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Abstract: Autoregulation mechanisms maintain blood flow approximately stable despite changes in arterial blood 
pressure. Mathematical models that characterize this system have been used in the quantitative assessment 
of function/impairment of autoregulation as well as in furthering the understanding of cerebral 
hemodynamics. Using spontaneous fluctuations in arterial blood pressure (ABP) as input and cerebral blood 
flow velocity (CBFV) as output, the autoregulatory mechanism has been modeled using linear and nonlinear 
approaches. From these models, a small number of measures have been extracted to provide an overall 
assessment of autoregulation. Previous studies have considered a single – or at most- a couple of measures, 
making it difficult to compare the performance of different autoregulatory parameters (and the different 
modeling approaches) under similar conditions. We therefore compare the performance of established 
autoregulatory parameters in addition to novel features extracted from the models’ response to a band-pass 
filtered impulse. We investigate if some of the poor performance previously reported can be overcome by a 
better choice of autoregulation parameter to extract from the model. Twenty-six recordings of ABP and 
CBFV from normocapnia and hypercapnia in 13 healthy adults were analyzed. In the absence of a ‘gold’ 
standard for the study of dynamic cerebral autoregulation, lower inter and intra subject variability of the 
parameters and better separation between normo- and hyper-capnia states were considered as criteria for 
identifying improved measures of autoregulation. We found that inter- and intra- subject variability in the 
assessment of autoregulation can be significantly improved by a careful choice of autoregulation measure 
extracted from either linear or non-linear models.  

1 INTRODUCTION 

The active control of the diameter of small blood 
vessels in the brain, usually referred to as cerebral 
autoregulation (CA), protects the brain against injury 
due to insufficient or excessive blood flow resulting 
from a temporary drop or surge in arterial blood 
pressure (ABP). Autoregulation is of great clinical 
interest as it can be impaired or lost in a number of 
conditions, such as stroke and subarachnoid 
haemorrhage (Panerai, 1998, Panerai, 2007). In 
much of the published literature, blood flow is 
recorded by the safe and non-invasive Doppler 
ultrasound method in response to transient changes 
in ABP. Sudden deflation of a thigh cuff, large 
sinusoidal variations in lower-body negative 
pressure, periodic breathing or squatting, and the 
Valsalva maneuver have been used to provoke larger 
changes in ABP (Panerai, 1998). However the most 

desirable experimental protocol for assessing 
autoregulation is to record data from patients at rest 
(without performing any specific maneuvers or 
requiring active collaboration), especially if they are 
in intensive care. Thus, many recent studies have 
focused on using only spontaneous fluctuations of 
ABP. While this approach increases challenges in 
terms of analyzing the recorded signals and can lead 
to high intra- and inter-subject variability, its 
effectiveness has been demonstrated (Panerai, 1998, 
Panerai et al., 1998, Panerai, 2007, among others). 

Algorithms already described in the literature for 
estimating autoregulation involve system 
identification (black-box modeling) to represent the 
relationship between ABP and CBFV. Most of the 
studies of autoregulation focus on linear methods 
(Zhang et al., 1998, Birch et al., 1995, Panerai et al., 
1999, 2003, Simpson et al., 2001) with the more 
recent inclusion of some nonlinear approaches 
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(Panerai et al., 1999, Marmarelis et al., 2002, 
Panerai et al., 2004, Angarita-Jaimes et al., 2010). 
Although nonlinear techniques can provide 
improved model fits, their benefit in assessing 
cerebral autoregulation is still unclear with few 
studies having systematically compared them to 
linear alternatives.   

In the investigation of autoregulation from linear 
models, the extraction of a small number of 
parameters from the frequency-, the impulse- or 
step-response of the models have been studied. 
Examples of autoregulatory parameters include gain, 
phase and coherence in selected frequency ranges, 
(Zhang et al., 1999, Panerai et al., 1999, Birch et al., 
1995, Liu et al., 2003), selected features of the step-
response (e.g. slopes, amplitudes at selected points) 
(Simpson et al., 2001, Liu et al., 2003). Alternative 
methods include the autoregulatory index (ARI) 
(Tiecks et al., 1995), or the correlation of the ABP 
and CBFV time series (Piechnik et al., 1999). The 
majority of published studies have only considered a 
single -or at most- a couple of measures for the 
analysis of cerebral blood flow control from 
spontaneous variations (Liu et al., 2003, Panerai et 
al., 2001, among others) and no single method for 
assessing autoregulation has become accepted as a 
gold standard.. 

The current paper aims to contribute to 
optimizing this last, but crucial step in detecting 
impairment in patients’ autoregulation from the 
recorded signals. In this study, we investigate the 
performance of both linear and nonlinear models, 
and compare different measures extracted from the 
models to assess cerebral autoregulation. In the 
absence of a gold standard, the autoregulatory 
parameters are evaluated on a sample of signals 
recorded from healthy volunteers in whom 
temporary impairment of autoregulation was 
induced by hypercapnia. Based on the results, we 
suggest some autoregulatory measures that are most 
promising for future physiological and clinical 
studies. 

2 METHODS 

2.1 Data Collection and Pre-processing 

The study was performed on 13 healthy volunteer 
subjects (age 32 ± 8.8 years) and was approved by 
the local Research Ethics Committee. All recordings 
were made with subjects in the supine position with 
the head elevated. Middle cerebral artery velocity 
was measured using a Transcanial Doppler 
Ultrasound system (Scimed QVL-120) in 

conjunction with a 2MHz transducer held in position 
by an elastic headband. Simultaneously arterial 
blood pressure (ABP) was non-invasively monitored 
using a finger cuff device (Ohmeda 2300 Finapress 
Bp monitor). End-tidal CO2 (EtCO2) levels were 
monitored via an infra-red capnograph (Datex 
Normocap 200). The experimental protocol for CO2 
reactivity test was as follows: each recording began 
with a period of breathing ambient air for 
approximately 5 minute, followed by 2 minutes of 
elevated (EtCO2 ) due to the inhalation of 5% CO2 
in air. 

The signals were pre-processed off-line. The 
maximum velocity envelope from the spectra of the 
Doppler signal was extracted by fast Fourier 
transform (FFT) every 5 ms. The ABP signals were 
digitized at 200 Hz. Short periods of evident artifact 
as well as any spikes on the signals were removed 
by linear interpolation. The ABP and CBF signals 
were low pass filtered (20 Hz). The start of each 
heart cycle was automatically identified from the 
ABP signal, after which the average ABP and 
CBFVs from the right and left MCA were calculated 
for each heartbeat. This time series was then 
interpolated with a third-order polynomial, and 
sampled at a constant rate of 5 Hz. In order to reduce 
the serial correlation between samples, the signals 
were further decimated to a new sampling rate of 
1Hz, following anti-alias filtering with a cut-off 
frequency at 0.5 Hz. These recordings were 
normalized by their mean values, and the mean 
values of the resultant signals were then removed. In 
that way, the relative change in each signal was 
obtained, and will be denoted by %ABP and 
%CBFV, respectively. 

 
Figure 1: Representative recording, showing%ABP and 
%CBFV. A phase lead of CBFV  indicates a good cerebral 
autoregulatory response. 

2.2 Data Analysis 

For each subject a segment of data was selected 
from before (normocapnia – NC) and during 5% 
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CO2 breathing (hypercapnia – HC). The former 
were approx. 300 s long and the latter approx. 100 s.  

For both linear and nonlinear models, %ABP 
was the input and %CBFV the output. Since both 
signals are normalized, the underlying assumption is 
that in the absence of autoregulation changes in 
%CBFV would passively follow those in %ABP 
(Panerai et al., 1999). All models were estimated 
according to the usual least-mean-squares approach. 
A linear sixth order (5 seconds in duration) FIR filter 
(Liu et al., 2005) was chosen, since the 
autoregulatory response is largely completed during 
this time (Panerai et al., 2003, Liu et al., 2003). A 
non-linear Volterra-Wiener model, as previously 
proposed (Mitsis et al., 2003, Panerai et al., 1999, 
Panerai et al., 2003), was also estimated using the 
Wiener-Laguerre estimation procedure (for more 
details see for example Panerai et al., 1999). The 
number of lags used for both the linear and nonlinear 
kernels was 12.  

3 ASSESMENT OF CEREBRAL 
AUTOREGULATION 

3.1 Selection of Autoregulatory 
Parameters 

A commonly used approach (Panerai et al., 1999, 
Panerai et al., 2003, Liu et al., 2005) to assess 
cerebral autoregulation is to look at the final value of 
the models response after applying an idealized step. 
From physiology, the step response is expected to 
first show a sharp increase in flow when blood 
pressure rises, followed by a return towards baseline 
within a few seconds as autoregulation provokes 
arteriolar vasoconstriction. In the absence of 
autoregulation, %CBFV would remain elevated. 
However, the step response shows large variability 
across subjects as well as erratic variations and 
decays to values less than zero that are hardly 
compatible with physiology (Simpson and Birch, 
2008, Liu et al., 2005) – see Fig. 2A. The relatively 
narrow frequency range of spontaneous oscillations 
in blood pressure is expected to lead to poor 
estimation of the frequency response in the very low 
and very high frequencies where the system is not 
excited. This in turn probably causes the wide spread 
in the final values of the step responses and the 
erratic rapid variations respectively (Figure 2). 

Simpson and Birch (2008) therefore proposed an 
alternative test-input to assess model responses. 
Instead of the step, a cosine wave modulated by a 
Gaussian envelope (Fig. 2B and Fig. 3) was chosen. 

This pulse reflects more closely the characteristics of 
ABP from spontaneous fluctuations and its shape is 
visually similar to fluctuations observed in 
spontaneously varying ABP signals.  

 
Figure 2: Step (a) and pulse (b) response for thirteen 
subjects estimated from a 5 seconds-long FIR model. The 
inputs are shown as the bold-dotted line. Considerably 
larger dispersion is observed in the step compared to the 
pulse response.  

In order to quantify autoregulation using this 
response, , four parameters were selected, as shown 
in Fig. 3: the time of the left shift of the response 
(TLS, in seconds), measured as the difference in 
time between input and output crossing the abscissa 
after the main peak, the amplitude of the pulse 
response at 1.5 seconds (A1.5), the amplitude at 6 
seconds (A6) and the time of the second negative 
peak (TP) - for the input signal this occurs at 3.5 
seconds. These parameters were chosen as they 
reflect the expected left-shift (phase-lead) of the 
autoregulatory response, and had been found most 
robust in preliminary work; A1.5 and A6 lie on the 
steep slopes of the descending and ascending 
responses, and are therefore likely to be most 
sensitive to temporal shifts in the response. 

We compare these novel parameters with others 
previously proposed in the literature. First, we 
estimated the final value of the step response (FVS) 
for both the linear and nonlinear models. Then, for  
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Figure 3: The %ABP test input (dotted line - sinusoid 
modulated by a Gaussian pulse) and the estimated 
response (solid line - %CBFV), together with the 
parameters used to quantify autoregulation.  
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the linear models, the average phase (Pha)  was 
calculated from transfer function analysis in the 
frequency range from 0.07 Hz to 0.2 Hz (Zhang et 
al., 1998, Birch et al., 1995), and coherence, (Coh) 
was evaluated over a similar range (Zhang et al., 
1998, Panerai et al., 1998). The correlation method 
(Mx) was also estimated from the average Pearson’s 
correlation coefficient of 4 equal segments of the 
%ABP and %CBFV time series (Piechnik et al., 
1999). The Autoregulatory Index ARI was 
calculated from the set of models proposed by 
Tiecks et al. (1995). For each recording, the set of 
models was applied to the %ABP, and the model  
leading to the highest correlation coefficient 
between the model generated velocity and the 
measured %CBFV gave the ARI. Finally, a 
parametric model based on the coefficients of a first-
order (two taps) FIR filter was evaluated. The 
second coefficient of the filter H1 was selected as it 
has been shown to reflect autoregulatory activity 
(Simpson et al., 2001).  

3.2 Statistical Analysis 

The aim of estimating autoregulatory parameters is 
to be able to distinguish between impaired and 
normal autoregulation. Since hypercapnia is known 
to impair autoregulation, changes in the 
autoregulatory parameters in response to increased 
pCO2 were tested using Wilcoxon matched pairs 
tests. In addition repeatability and intra- and inter-
subject variability were also evaluated. Inter-subject 
variability was assessed by calculating the standard 
deviation during normo and hypercapnia, and 
averaging the result (SD). In order to compare the 
performance of parameters, SD was normalized by 
the difference in mean value between NC and HC 
(CVd).  

To investigate the effect of noise and as an 
indication of the repeatability of the autoregulatory 
parameters, 100 simulated signals were generated 
from each of the recordings. Additive noise was 
modeled based on the residual error in %CBFV (i.e. 
the signal component that cannot be explained by 
applying the identified models to the %ABP signals) 
using an AR model of order 8. Surrogate %CBFV 
signal were then generated by applying the identified 
models (linear or nonlinear) to the %ABP signals 
and then adding the random noise to simulate 
residuals. Autoregulation parameters were then 
calculated from these simulated signals, and their 
standard deviation  was considered as the intra-
subject variability for each recording and parameter. 
These were also normalized by the parameter’s 

mean difference between normocapnia and 
hypercapnia, and their average across the subjects 
was denoted by mCVd. Low values of CVd and 
mCVd indicate low dispersion and wide separation 
between groups.  

For each model, the predicted velocity response 
was also compared to the measured data and the 
model’s performance was evaluated using the 
normalized mean square error (NMSE). Cross-
validation, with two equal segments, was used to 
calculate NMSE. 

4 RESULTS  

Table 1 shows the NMSE in fitting different models 
to the data. The most sophisticated model has the 
smallest error on the training data (150 s duration) 
but on the validation data set performs poorly. The 
simplest model (1st order FIR) overall shows the 
poorest model fit, both on training and validation 
data.  

Table 1: Mean ± SD NMSE across 13 subjects for the 
different models used on baseline recordings. 

 

The performance of the different autoregulatory 
parameters is shown in Figure 4, and provides a 
rather different picture of which model might be 
most appropriate in quantifying autoregulation. CVd 
and mCVd estimates, indicating inter- and intra-
subject variability respectively, are presented for all 
10 parameters studied. The last five were evaluated 
for both the linear (L) and nonlinear models (NL).   

Autoregulatory parameters with the smallest 
CVd indicate best separation between NC and HC, 
and can thus considered to provide the clearest 
distinction between normal and impaired 
autoregulation in terms of inter-subject variability. 
Amongst the parameters studied H1, TP (both for 
linear and nonlinear models), A1.5 (linear model) 
and A6 (nonlinear model) had the lowest CVd. The 
latter three show a clear improvement compared to 
the final value obtained from the step response 
(FVS). Furthermore, Wilcoxon matched pair test 
showed   that   the  magnitude  of  these  parameters 
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changed significantly between NC and HC (H1, 
p≈0.0014; TP-L, p≈0.0006; TP-NL p≈0.002, A1.5-
L p≈0.004; A6-NL p≈0.0006).  

The different measures performed differently 
depending on the models used to characterize the 
relationship between ABP and CBFV. For example, 
whilst the amplitude at 1.5 s or TLS performed well  
with the L model, these had very high inter-
individual dispersion for the NL approach. 
Conversely, amplitude at 6 s was the best parameter 
for the NL and poorer for L. A slight improvement  
in FVS was observed by using the NL approach.  

When evaluating the influence of additive noise 
in the recordings, the highest dispersion in terms of 
mCVd (see Figure 4, darker bar) was noted for the 
non-linear models, and especially the time-delay 
parameters. In some cases the mCVd was larger than 
CVd, which probably reflects the differences in 
normalization: in the former dispersions are 
normalized by the differences for each individual 
(and then averaged across the cohort), but in the 
latter it normalization is by the average difference. 
Conventional parameters extracted from the 
frequency response (Pha, Coh) as well as Mx were 
relatively robust to noise (low mCVd). Overall, the 
autoregulatory parameters with the lowest variability 
and best separation between pC02 levels are H1, 
A1.5 (linear model) and A6 (nonlinear model). The 
excellent performance of the simplest parameter, 
H1, is particularly notable, and is shown in more 
detail in Figure 5, with 12 of 13 subjects showing 
the expected increase in H1 during HC. 

5 DISCUSSION  

In previous work, the high inter-subject variability 
of a number of measures of cerebral blood flow 
control and poor repeatability has been noted 
(Panerai et al., 2003, Simpson et al., 1999). The 
results in this work showed that the model used to 
represent the relationship between blood flow and 
blood pressure, and how the models are then used 
(the calculation of autoregularory parameters), can 
notably increase the uncertainty in the estimates. 
The current work is probably the most extensive 
comparison between different parameters of 
autoregulation published to date. In some of the 
earlier work (Panerai et al., 1999, Panerai et al., 
2003, Mitsis et al., 2004, Angarita-Jaimes et al., 
2010) the primary concern has been with how well 
different models fit the data. This however is only an 
intermediate step in addressing the main challenge: 
quantifying autoregulation when only spontaneous 
fluctuations in ABP and CBFV are present. In the 
continued absence of a gold-standard measure of 
autoregulation, we take as criteria for assessing 
performance the ability to distinguish between 
normal (during normo-capnia) and impaired (during 
hyper-capnia) autoregulation. The current work also 
moves beyond the more established ‘test inputs’ that   
give impulse, step or frequency (i.e. sine-wave) 
responses, recommending a ‘test input’ that is 
physiologically more realistic, in the form of a 
broad-band pulse.  

Larger dispersion was observed in the traditional 
autoregulatory parameters, particularly in the final 
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value of the step response, compared to some of the 
measures extracted from the pulse response, as 
indicated by CVd (see Figure 4). The simulations 
indicate that intra-subject variability, due to assumed 
additive noise in the recordings is a large contributor 
the overall dispersion in results. However in this 
respect, H1 outperformed all other measures. H1 
was also among the best in terms of inter-subject 
variability. It should also be noted that model fit 
(Table 1) alone clearly is not a good indicator of 
what makes for the best method in the assessment of 
autoregulation.  

 
Figure 5: a) Magnitude of H1 during normocapnia (NC) 
and hypercapnia (HC). b) Box plots representation of the 
median, quartile, minimum and maximum of H1.  

A number of other parameters for assessing 
autoregulation, including parameters taken directly 
from the model (as H1 for the first order FIR filter) 
were also investigated, but none proved superior to 
the ones presented. The relatively small sample of 
recordings available and relatively large number of 
parameters tested is a limitation of the current study. 
It is possible that the relative performance of the 
methods reflects peculiarities or random effects in 
the particular data set available. Given that 
parameters estimated are not independent, the usual 
methods for determining statistically significant 
differences between the approaches are not 
appropriate. However, the large differences observed 
between methods, probably do indicate which 
approaches are most promising to be taken on in a 
further study on a larger data set.  

6 CONCLUSIONS  

In this work we have compared a number of 
measures to evaluate autoregulatory activity. Some 
of the parameters extracted from the proposed pulse 
input show less variability compared with the more 
conventional parameters extracted from the 
frequency and step responses. Thus relatively small 
variations across as well as within subjects were 
found for the amplitude of the pulse response at 
certain lags (A1.5, A6). These also showed a clearer 

distinction between the different levels of 
autoregulation (quantified by the p value). In 
particular, for linear models A1.5 would be 
recommended whereas A6 seemed to perform well 
for nonlinear models. However, the results obtained 
from H1 suggest that this parameter from a very 
simple model might be the method of choice, with 
small coefficients of variation (CVd, mCVd). This 
method also allows the analysis of relatively short 
data segments and thus lends itself to further studies 
of time-varying (adaptive) estimates of dynamics in 
cerebral blood flow control.  

ACKNOWLEDGEMENTS 

We would like to thank Drs. Stephanie Foster and 
Lingke Fan and Prof. David Evans (Leicester Royal 
Infirmary) for generously providing the anonymized 
data used in this study and Innovation China UK for 
funding support. 

REFERENCES 
Aaslid, R. et al., 1989 Cerebral autoregulation dynamics 

in humans. Stroke, 20:45-52. 
Angarita-Jaimes, N. et al., 2010. Nonlinear modelling of 

CA using cascade models. Proc. Medicon 2010, 
Greece. 

Birch, A. et al., 2002. The repeatability of CA using 
sinusoidal lower -ve pressure. Phys. Meas, 23,73-83 

Liu, Y. et al., 2003 Dynamic cerebral autoregulation 
assessed using an ARX model. Med. Eng. Phys., 25. 

Liu, J. et al., 2005. High spontaneous fluctuation in ABP 
improves the assessment of CA. Physiol. Meas, 26 

Mitsis, G. et al., 2004 Nonlinear modelling of dynamic 
CBF in healthy humans. Adv Exp Med Biol. 551:259-
265. 

Panerai, R. et al., 1998. Grading of CA from spontaneous 
fluctuations in ABP. Stroke, 29:2341-2346. 

Panerai, R. 1998. Assessment of CA in humans -a review 
of measurement methods. Physiol.Meas. 19.  

Panerai, R. et al., 1999. Linear and nonlinear analysis of 
human dynamic CA. Am J Heart Circ Physiol. 277 

Panerai, R. et al., 2003. Variability of time-domain indices 
of dynamic CA Physiol Meas, 24:367–381.  

Piechnik, S. et al., 1999 The continuous assessment of 
cerebrovascular reactivity Anesth Analg, 89:944–9  

Simpson, D. et al., 2001. A parametric approach to 
measuring CA  Ann Biomed Eng, 29:18–25. 

Simpson, D. and Birch, A., 2008. Optimising the 
assessment of CA from black-box models. Proc. 
MEDSIP 2008. 

Tiecks, F. et al., 1995. Comparison of static and dynamic 
CA  measurements. Stroke 26: 1014-1019. 

Westwick, D. and Kearney, R., 2006. Identification of 
Nonlinear Physiological Systems. IEEE Press, 1st  Ed. 

Zhang R et al., 1998 Transfer function analysis of dynamic 
CA in humans. Am. J. Physiol., 274. 

BIOSIGNALS 2011 - International Conference on Bio-inspired Systems and Signal Processing

256


