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Abstract: In this paper some experiments have been realized to test how the introduction of variable selection has an
effect on the predictor performance in short-term wind farm power prediction. Variable selection based on
Kraskov estimation of the mutual information will be used due to its capability to deal with sets of continuous
random variables. A Multilayer Percetron and a k-NN estimator will be the predictor based models with
different topologies and number of neighbors. Experiments will be carried out with actual data of wind speed
and power of an experimental wind farm. We also compute the output of an ideal wind turbine to enrich the
dataset and estimate the effect of variable selection on one isolated turbine. This will allow us to define four
different settings for the experiments which vary in the nature of the inputs to the model, wind speed, wind
farm or isolated wind turbine power, and the predicted variable, wind farm or isolated wind turbine power.

1 INTRODUCTION

Society is very worried about the impact of the human
activities on the environment being pollution a result
of those human activities. Electricity production con-
sumes a big amount of fossil fuel, which produces car-
bon dioxide, so the use of renewable energy sources
will reduce the emission of it. Among the renewable
energy sources, wind is a promising alternative with a
increasing installed power capacity.

However, the wind is not constant and it can be
considered as a chaotic system whose predictability
is limited. This fact along with the increase in in-
stalled power capacity have made that in many coun-
tries research groups have been granted to develop
forecasting systems (Landberg, 2001; Focken et al.,
2002; Sánchez, 2006).

Depending on the forecast horizon, models can
be divided into very short-term, short-term and long-
term models. In each country, the Transmission Sys-
tem Operator have to deal with the management of the
electric system in the different control and planning

levels and also with the power production schedules
in power plants. So the very short-term and short-
term forecasting of wind power production is essen-
tial (Costa et al., 2008).

The statistical models such as ARMA, ARX and
Box-Jenkins methods have been used historically for
very short-term wind forecasting up to few hours
ahead (Costa et al., 2008). Artificial neural networks
(ANN) have been also used for wind or power fore-
cast due to their ability of dealing with non linear-
ities unlike AR models. Mohandes et al. (Mohan-
des et al., 1998) present a comparison between AR
model and neural networks for wind speed prediction
and obtain that the ANN model outperforms the AR
model in both one day and some days horizon. An-
other comparison between regression and ANN mod-
els was presented by Li et al. (Li et al., 2001) using as
input the speed and direction of the wind in two me-
teorological towers. They found that Multilayer Per-
ceptron ANN model outperforms the best regression
model, which is a 3rd degree polynomial. More re-
cent works have also confirmed the validity of ANN
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Figure 1: Wind power prediction based on previous wind
speed with variable (feature) selection.

models for power forecasting (Méndez et al., 2009;
Kusiak et al., 2009).

The selection or extraction of features has demon-
strated that can improve the performance of the in-
duced model in classification tasks. In prediction of
time series, feature selection has also been investi-
gated. Kusiak et al. (Kusiak et al., 2009) propose
both feature selection and extraction in short-term and
long-term prediction based on NWP data provided
in 16 locations. Feature selection is used to select
the locations that have more influence on the predic-
tion. Feature extraction is carried out with PCA to
reduce the high dimensionality of the data provided
by the models, 10 and 12 respectively for each lo-
cation. Interactive Neural Filter (INF) (Crone and
Kourentzes, 2010) is a method that remove the sea-
sonality, trends and noise of a time series that do
not explain it thus removing any bias to the predict-
ing model. In (Yoon et al., 2005) a method called
CLeVer based on PCA and descriptive common prin-
cipal components (DCPC) is presented to select fea-
tures in multivariate time series.

In this paper, we study the effect of feature se-
lection in very-short term wind power forecast using
mutual information. The prediction for different fore-
cast horizons is computed both from wind speed as
previous power generated using Multilayer Percep-
tron (MLP) and k-NN interpolation. The experiments
have been carried out from real wind and power data
of a wind farm. The period of time considered has
been of six months which gives a better understand-
ing of the variable selection incidence. To evaluate the
results, the reference measure described in (Nielsen
et al., 1998) is used.

The paper is organized as follows: in section 2, the
methodology is presented. Experiments are shown
in section 3 and in section 4 conclusions and further
works are presented.

2 METHODOLOGY

In this work, the inputs to predict the wind farm
power at a horizonh, p̂(t + h), are wind speeds from
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Figure 2: Wind power prediction based on previous power
of the wind farm with variable (feature) selection.

SCADA,

p̂(t +h) = f (v(t), . . . ,v(t −n+1) (1)

or alternatively, previous power generated by the wind
farm,

p̂(t +h) = f (p(t), . . . , p(t −n+1) (2)

Usuallyn is estimated with the aid of the autocorrel-
ogram.

In these models, the assumption that all then
previous measures have the same relevance is done.
However as in many other applications of forecast-
ing, the ranking of the variables according to a rel-
evance measure can improve the performance of the
predictor. As relevance measure Mutual Information
has been chosen because it has proved good results in
feature selection (Chow and Huang, 2005). In time
series, Ji et al. (Ji et al., 2005) propose the use of
the mutual information to rank variables in time se-
ries prediction. Guillen et al. (Guillén et al., 2010)
also make use of mutual information to prototype and
variable selection in a decremental approach, where
variables are removed while the mutual information is
above a threshold. Here the estimation of mutual in-
formation proposed by Kraskov et al. (Kraskov et al.,
2004), which is based on k-nearest neighbor statistics,
is used. MILCA is a implementation of this method
that can be downloaded from (MILCA, 2010).

A filter feature selection approach with a sequen-
tial forward selection strategy is going to be imple-
mented (Figures 1 and 2), where a feature selection
stage comes before the forecast module. To assess if
any improvement (ImpRMSE) is achieved, a compar-
ison with a reference model (Nielsen et al., 1998) is
carried out using,

ImpRMSE=
RMSEre f erence−RMSEmodel

RMSEre f erence
100% (3)

As reference model it is used the one proposed by
Nielsen (Nielsen et al., 1998) which is an improve-
ment over the pure persistence model because it also
includes long-term information using the linear ex-
pression, ˆy(t +k) = b+ay(t).
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Table 1: ImpRMSE for MLP model (8 neurons in the hidden layer) with different topologies and horizons (in hours) for the
four settings.

Prediction horizon Setting A Setting B Setting C Setting D
h = 1 −313.32±2.89 −185.20±3.32 50.10±16.86 −0.59±1.15
h = 2 −176.02±2.25 −110.72±1.75 63.62±11.92 3.76±0.40
h = 3 −122.67±2.37 −82.11±1.60 71.19±11.34 6.74±0.23
h = 4 −91.52±1.67 −67.05±1.22 56.24±9.89 8.03±0.33
h = 5 −70.08±1.57 −55.53±1.49 47.24±6.90 9.24±0.20
h = 6 −54.93±1.36 −48.08±1.78 45.34±9.72 10.24±0.33

Table 2:ImpRMSE for k-NN (k = 8) for six prediction horizons (in hours) in the four settings.

Prediction horizon Setting A Setting B Setting C Setting d
h = 1 −101.78 −10.20 95.98 −5.73
h = 2 −50.62 −5.02 95.70 0.43
h = 3 −32.94 −4.97 95.57 2.38
h = 4 −22.14 −4.46 95.82 4.88
h = 5 −14.25 −4.32 95.32 5.95
h = 6 −8.91 −4.36 94.98 6.93

3 EXPERIMENTS

Experiments were made with actual wind speeds and
wind farm power obtained from the website of So-
tavento Galicia project. The wind speed series com-
prises from August 5th, 2009 until February 4th, 2010
with time steps of 10 minutes. Data were prepro-
cessed to obtain mean hourly wind speed which yield
a total of 4416 values. The data set was split in two
subset, the train (2/3) and test (1/3). Two models
to predict the very-short term wind power are con-
sidered: Multilayer Perceptron (MLP) and K-Nearest
Neighbor (kNN). Due to the random initialization of
the MLP weigths, we provide the mean and the stan-
dard deviation obtained from 25 training trials as:
µ±σ, in order to reduce the uncertainty of the results.

As it is not possible to access to the power pro-
duced by only one turbine, the output of an ideal wind
turbine (pvesta(t)) whose transfer function has 5 and
12.5 m/sec cut-off values is included in the experi-
ments. So, four different settings are going to be con-
sidered in the experiments depending on the predicted
variable and the inputs that feed the models:

Setting A. The predicted variable is the wind farm
power computed from the wind speeds, ˆp(t +h)=
f (v(t),v(t −1),v(t−2), . . .))

Setting B. The predicted variable is the ideal turbine
output computed from the wind speeds, ˆpvesta(t +
h) = f (v(t),v(t −1),v(t−2), . . .))

Setting C. The predicted variable is the wind farm
power computed from previous wind farm power

values, ˆp(t +h) = f (p(t), p(t −1), p(t−2), . . .))

Setting D. The predicted variable is the ideal tur-
bine output computed from previous ideal tur-
bine outputs, ˆpvesta(t +h) = f (pvesta(t), pvesta(t−
1), pvesta(t −2), . . .))

Variables in the previous settings are the wind speed,
wind farm power or ideal turbine output. Coefficients
of the enhanced persistence model (3) for wind farm
power are:A0 = 0.9487 andB = 37.5692; and for
ideal turbine output:A0 = 0.8947 andB = 0.0281.

3.1 Results without Variable Selection

To allow an analysis of the effect of variable selec-
tion in the problem addressed in this paper, at first the
improvement over the reference model (eq. 3) with-
out variable selection is carried out. The number of
variables used for the model induction is set to four
because we have auto correlated the power with itself
and cross correlated it with the wind speed and con-
cluded that the highest values are for offsets until the
range of 4-6 hours back.

In the experiments three different topologies for
the MLP were tested: 4, 6 and 8 neurons in the hidden
layer, however results for the 8 neurons in the hidden
layer are shown in Table 1 due to space constraints. In
Setting Athe MLP model performance is lower than
the reference model and this behavior does not de-
pend on the number of neurons in the hidden layer.
Results are a bit better as the horizon is far away al-
though they are still worse than the reference model.
In Setting Bthe MLP exhibits a better performance
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Table 3: ImpRMSE for MLP model (8 neurons in the hidden layer) with different topologies and horizons (in hours) for the
four settings using variable selection.

Prediction horizon Setting A Setting B Setting C Setting d
h = 1 −314.34±3.00 −185.80±3.32 46.97±14.49 0.23±0.79
h = 2 −177.31±1.41 −112.11±1.76 68.81±9.82 4.00±0.29
h = 3 −126.23±2.54 −85.20±1.34 71.70±9.29 5.77±0.33
h = 4 −95.29±1.78 −70.33±2.04 67.34±7.33 6.97±0.29
h = 5 −75.33±2.19 −59.68±2.61 56.29±17.40 7.87±0.43
h = 6 −59.26±2.35 −52.13±2.85 50.39±20.27 8.92±0.26

Table 4:ImpRMSE for k-NN (k = 8) for six prediction horizons (in hours) in the four settings using variable selection.

Prediction horizon Setting A Setting B Setting C Setting d
h = 1 −90.16 −10.41 93.91 −6.74
h = 2 −40.98 −6.74 95.74 −1.38
h = 3 −26.62 −5.02 96.63 2.05
h = 4 −19.41 −5.06 94.61 2.59
h = 5 −12.62 −5.92 94.37 3.72
h = 6 −7.65 −7.01 95.73 4.48

but it is still worse than the reference model. No in-
fluence of the number of neurons in the hidden layer is
observed and the farther the horizon is, the better the
results are. When inSetting Cthe wind farm power is
used as input variable, MLP model clearly surpasses
the reference model with a maximum improvement of
71.19% for a horizon of 3 hours. Unlike previous set-
tings, here the number of neurons in the hidden layer
has influence over the results but there is no clear pat-
tern because it also depends on the prediction horizon.
In the latter setting, the MLP model achieves better
performance than the reference model although not
so high as inSetting Cdue to the absence of external
interferences. Only for 1 hour horizon the reference
model is slightly better than the MLP model which is
explained to the high inertia of the atmosphere that is
gathered in the ideal turbine output.

For the data used in this set of experiments it can
be concluded that short-term wind power prediction
based on a MLP model only improves a reference
model based on persistence when the inputs are also
power measures and not wind speeds.

The other model under study is the k-NN interpo-
lation. In this model there is no random initialization
of parameters so one run for each experiment is car-
ried out. As the number of neighborsk used in the ap-
proximation can produce different outcomes, the re-
sults were obtained for values ofk from 1 to 10. Due
to space requirements only results for 8 neighbors is
shown in Table 2.

The same four settings are used and the results
achieved with the k-NN model (Table 2) display the
same behavior than the results achieved with the MLP
model. ForSetting A, the k-NN model has a worse

performance than the reference model but unlike in
MLP in this model as the number of neighbors in-
creases the result also improves although it never sur-
passes the reference model. InSetting B, k-NN nei-
ther improves the performance of the reference model
although the results are better than inSetting A. Here
the model also yields better results as the number
of neighbor increases as in previous setting. k-NN
model exhibits better improvement inSetting Cthan
in the other settings. Here the improvements over the
reference model are normally around the 95%. Un-
like theSetting AandSetting B, in this case results do
not always got better as the number of neighbors in-
creases. Finally forSetting D, the results are better as
the horizon and number of neighbors increase.

Comparing the performance of the k-NN with
MLP without variable selection, both models im-
prove the reference model in the same settings but k-
NN model gives better performance than MLP model
when both surpass the reference model. This can be
explained due to fact that k-NN is a non parametric
model and exhibits the ability of modeling any dis-
tribution if the noise level is low. The noise effect is
played down as the number of neighbors is larger.

3.2 Results with Variable Selection

In this section, we repeat the experiments presented in
the previous section using as inputs to the models the
variables selected with Mutual Information (Figures
1 and 2). A time window of twelve hours before to
the prediction time is considered and the subset of the
four variables with highest mutual information is used
to feed the two models. Tables 5, 6, 7 and 8 show the
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Table 5: Selected variables for theSetting A.

Selected Variables
p̂(t +1) v(t), v(t −1), v(t −4), v(t −9)
p̂(t +2) v(t), v(t −5), v(t −9), v(t −11)
p̂(t +3) v(t), v(t −4), v(t −9), v(t −11)
p̂(t +4) v(t), v(t −3), v(t −7), v(t −9)
p̂(t +5) v(t), v(t −4), v(t −8), v(t −11)
p̂(t +6) v(t), v(t −5), v(t −9), v(t −11)

Table 6: Selected variables for theSetting B.

Selected Variables
p̂vesta(t +1) v(t), v(t −1), v(t −6), v(t −8)
p̂vesta(t +2) v(t), v(t −4), v(t −10), v(t −11)
p̂vesta(t +3) v(t), v(t −3), v(t −8), v(t −11)
p̂vesta(t +4) v(t, v(t −2), v(t −5), v(t −10)
p̂vesta(t +5) v(t), v(t −1), v(t −5), v(t −11)
p̂vesta(t +6) v(t), v(t −5), v(t −9), v(t −10)

selected variables for each setting. As expected, in
all settings the closest value to the prediction instant
(v(t), p(t), pvesta(t)) is always selected owing to the
inertia of the atmosphere.

For Setting A, predicting wind farm power from
wind speed (Table 5), it can be observed that selected
variables, except the first one, are aroundv(t − 4),
v(t − 9) and v(t − 11). In Setting B(Table 6) there
is no clear pattern in selected variables and for each
horizon the selected variables differ each others. The
most clear pattern in selected variables appears inSet-
ting C where variables aroundp(t − 1),p(t −2) and
p(t − 8) are always selected for the different hori-
zons(Table 7). Finally in Table 8 there is no clear
pattern in the selected variables.

To assess if variable selection has an effect in the
performance of the MLP model we have to compare
Table 1 with Table 3. ForSetting A, it can be ob-
served that the introduction of variable selection has
no effect in the performance of the MLP. For the sec-
ond setting, the introduction of variable selection is
not relevant for horizons of 1 and 2 hours and even
worse for far away horizons, where the performance
of the MLP without variable selection is better for all
the topologies. InSetting C, selection increases the
performance of the MLP (Tables 1 and 3), observing
that for horizons from 2 to 6 hours, the improvement
of the MLP over reference model is higher with vari-
able selection but at the expense of a high variance.
Finally in Setting D, the introduction of variable se-
lection does not improve the MLP performance over
reference model because a slight decrease in improve-
ment values is observed for high horizons. After this
analysis we can consider that variable selection has
only a positive effect inSetting Cwhere the wind farm

Table 7: Selected variables for theSetting C.

Selected Variables
p̂(t +1) p(t), p(t −3), p(t −7), p(t −9)
p̂(t +2) p(t), p(t −1), p(t −2), p(t −8)
p̂(t +3) p(t), p(t −1), p(t −2), p(t −7)
p̂(t +4) p(t), p(t −1), p(t −2), p(t −8)
p̂(t +5) p(t), p(t −1), p(t −2), p(t −7)
p̂(t +6) p(t), p(t −1), p(t −3), p(t −8)

Table 8: Selected variables for theSetting D.

Selected Variables
p̂vesta(t +1) pvesta(t), pvesta(t −1), pvesta(t −4),

pvesta(t −7)
p̂vesta(t +2) pvesta(t), pvesta(t −2), pvesta(t −8),

pvesta(t −11)
p̂vesta(t +3) pvesta(t), pvesta(t −2), pvesta(t −10),

pvesta(t −11)
p̂vesta(t +4) pvesta(t), pvesta(t −4), pvesta(t −9),

pvesta(t −10)
p̂vesta(t +5) pvesta(t), pvesta(t −4), pvesta(t −10),

pvesta(t −11)
p̂vesta(t +6) pvesta(t), pvesta(t −4), pvesta(t −9),

pvesta(t −10)

power is predicted from previous measures of gener-
ated power.

Once the effect of the variable selection has been
analyzed for the MLP model, we repeat the same
analysis for the k-NN model. In this case two com-
parisons can be done: one with MLP with variable
selection and another with k-NN without variable se-
lection. The comparison of k-NN model and the MLP
model, both with variable selection, yields the same
results as the comparison of both models without vari-
able selection. k-NN model increase in improvement
is higher when both surpass the reference model and
the explanation is the same that it was given above
(Sec. 3.1).

When comparing k-NN model with and without
variable selection is found that in general there is not
a remarkable effect of the variable selection. ForSet-
ting A (Tables 2 and 4) andSetting Bthe improve-
ments of the k-NN model are lower than the reference
model and it increases as the horizon and the number
of neighbors raise. InSetting Cand Setting D, the
effect of the variable selection in the results of the k-
NN model is negligible because they are almost the
same. On sight of the results it can be thought that
k-NN is less affected by the variables because the non
parametric nature of the model which adapts better to
the underlying distribution of the values than the MLP
model.
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4 CONCLUSIONS

In this work we have presented a comparative study
of the use of variable selection in short-term wind
farm power prediction. The variable selection is done
with the Mutual Information that is estimated with the
method proposed by Kraskov. Two models are con-
sidered to study the effect of the variable selection.
One is a Multilayer Perceptron with different topolo-
gies and the other is the k-NN model for different val-
ues of the number of neighborsk.

Four different set of experiments were proposed
with different input and predicted variables. To assess
the quality of the results instead of the RMSE value,
the improvement of the RMSE over an improved per-
sistence model is used.

From the obtained results it can be concluded that
the k-NN model performs better than MLP model for
the different considered horizons and this is more em-
phasized as the number of neighbors increase. An in-
teresting conclusion is that the wind farm power pre-
diction is better done when power is used as predict-
ing variables instead of wind speed. Another fact that
the experiments has brought up and that it is in con-
sonance with the nature of the persistence model, it
is that as the horizon goes farther the MLP and k-NN
models yield better performance.

With respect to the introduction of a previous
stage of variable selection, in the experiments carried
out there is no evidence of a remarkable effect in the
results. In the MLP this effect is a bit noticeable when
predicting the wind farm power from previous mea-
sures of generated power and negligible in the k-NN
model.
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