 95% of interval confidence are reported. Each test consists of a set of 100 observations. All the statistics reported are computed according to the results obtained.

4.3.1 Results with Stable Data Sets

The results obtained with stable data sets confirm that the drift detection approach provided by each system does not heavily influence its overall accuracy. With LED24 and Hyper problems, all the systems reach a quite accurate result. Table 2 reports the results obtained with Hyper data sets using the naïve Bayes approach. These results can be compared with the ones provided in Table 3 in Section 4.3.1, where the concept drifting problem is added to the same type of data.

It is worth observing that there are no significant differences between the results obtained by SE approach, varying the model activation threshold, and the new ASE approach provides a result in line with the best ones. These results demonstrate that the adaptive behavior mechanism does not negatively influence the reliability of the system in the case of sta-
4.3.2 Results with Evolving Data Sets

Table 3 reports the overall results obtained analyzing the cHyper problem, considering both decision tree and naïve Bayes models. Differently from the results obtained with stable data sets, it is worth observing that the active model threshold influences the overall results. Varying the value from 0.1 to 0.25, and especially considering cHypera and cHyperb, SE system presents a difference even larger than 6% between the two values. On the contrary, our ASE approach provides an accuracy in line with the best value, even considering standard deviation. This demonstrates that, without knowing the ideal threshold value for model activation, our ASE approach represents the right solution to the different situations involved in a stream scenario, and simulated by the three cases of the cHyper problem. As stated in the previous section, it is worth observing the poor performances of Fix and SEA in the case of evolving data. These observations are further validated by the results obtained with the Stagger problem, that essentially follow the ones proposed in Table 3.

Finally, Table 4 outlines the resources required by the systems. The memory requirements were tested using NetBeans 6.8 Profiler. We can state that Single requires less memory than ensemble methods, which need a quantity of memory that is essentially linear with respect to the number of classifiers stored in the ensemble. The different nature of the two classes of systems influences this value. The average memory required by our system is slightly higher than the others, since our system manages two different structures, as suggested at the end of Section 3.3. The run time behavior confirms this trend. In this case the drift detection approach influences the execution time of a method. Let us compare the bagging method Oza with respect to DWM, SEA64 and ASE. These tests highlight that incremental single model systems are faster than ensemble ones, since they have to update only one model. On the contrary, considering the accuracy, single model systems rarely provide best average values. Finally, Oza guarantees an appreciable reliability with every data set, but its execution time is definitely higher than the others.

We conclude this section, proposing the results obtained considering the Cyclic problem. The latter are presented considering the naïve Bayes approach and analyzing different rates between the chunk size and the elements to classify. As shown in Figure 6, even in this case, our ASE approach is in-line with the SE0.1 and better than the others. Since this problem presents recurring concepts, it is worth observing...
Table 3: Overall results with the \textit{cHyper} problem.

<table>
<thead>
<tr>
<th></th>
<th>\textit{cHyper} / \textit{cHyper} / \textit{cHyper} - decision tree</th>
<th>\textit{cHyper} / \textit{cHyper} / \textit{cHyper} - naive Bayes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\textbf{avg}</td>
<td>\textbf{std dev}</td>
</tr>
<tr>
<td>ASE</td>
<td>83.58 / 88.72 / 93.19</td>
<td>0.51 / 0.40 / 0.28</td>
</tr>
<tr>
<td>SE0.1</td>
<td>84.05 / 89.43 / 93.09</td>
<td>0.49 / 0.40 / 0.32</td>
</tr>
<tr>
<td>SE0.25</td>
<td>78.42 / 86.10 / 91.86</td>
<td>0.86 / 0.35 / 0.23</td>
</tr>
<tr>
<td>Fix64</td>
<td>70.26 / 82.02 / 90.62</td>
<td>2.58 / 1.23 / 0.13</td>
</tr>
<tr>
<td>SEA64</td>
<td>70.26 / 82.14 / 90.04</td>
<td>2.58 / 1.10 / 0.14</td>
</tr>
<tr>
<td>DWM64</td>
<td>77.75 / 85.18 / 92.65</td>
<td>1.94 / 0.60 / 0.14</td>
</tr>
<tr>
<td>Oza64</td>
<td>81.99 / 89.60 / 92.40</td>
<td>0.97 / 0.37 / 0.25</td>
</tr>
<tr>
<td>Single</td>
<td>81.50 / 87.85 / 89.99</td>
<td>1.60 / 0.70 / 0.34</td>
</tr>
</tbody>
</table>

Table 4: \textit{cHyper} \textit{c} time and memory required.

<table>
<thead>
<tr>
<th></th>
<th>decision tree</th>
<th>naive Bayes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\textbf{heap (KB)}</td>
<td>\textbf{run time (sec.)}</td>
</tr>
<tr>
<td>ASE</td>
<td>9276</td>
<td>82.40</td>
</tr>
<tr>
<td>SE</td>
<td>9233</td>
<td>80.80</td>
</tr>
<tr>
<td>Fix64</td>
<td>8507</td>
<td>47.54</td>
</tr>
<tr>
<td>SEA64</td>
<td>7980</td>
<td>152.07</td>
</tr>
<tr>
<td>DWM64</td>
<td>7911</td>
<td>77.56</td>
</tr>
<tr>
<td>Oza64</td>
<td>10047</td>
<td>393.93</td>
</tr>
<tr>
<td>Single</td>
<td>5683</td>
<td>11.54</td>
</tr>
</tbody>
</table>

Figure 6: Average accuracy using naive Bayes with the Cyclic problem.

how our approach can exploit the selective ensemble better than the others, since some models which are currently out of context are not deleted by the system, but simply disabled. If a concept becomes newly valid, the model can be reactivated. This behaviour is still valid, even in the case of the adaptive approach.

5 CONCLUSIONS

The preliminary results show that, with respect to the use of a fixed threshold, our adaptive algorithm provides a slightly worst performance than the ones of the best value of the threshold. Unfortunately, the choice of the best value is not always feasible, and if a wrong selection is made, the system loses its precision. On the contrary, our adaptive approach does not require any assumption about active model values and displays good adaptation to the different scenarios. This work represents a first step to guarantee a system completely adaptable to the different streaming factors. As future works, our aims are to test our adaptive model in a real stream application with real data. Moreover, we are currently studying the introduction of runtime monitoring tools for automatically adapting our system, e.g varying the number of frame levels, or the models available for each layer, dynamically considering memory consumption and time response constraints.

REFERENCES

