EFFICIENT SYMBOLIC SUPERVISORY SYNTHESIS AND GUARD GENERATION
Evaluating Partitioning Techniques for the State-space Exploration

Z. Fei, S. Miremadi
Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden

K. Åkesson, B. Lennartson
Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden

Keywords: Supervisory control theory, Deterministic finite automata, Symbolic representation, Reachability search, Propositional formula.

Abstract: The supervisory control theory (SCT) is a model-based framework, which automatically synthesizes a supervisor that restricts a plant to be controlled based on specifications to be fulfilled. Two main problems, typically encountered in industrial applications, prevent SCT from having a major breakthrough. First, the supervisor which is synthesized automatically from the given plant and specification models might be incomprehensible to the users. To tackle this problem, an approach was recently presented to extract compact propositional formulae (guards) from the supervisor, represented symbolically by binary decision diagrams (BDD). These guards are then attached to the original models, which results in a modular and comprehensible representation of the supervisor. However, this approach, which computes the supervisor symbolically in the conjunctive way, might lead to another problem: the state-space explosion, because of the large number of intermediate BDD nodes during computation. To alleviate this problem, we introduce in this paper an alternative approach that is based on the disjunctive partitioning technique, including a set of selection heuristics. Then this approach is adapted to the guard generation procedure. Finally, the efficiency of the presented approach is demonstrated on a set of benchmark examples.

1 INTRODUCTION

The analysis of reactive systems has been paid much attention by researchers and scientists in the computer science community. One of the classic methods to analyze reactive systems is utilizing formal verification techniques, such as model checking, to verify whether the system always fulfill specifications. Nevertheless, from the control engineering point of view, instead of verifying the correctness of the system, a controller which guarantees that the system behaves according to specifications is preferred. The Supervisory Control Theory (SCT) (Ramadge and Wonham, 1987; Ramadge and Wonham, 1989; Cassandras and Lafortune, 2008) provides such a control-theoretic framework to design a device, called the supervisor, for reactive systems referred as discrete event systems (DESs). Given a model of the system to be controlled, the plant, and the intended behavior, the specification, the supervisor can be automatically synthesized, guaranteeing that the closed-loop system fulfills given specifications. SCT has been applied for various applications in different areas such as automated manufacturing lines and embedded systems (Balemi et al., 1993; Feng et al., 2007; Shoaei et al., 2010).

Generally, a supervisor is a function that, given a set of events, restricts the plant to execute desired events according to the specification. A typical issue is how to realize such a control function efficiently and represent it appropriately. Since the synthesis task involves a series of reachability computations, as the DES becoming more complicated, the traditional explicit state-space traversal algorithm may be intractable due to the space-state explosion problem. By using binary decision diagrams (BDDs) (Akers, 1978; Bryant, 1992), the supervisor can be represented and computed symbolically such that the state-space explosion problem is alleviated to some extent. However, the symbolic computation is not a silver bullet. Transforming from the traditional explicit stat-
space traversal algorithm into a BDD-based computation scheme does not guarantee that the algorithm will become remarkably efficient. Thus numerous research has been performed to improve the efficiency of symbolic computations. In this paper, we mainly focus on partitioning techniques, which decompose the state-space into a set of structural components and utilize these partitioned components to realize efficient reachability computations.

Everything has its pros and cons. With BDD-based traversal algorithms, some larger DESs could be solved without causing the state-space explosion. Meanwhile, another problem is arising from the BDD representation of the resultant supervisor. Since the original models have been reformulated and encoded, it is cumbersome for the users to relate each state with the corresponding BDD variables. Therefore, it is more convenient and natural to represent the supervisor in a form similar to the models. In (Miremadi, 2010), a promising approach is presented, where a set of minimal and tractable logic expressions, referred to as guards, are extracted from the supervisor and attached to the original models of the closed-loop system. However, this approach computes the supervisor symbolically based on the conjunctive partitioning technique. This might lead to the state-space explosion, because of the large number of intermediate BDD nodes during computation.

The main contribution of this paper is adapting a symbolic supervisory synthesis approach to the guard generation procedure, to make it applicable for industrially interesting applications. The approach automatically synthesizes a supervisor by taking the advantage of the disjunctive partitioning technique. The monolithic state-space is then split into a set of simpler components and the reachability search is performed structurally with a set of heuristic decisions. Moreover, the guard generation procedure is tailored to use the partitioned structure to extract the simplified guards and attach them to the original models. Finally, a comparison of algorithm efficiency between two partitioning techniques is made by applying them to a set of benchmark examples.

The paper is organized as follows: For the readers who might be unfamiliar with the supervisory control theory (SCT), the following simple example gives a brief overview and states what exact problem this paper is about to solve.

Consider a resource booking problem where two industrial robots need to book two resources in opposite order to carry out their tasks. To avoid collisions, a constraint requires that two robots are not allowed to occupy two zones simultaneously.

Fig. 1 shows one way to model the system as the state machines, or automata. Fig. 1a and 1b depict the robot (plant) models and Fig. 1c and 1d depict the resource (specification) models. The states having an incoming arrow from outside denote the beginning of the task, while the states having double circles, called marked states, denote the accomplishment of the task. The event use_A means that Robot A uses Resource 1. The other events can be interpreted similarly. The goal of the SCT is to automatically synthesize a minimally restrictive supervisor from these modular models. Traditionally, to do this, the algorithm starts with the composition (formally described in Section 3.1) of all the automata as the initial candidate supervisor (Fig. 1e), where unreachable states have been excluded. Then the undesirable states will be removed iteratively. Generally, undesirable states can either be blocking or uncontrollable. A state is blocking when no marked state can be reached, while uncontrollable states are defined in Section 3.1. In Fig. 1e, we have one blocking state \langle q_2^A, q_2^B, q_2^C, q_2^D \rangle, which depicts the situation where Robot A has booked Resource 1 and is trying to book Resource 2, while Robot B has booked Resource 2 and is trying to book Resource 1. In such case, none of the robots can do other movements, which is a deadlock situation. After removing the blocking state together with the associated transitions, a nonblocking supervisor is produced.

It can be observed that for such a simple example, the composed automaton contains 12 states (unreachable states from the initial state have been removed). With the system getting more complicated, the composed automaton will become significantly larger. To alleviate this problem, a well known strategy is to represent the state space symbolically by using Binary Decision Diagrams (BDDs). In (Miremadi, 2010), based on this principle, an alternative approach is presented, where guards are generated to prevent the controlled system to reach undesirable states. The advantage of this approach is that it never constructs the composed automaton, which means that an incomprehensible BDD representation of the supervisor is
avoided. Instead, the approach characterizes a supervisor by a set of minimal guards that are attached to the original models to represent the supervisor behavior.

Figure 2 shows the application of the guard generation to the example, where the variables v_A, v_B, v_C, v_D are introduced to hold the current states of the corresponding automata.

The intention of this paper is to improve the guard generation procedure by introducing an alternative symbolic approach. This approach, which is based on the disjunctive partitioning technique, partitions the transition function into a set of simple but structural components. These components, having the disjunctive connection relation between each other, therefore can be used to search the state-space without constructing a total transition function for the composed automaton. Besides, to keep the intermediate number of BDD nodes as small as possible, the approach includes a set of selection heuristics to search the state-space in a structural way.

Figure 1: Example 1a-1b) Robot automata A and B, 1c-1d) resource automata C and D, and 1e) a supervisor candidate S_0.

3 PRELIMINARIES

This section provides some preliminaries which are used throughout the rest of the paper.

3.1 Supervisory Control Theory

Generally, a DES can either be described by textual expressions, such as regular expressions or graphically by for instance Petri nets or automata. For this paper, we focus on deterministic finite automata.

A deterministic finite automaton is a five-tuple $(Q, \Sigma, \delta, q_{init}, Q_m)$, where Q is a finite set of states, $q_{init} \in Q$ is the initial state, $Q_m \subseteq Q$ is the set of marked or accepting states, and the alphabet Σ is the finite set of events. The transitions of the states are expressed by the partial transition function δ, where $\delta(q, \sigma) = q'$ means that there exists a transition labeled by event $\sigma \in \Sigma$ from the source-state state $q \in Q$ to the target-state state $q' \in Q$.

In SCT, the events in the alphabet, Σ can either be controllable or uncontrollable. Therefore, Σ can be divided into two disjoint subsets, the controllable event set Σ_c, and the uncontrollable event set, Σ_u. The supervisor is only allowed to restrict controllable events from occurring in the plant.

The goal of SCT is to automatically synthesize a maximally permissive supervisor, restricting the behavior of the plant to fulfill the given specification. Generally, the plant or the specification could be modularly expressed by a number of sub-plants or sub-specifications. The composition of two or more automata is realized by the full synchronous operator \parallel, defined in (Hoare, 1985). For instance, if the plant is given as a number of sub-plants P_1, \ldots, P_n, the plant P is computed by synchronizing the sub-plants $P = P_1 \parallel \ldots \parallel P_n$. More specifically, let $A' = (Q', \Sigma, \delta', q_{init}', Q_m'), i = 1, 2$ be two automata. The full synchronous composition of A^1 and A^2 results in $A^1 \parallel A^2 = (Q^{1\parallel2}, \Sigma^1 \cup \Sigma^2, \delta^{1\parallel2}, q_{init}', Q_m \times Q_m')$.
where \(Q^1 \subseteq Q^1 \times Q^2 \) and \(q_{init}^{12} = (q_{init}^1, q_{init}^2) \). The composite transition function \(\delta^{12} \) is defined as follows.

\[
\delta^{12}(q^1, q^2, \sigma) = \\
\begin{cases} \\
\delta^1(q^1, \sigma) \times \delta^2(q^2, \sigma) & \text{if } \sigma \in \Sigma^1 \cap \Sigma^2 \\
\delta^1(q^1, \sigma) \times \{q^2\} & \text{if } \sigma \in \Sigma^1 \setminus \Sigma^2 \\
\{q^1\} \times \delta^2(q^2, \sigma) & \text{if } \sigma \in \Sigma^2 \setminus \Sigma^1 \\
\text{undefined} & \text{otherwise}
\end{cases}
\]

(1)

Additionally, given a plant \(P \) and a specification \(Sp \), two properties (Ramadge and Wonham, 1987; Ramadge and Wonham, 1989; Cassandras and Lafortune, 2008) that the supervisor has or should have are:

1. **Controllability:** The supervisor \(S \) is never allowed to disable any uncontrollable event that might be generated by the plant \(P \). Let \(\Sigma_p \) be the set of uncontrollable event set. A state \(q_p \) is said to be an uncontrollable state if it is enabled by the plant \(P \), while disabled by the supervisor \(S \).

2. **Non-blocking:** This is a progress property enforced by the supervisor \(S \), which guarantees that at least one marked state is always reachable in the closed-loop system, \(S \parallel P \).

3.2 Binary Decision Decisions

Binary Decision Diagrams (BDDs), used for representing Boolean functions, can be extended to symbolically represent states, events and transitions of automata. In contrast to explicit representations, which might be computationally expensive in terms of time and memory, BDDs often generate compact and operation efficient representations.

A binary decision diagram is a directed acyclic graph (DAG) consisting of two kinds of nodes: decision nodes and terminal nodes. Given a set of Boolean variables \(V \), a BDD is a Boolean function \(f : 2^V \rightarrow \{0, 1\} \) which can be recursively expressed using Shannon’s decomposition (Shannon and Weaver, 1949). Besides, a variable \(v_1 \) has a lower (higher) order than variable \(v_2 \) if \(v_1 \) is closer (further) to the root and is denoted by \(v_1 \prec v_2 \). The variable ordering will impact the number of BDD nodes. However, finding an optimal variable ordering of a BDD is an NP-complete problem (Bollig and Wegener, 1996).

In this paper, a simple but powerful heuristic based on Aloul’s Force algorithm (Aloul et al., 2003) is used to compute a suitable static variable ordering.

Symbolic Representation of Automata

The BDD data structure can be extended to also represent models such as automata. The key point is to make use of characteristic functions.
As Algorithm 1 shows, given a set of forbidden states \(Q_f \), the algorithm computes the set of safe states \(Q^\hat{\delta} \) by iteratively removing the blocking states (RestrictedBackward in line 5) and the uncontrollable states (UncontrollableBackward in line 6). Note that after the termination of the algorithm, not all of the safe states are reachable from the initial state. Therefore, a forward reachability search is needed to exclude the safe states which are not reachable. The safe-state algorithm is discussed in more detail in (Vahidi et al., 2006).

Algorithm 1: The Safe State Synthesis.

1: input : \(Q_f, Q^0 \)
2: let \(Q_0 := Q_f, k := 0 \)
3: repeat
4: \(k := k + 1 \)
5: \(Q' := \text{RestrictedBackward}(Q_0, X_{k-1}) \)
6: \(Q'' := \text{UncontrollableBackward}(Q^0, Q') \)
7: \(X_k := X_{k-1} \cup (Q'') \)
8: until \(X_k = X_{k-1} \)
9: return \(Q^0, X_k \)

4.2 Efficient State Space Search

Not surprisingly, the backward and forward reachability searches turn out to be the bottle-neck of the algorithm presented above. The problem with the intuitive reachability is that for the large and complicated modular DES, the BDD representation of the total transition function \(\hat{\delta}^\delta \) is often too large to be constructed. The natural way to tackle the complexity of the transfer function is to split it into a set of less complex partial functions with a connection between them. Such methods are based on conjunctive and disjunctive partitioning techniques.

Conjunctive Representation

Conjunctive partitioning, introduced in (Burch et al., 1991; Burch et al., 1994), is an approach to represent synchronous digital circuits where all transitions happen simultaneously. In the context of DES, the conjunctive partitioning of the full synchronous composition can be achieved by adding self-loops to the automata for events that are not included in their original alphabets. This leads to a situation where all automata have equal alphabet. Therefore, the conjunctive transition function \(\hat{\delta} \) for the automaton \(A' \) and the total transition function can be defined as follows:

\[
\hat{\delta}(q', \sigma) = \begin{cases}
\delta'(q', \sigma) & \text{if } \delta'(q', \sigma) \\
q' & \text{if } \sigma \in \Sigma' \\
\text{undefined} & \text{otherwise}
\end{cases}
\]

(2)

By making use of the above equations (2) and (3), we can search the state-space without constructing the total transition function. Algorithm 2 applies this technique for the forward reachability search. Assuming that the automaton set \(A = \{A_1, \ldots, A_n\} \) and the state \(q = (q^1, q^2, \ldots, q^n) \), the algorithm explores the target state \(\hat{q} \) by performing each conjunctive transition function \(\hat{\delta}' \) with arguments (the local state \(q' \) and the event \(\sigma \in \Sigma \)) to get each local target state \(q' \).

Algorithm 2: ConjForwardReachability.

1: input : \(Q_{init}, \{\hat{\delta}^1, \ldots, \hat{\delta}^n\}, \Sigma \)
2: let \(Q_0 := Q_{init}, k := 0 \)
3: repeat
4: \(k := k + 1 \)
5: \(Q_k := Q_{k-1} \cup \{q | \exists q \in Q_{k-1} \text{ and } \exists \sigma \in \Sigma \text{ such that } \hat{\delta}'(q', \sigma) = q'\} \)
6: until \(Q_k = Q_{k-1} \)
7: return \(Q_k \)

Disjunctive Representation

The conjunctive partitioning of the transition relation works well for formal verification of synchronous digital circuits. However, because of the asynchronous feature of the full synchronous composition in SCT, the intermediate states \((Q_{k-1}) \) can still cause the explosion problem when performing the reachability search, which prevents the conjunctive partitioning technique from being applied to large systems in SCT. The disjunctive partitioning of the full synchronous composition, explained subsequently, on the other hand, is then shown to be an appropriate partitioning.

Assuming the automaton set \(A = \{A_1, \ldots, A_n\} \) and the state \(q = (q^1, q^2, \ldots, q^n) \), a disjunctive transition function, the partial transition function \(\delta' \), is defined based on the event \(\sigma \in \Sigma' \) and the dependent set \(D(A') \):

\[
\hat{\delta}'(q, \sigma) = \begin{cases}
\bigwedge_{A' \in D(A')} \zeta_{i,j}^A(q', \sigma) & \text{if } \sigma \in \Sigma' \\
q' & \text{if } \sigma \notin \Sigma' \text{ or undefined}
\end{cases}
\]

(4)

\[
\zeta_{i,j}^A(q', \sigma) = \begin{cases}
\hat{\delta}'(q', \sigma) & \text{if } \sigma \in \Sigma' \cap \Sigma' \\
q' & \text{if } \sigma \notin \Sigma' \cap \Sigma'
\end{cases}
\]

(5)

and

\[
D(A') = \{A' \in A | \exists A' \in A \text{ where } \Sigma' \cap \Sigma' = \emptyset\}
\]

(6)
The total transition function is defined as

$$\delta = \bigvee_{1 \leq i \leq n} \tilde{\delta}^i$$ (7)

The construction of the dependent set for each automaton can be obtained through calculating which automaton shares any event with it. Taking Fig. 1 as an example, for the automaton A, since it shares the events $use^A_{k_1}, use^A_{k_2}$ with the automaton C and the event $use^A_{k_3}$ with the automaton D, $D(A)$ can be constructed as follows:

$$D(A) = \{A, C, D\}$$

Besides, the total transition function defined for the state $\langle q^1_1, q^0_1, q^1_2, q^0_2 \rangle$ and the event $use^A_{k_3}$ can be obtained by computing $\hat{\delta}^A$ and $\check{\delta}^C$, since $use^A_{k_1}$ only belongs to Σ^A and Σ^C. By using equations (4) and (5), it can be inferred that

$$\delta(|q^1_1, q^0_1, q^1_2, q^0_2), use^A_{k_3}) = \tilde{\delta}^A(|q^1_1, q^0_1, q^1_2, q^0_2), use^A_{k_3}) = \check{\delta}^C(|q^1_1, q^0_1, q^1_2, q^0_2), use^A_{k_3}) = \langle q^1_2, q^0_1, q^1_2, q^0_1 \rangle$$

Notice that the disjunctive transition function represented in BDDs, is shown explicitly here to easily understand.

4.3 Workset based Strategies

In Section 4.2, we suggested the use of partitioning techniques to deal with the large number of intermediate BDD nodes. However, using partitioning techniques alone is not enough to yield efficient BDD-based reachability algorithms. In (Byréd et al., 2006), it has been shown that random structural reachability search yields poor compression of intermediate BDD nodes. In order to improve these algorithms to substantially reduce the number of intermediate BDD nodes, it is vital to search the state space in a structural and efficient way. Here we introduce a simple algorithm, Algorithm 3, which is formally defined in (Vahidi et al., 2006). The workset algorithm maintains a set of active disjunctive transition functions W_k. These active transition functions are selected one at a time for the local reachability search. If there is any new state found for the currently selected transition relation, then all of its dependent transition functions (8) will be added in W_k. Notice that in Algorithm 3, “:” can be any event, since we don’t care about the specific events as long as it is defined in $\tilde{\delta}^i$.

$$E(\tilde{\delta}^i) = \{\tilde{\delta}^j | A^j \in D(A^i) \setminus \{A^i\}\}$$ (8)

Algorithm 3: WorksetForwardReachbility.

1: input : $Q_{init} = \{\tilde{\delta}^1, \ldots, \tilde{\delta}^n\}$
2: let $W_0 := \{\tilde{\delta}^1, \ldots, \tilde{\delta}^n\}$, $Q_0 := Q_{init}$
3: repeat
4: \mathcal{H}: Pick and remove a transition $\tilde{\delta}^i \in W_k$
5: $k := k + 1$
6: $Q_k := Q_{k-1} \cup \{q : \exists q \in Q_{k-1}, \tilde{\delta}^i(q, \cdot) = q\}$
7: if $Q_k \neq Q_{k-1}$ then
8: $W_k := W_{k-1} \cup E(\tilde{\delta}^i)$
9: end if
10: until $W = \emptyset$
11: return Q_k

Selection Heuristics

In Algorithm 3, \mathcal{H} denotes the heuristics of selecting the next transition relation for the reachability search such that the number of intermediate BDD nodes is computed as small as possible. How a transition T^i is chosen among those in the working set W has great influence on the performance of the algorithm. Here we suggest a series of simple heuristics that have been implemented and seem to work well on real-world problems. In Section 6, those heuristics will be applied to a benchmark example to compare how they influence the performance of the workset algorithm.

To find a good heuristic, a two-stage selection rule was implemented, see Fig.3. Using this method, a complex selection procedure can be described as a combination of two selection rules. In the current implementation, the first stage $H1$ selects a subset $W' \subset W$ to be sent to $H2$ using one of the following rules:

1. MaxF: Choose the automata with the largest dependency set cardinality.
2. MinF: The opposite of above.

In case W' is not a singleton, the second stage $H2$ is used to choose a single transition relation T^i among W'. In the experiment, the following shown heuristics can significantly reduce the number of intermediate BDDs for the simple problems.

1. Reinforcement learning (R) (Kaelbling et al., 1996): Choose the best transition relation based on the previous activity record.
2. Reinforcement learning + Tabu (RT) (Glover and Laguna, 1997): Same as the reinforcement learning with the difference that using tabu search for the selection policy.
5 SUPERVISOR AS GUARDS

As mentioned in Section 1, given a supervisor represented as a BDD, it is cumbersome for the users to relate each state to the corresponding BDD variables. Therefore, it is more convenient and natural to represent the supervisor in a form similar to the original models. In this section, an approach, the guard generation procedure which originates from (Miremadi, 2010), is discussed and combined with the BDD-based disjunctive partitioning approach.

The guard generation procedure, being dependent on three kinds of state sets (explained below), extracts a set of conditional propositional formulae, referred to as guards indicating under which conditions the event can be executed without violating the specifications and attaches them to the original models. In (Miremadi, 2010), the computation of the monolithic transition function is the prerequisite for generating these state sets. Here an alternative way which is based on the disjunctive partitioning approach is presented.

5.1 Computation of the Basic State Set

Concerning the states that are retained or removed after the synthesis process, the states that enable an arbitrary event σ can be divided into three basic state sets: forbidden state set, allowed state set and don’t care state set.

The forbidden state set, denoted by Q_f^σ, is the set of states in the supervisor where the execution of σ is defined for S_0, but not for the supervisor. The allowed state set, denoted by Q_a^σ, is the set of states in the supervisor where the execution of σ is defined for the supervisor. In other word, for each event σ in S_0’s alphabet, Q_a^σ represents the set of states where event σ must be allowed to be executed in order to end up in states belonging to the supervisor.

In order to obtain compact and simplified guards, inspired from the Boolean minimization techniques, another set of states, denoted by Q_{dc}^σ, which describes a situation where executing σ will not impact the result of the synthesis, is utilized to minimize the guards.

Algorithms 4 and 5 presented below show how to compute the forbidden states Q_f^σ and the allowed states Q_a^σ by making use of the disjunctive transition functions. Note that Q_f^σ and Q_a^σ denote the resultant supervisor states and all the forbidden states yielded from the synthesis algorithm in Section 4.1. The don’t care state set, Q_{dc}^σ, can be defined as the complement of the union of Q_f^σ and Q_a^σ (9). The proof can be found in (Miremadi, 2010).

$$Q_{dc}^\sigma = C(Q_f^\sigma \cup Q_a^\sigma) \quad (9)$$

Algorithm 4: Compute Q_f^σ

1: input : $\sigma, Q_2, Q_s, \{ \tilde{\delta}^1, \ldots, \tilde{\delta}^n \}$
2: let $Q_f^\sigma := \emptyset$
3: for all A^i if $\sigma \in \Sigma^i$ do
4: $Q_f^\sigma := Q_f^\sigma \cup \{ q | \exists \tilde{q} \in Q_s, \tilde{\delta}(q, \sigma) = \tilde{q} \}$
5: end for
6: let $Q_f^\sigma := Q_f^\sigma \cap Q_s$
7: return Q_f^σ

Algorithm 5: Compute Q_a^σ

1: input : $\sigma, Q_2, \{ \tilde{\delta}^1, \ldots, \tilde{\delta}^n \}$
2: let $Q_a^\sigma := \emptyset$
3: for all A^i if $\sigma \in \Sigma^i$ do
4: $Q_a^\sigma := Q_a^\sigma \cup \{ q | \exists \tilde{q} \in Q_s, \tilde{\delta}(q, \sigma) = \tilde{q} \}$
5: end for
6: let $Q_a^\sigma := Q_a^\sigma \cap Q_s$
7: return Q_a^σ

5.2 Guard Generation

Based on the basic state sets, some logic restrictions can be extracted, expressing under which conditions the events can be executed without violating the specifications. For every automaton in the DES, a new variable v is introduced to hold the current state of the automaton. The following propositional function for the event $\sigma, G^\sigma : Q^{A_1} \times Q^{A_2} \times \ldots \times Q^{A_\ell} \rightarrow B$, referred to as guards, is defined as:

$$G^\sigma(v_{A_1}, v_{A_2}, \ldots, v_{A_\ell}) =
\begin{cases}
true & (v_{A_1}, v_{A_2}, \ldots, v_{A_\ell}) \in Q_a^\sigma \\
false & (v_{A_1}, v_{A_2}, \ldots, v_{A_\ell}) \in Q_f^\sigma \\
don't \ care & \text{otherwise}
\end{cases}\quad (10)$$

where B is the set of Boolean values and v_{A_i} represents the current state of automaton A_i. In particular, σ is allowed to be executed from the state $(v_{A_1}, v_{A_2}, \ldots, v_{A_\ell})$ if the guard is true.

By applying minimization methods of Boolean functions (utilizing the don’t care state set) and certain heuristics, the generated guards can be simplified. The procedure is discussed in details in (Miremadi, 2010).
Table 2: Nonblocking and controllability synthesis.

<table>
<thead>
<tr>
<th>Model</th>
<th>Reachable States</th>
<th>Supervisor states</th>
<th>Conjunctive Synthesis</th>
<th>Disjunctive Synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BDD Peak</td>
<td>Computation Time (s)</td>
</tr>
<tr>
<td>AGV</td>
<td>22929408</td>
<td>1149828</td>
<td>9890</td>
<td>6.50</td>
</tr>
<tr>
<td>Parallel Man</td>
<td>5702550</td>
<td>5702550</td>
<td>12363</td>
<td>2.47</td>
</tr>
<tr>
<td>Transfer line (1,3)</td>
<td>64</td>
<td>28</td>
<td>17</td>
<td>0.05</td>
</tr>
<tr>
<td>Transfer line (5,3)</td>
<td>1.07×10^7</td>
<td>8.49×10^6</td>
<td>2352</td>
<td>1.69</td>
</tr>
<tr>
<td>Transfer line (10,3)</td>
<td>1.15×10^8</td>
<td>6.13×10^7</td>
<td>31022</td>
<td>48.36</td>
</tr>
<tr>
<td>Transfer line (15,3)</td>
<td>1.23×10^9</td>
<td>4.42×10^8</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cat&mouse (1,1)</td>
<td>20</td>
<td>6</td>
<td>43</td>
<td>0.02</td>
</tr>
<tr>
<td>Cat&mouse (1,5)</td>
<td>605</td>
<td>579</td>
<td>2343</td>
<td>0.08</td>
</tr>
<tr>
<td>Cat&mouse (5,1)</td>
<td>1056</td>
<td>76</td>
<td>848</td>
<td>0.30</td>
</tr>
<tr>
<td>Cat&mouse (5,5)</td>
<td>6.91×10^9</td>
<td>3.15×10^9</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

* - denotes memory out.

6 CASE STUDIES

What we have discussed in the previous sections has been implemented and integrated in the supervisory control tool Supremica (Åkesson et al., 2003; Åkesson et al., 2006) which uses JavaBDD (JavaBDD, 2007) as BDD package. In this section, the implemented program will be applied to a set of relatively complicated examples. The examples are presented including references in the right column.

6.1 Benchmark Examples

A set of benchmark examples is briefly described as follows.

Automated Guided Vehicles

An AGV system, described in (Holloway and Krogh, 1990), is a simple manufacturing system where five automated guided vehicles transport material between stations. As the routes of the vehicles cross each other, single-access zones are introduced to avoid collisions.

Parallel Manufacturing Example

The Parallel Manufacturing Example, introduced in (Leduc, 2002), consists of three manufacturing units running in parallel. The system is modeled in three layers in a hierarchical interface-based manner.

The Transfer Line

The Transfer Line TL(n,m), introduced as a tutorial example in (Wonham, 1999), defines a very simple factory consisting of a series of identical cells. Each cell contains two machines and two buffers, one between the machines and one before a testing unit which decides whether the workpiece should be sent back to the first machine for further processing, or if it should be passed to the next cell. Fig. 4 shows the single cell in the transfer line. The capacity of each buffer is m, which is usually chosen to be either 1 or 3.

The Extended Cat and Mouse

An extended cat and mouse problem (Miremadi et al., 2008), which is more complicated than the transfer line model, generalizes the classic one presented in (Ramadge and Wonham, 1987). The extended version makes it possible to generate problem instances of arbitrary size, where n and k denote the number of levels and cats respectively.

6.2 Approach Evaluation

In this section, we evaluate the approach from two aspects. First, a comparison between two partitioning techniques is made by analyzing the statistical data from Fig. 2. In addition, the extended cat and mouse example with multiple instances is utilized to investigate how the choice of heuristics in the workset algorithm influences the time efficiency.

Conjunctive vs. Disjunctive

Fig. 2 shows the result of applying two partitioning techniques for the examples explained above. The
1. Introduce the partitioning techniques to split the BDD representation of $\delta^{Sp}_{1^{n}}$ into a set of smaller but structural components.

2. To alleviate the problem that the intermediate number of BDD nodes might still be huge during the reachability exploration, we introduce the workset algorithm together with a set of simple heuristics to search the state-space in a structured and efficient way.

3. The guard generation procedure is tailored to make use of the partitioned transition functions and the synthesized supervisor to compute the basic state sets for an event.

4. The presented approach is applied to a set of benchmark examples to be evaluated.

It is concluded that the disjunctive partitioning, with appropriate heuristics, is suitable for solving large modular supervisory control problems. There are several directions towards which we could extend our approach. For instance, additional heuristics could be applied to the workset algorithm to further decrease the number of intermediate BDD nodes. Moreover, it is possible to combine with more sophisticated synthesis techniques, such as compositional techniques, to substantially improve the algorithm efficiency.

REFERENCES

JavaBDD (2007). available online.

