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Abstract: Recent technological advances in DNA sequencing technology are resulting in ever-larger quantities of 
sequence information being made available to an increasingly broad segment of the scientific and clinical 
community. This is in turn driving the need for standard, rapid and easy to use tools for genomic 
reconstruction and analysis. As a step towards addressing this challenge, we present PadeNA (Parallel de 
Novo Assembler), a parallelized DNA sequence assembler with a graphical user interface. PadeNA is 
designed using interface-driven architecture to facilitate code reusability and extensibility, and is provided 
as part of the open source Microsoft Biology Foundation. Installers and documentation are available at 
http://research.microsoft.com/bio/. 

1 INTRODUCTION 

Many attempts have been made to address the DNA 
sequence assembly problem and all give way to 
heuristic methods at some stage. Traditionally, 
Sanger sequencing projects have relied on a heuristic 
assembly method known as overlap-layout-
consensus, in which overlaps between reads are used 
to guide the assembly. This graph-based model has 
inspired the development of applications such as the 
TIGR (Sutton, 1995), Celera (Myers 2000), Phrap 
(Green, 1996), CAP3 (Huang, 1999), Atlas (Havlak, 
2003) and ARACHNE (Batzoglou, 2002) 
assemblers. 
The latest generation of DNA sequencing 
technologies is capable of producing far greater 
volumes of data, but these tend to be in the form of 
short sequence reads. With short reads eliminating 
the reliability of read overlaps, the pioneering work 
of Pevzner et al. (Pevzner, 2001) on de Bruijn 
graphs now forms the basis of many of the current 
generation of short-read assemblers. Velvet 
(Zerbino, 2008), ALLPATHS (Butler 2008), Euler 
SR (Chaisson, 2008) and ABySS (Simpson, 2009) 
all have de Bruijn graphs at the heart of their 
algorithms. 

Many of the currently available short read de novo 
assemblers are single-threaded applications 
accessible through a command line interface and 
designed to run on a single processor or distributed 
memory architectures. While sufficient for the 
current requirements of genomics, the increasing 
availability of cheap DNA sequence is already 
revolutionizing the many branches of genomics 
research and finding increasingly broad application 
in healthcare and non-traditional fields from 
environmental studies to law enforcement. This 
radically broadened user base will demand tools that 
are compatible with the latest sequencing 
technologies, are adapted to their specific needs and 
are responsive and intuitive. This in turn requires a 
code base that can leverage the capabilities of 
computer hardware with shared memory 
architectures and facilitate rapid application 
development and intuitive user interface design. 
Many of these needs can be met within a modular 
framework of reusable bioinformatics componentry 
open to community contribution and freely available 
for both commercial and academic developers. Such 
a framework would be able to evolve along with the 
technologies it supported, extending as needed to 
accommodate new experimental techniques and 
computer architectures while reducing the level of 
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effort needed to support an increasingly diverse user 
community. 

2 IMPLEMENTATION 

PadeNA (the Parallel de Novo Assembler) has been 
implemented with the principles of code 
modularization and reusability in mind, and focuses 
on the concept of parallelization in shared memory 
architecture. This is the first application of its kind 
developed for Windows-based users. The major 
improvement in PadeNA is interface driven design 
(Pattison, 1999) which promotes reusability and 
extensibility of code without affecting its data 
handling capabilities. In effect, PadeNA is a 
sequence of more basic functions, and developers 
can easily customize the default algorithm by 
inserting or substituting their own custom classes to 
meet the needs of their users. In order to 
demonstrate the functionality of PadeNA, we have 
also developed a graphical user interface using 
Windows Presentation Foundation, providing a 
usable and intuitive interface to this and other 
assembly algorithms.  
PadeNA is built as a part of a .NET based open-
source bioinformatics library, the Microsoft Biology 
Foundation (MBF). It uses .NET 4.0 constructs for 
multi-core parallelization and performance scales 
well on computers with two or more processors as 
compared to single-core systems.  
Microsoft .NET framework uses a method to 
improve the runtime performance of computer 
programs. This is known as just-in-time compilation 
(JIT), also known as dynamic translation. JIT 
compilers represent a hybrid approach, with 
translation occurring continuously, as with 
interpreters, but with caching of translated code to 
minimize performance degradation. It also offers 
other advantages over statically compiled code at 
development time, such as handling of late-bound 
data types and the ability to enforce security 
guarantees.  
Moreover, Native Image Generator, or simply 
NGEN is the Ahead-of-time compilation service of 
the .NET Framework. It allows a .NET assembly to 
be pre-compiled instead of letting the Common 
Language Runtime do a Just-in-time compilation at 
runtime (Biswas, 2006).  
Further, bioinformatics researchers working in 
Unix/Linux environment can take advantage of 
Mono 2.8 for extending PadeNA. Mono is an open 
source, cross-platform, implementation of C# and 

the CLR that is binary compatible with 
Microsoft.NET (Mono, 2004).   

2.1 Microsoft Biology Foundation 

The Microsoft Biology Foundation is an open source 
reusable .NET library and application programming 
interface for bioinformatics research. Application 
developers can use MBF to perform a wide range of 
tasks; DNA, RNA and protein sequences can be 
imported from files in a variety of standard data 
formats, including FASTA, FASTQ, GenBank, 
GFF, BED, SAM and BAM. Analysis of these 
sequences can be performed using one of several 
sequence alignment algorithms including Smith-
Waterman, Needleman-Wunsch, pairwise overlap 
aligner, MUMmer and NUCmer (Kurtz, 2004). 
These sequences can also be queried against various 
databases using BLAST (Altschul, 1997) services, 
hosted at different locations and accessible through a 
web service interface. File formatters can be used to 
write sequences in the desired supported output 
format irrespective of the original input format. 
Data files are sometimes large enough that hardware 
limitations prevent a parser from loading the entire 
data set into memory – this may occur when 
handling one very large sequence, or a very large 
file (or files) containing many smaller sequences. 
MBF implements data virtualization by dividing the 
data into blocks and providing the data block by 
block to the parser as required by the application. 
MBF represents sequence data and metadata with 
format-independent Sequence and SequenceRange 
objects. These objects efficiently store sequence data 
in a variety of encoded formats and provide a 
flexible and robust way to represent sequences in the 
MBF environment. 
MBF applications can be implemented in any .NET-
compatible language. Over 70 of these exist, suiting 
many different programming styles and levels of 
expertise; examples include C#, F#, Visual Basic 
and Python. 

2.2 Input Parameters  

Kmer Length: The choice of kmer length is a 
critical task. The search space depends upon kmer 
length, with smaller kmer length increase the 
number of vertices in the graph. Larger kmer length 
reduces the number of ambiguous edges in the graph 
but also significantly impact the true overlaps 
between kmers. For optimal graph formation, kmer 
length should not be less than half the length of the 
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longest input sequence and cannot be more than the 
length of the shortest input sequence. 
Dangle Threshold:  Maximum length to traverse 
from dead ends till point of ambiguity is reached. 
This value is dependent on kmer length. (Default: 
Kmer length + 1) 
Redundant Path Length Threshold: Maximum 
length to traverse from point of ambiguity till paths 
converge in the graph. (Default: 3 * (Kmer length + 
1)) 
Erosion Threshold: The parameter erodes bases at 
the ends of blunt contigs with coverage less than the 
specified threshold. (Default: Square root of median 
of kmer coverage) 
Contig Coverage Threshold: The parameter 
removes low coverage contigs. (Default: Square root 
of median of kmer coverage) 
Scaffold Redundancy: The number of mate pair 
connections required to connect a pair of contigs. 
(Default: 2) 
Depth: This parameter defines the threshold while 
performing depth first search on contig overlap 
graph. (Default: 10) 

3 ASSEMBLY ALGORITHM 

Sequence assembly algorithms typically have two 
major phases. In the first phase, contigs are extended 
until either they cannot be unambiguously extended 
further or they reach an end due to lack of read 
coverage.  
During the second phase, information from paired-
end reads is used to resolve ambiguities and order 
and merge contigs to generate scaffolds. We have 
used similar steps to those already available in 
ABySS (Simpson, 2009), Euler SR (Chaisson, 
2008), BAMBUS (Pop, 2004) and the Greedy Path 
Merging Algorithm (Huson, 2002). However we 
have parallelized many of them, as described later. 

3.1 Building the de Bruijn Graph 

The sequence reads are first loaded using the data-
virtualized parser of MBF and read sequences with 
ambiguous characters are removed prior to 
construction of the graph. The remaining sequences 
are broken into kmers by defining a window of 
length k and moving it along each sequence one base 
at a time. The forward and reverse complementary 
sequence of a kmer are considered equivalent.  We 

consider lexicographically larger kmer sequence as 
sequence from positive strand.   
A de Bruijn Graph is a edit distance graph in which 
nodes corresponds to objects, and two nodes are 
connected if the edit distances between the objects 
represented by  those nodes is one. Each node in the  

 

Figure 1: Bi-directed de Bruijn Graph for sequence 
ATCGACTATAAGGCATCGAA using kmer length = 3. 
Where, blue solid lines indicate forward edges, Brown 
solid lines indicate backward edges, blue dotted lines 
indicate forward edges for reverse complementary 
sequence and brown dotted lines indicate backward edges 
for reverse complementary sequence. 
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graph corresponds to a unique kmer present in some 
input sequence or its reverse complement. A 
directed edge connects two nodes labeled aα and αb, 
where α is a string of length k-1. A bi-directed de 
Bruijn Graph is a natural model for the assembly 
problem because the two labels for nodes 
corresponds two strands of DNA molecule. 

3.2 Error Removal 

This is the most critical step for assembly. The steps 
involved here will remove sequencing errors in the 
reads. This process also removes single nucleotide 
polymorphisms. 

3.2.1 Dangling Link Removal 

Any kmer containing a sequencing error is likely to 
be unique and will therefore have only a single 
connection to a preceding kmer in the graph, 
forming a short side branch. The graph is traced for 
branches with dead ends and then these branches are 
traced back to a point of ambiguity is reached. If the 
count of the nodes traversed is less than threshold 
value then nodes are removed from the graph. This 
step is iteratively performed for bigger branches 
with large number of nodes as removal of small 
branches may create longer dangling links until the 
threshold is reached. The effectiveness of the 
dangling link removal step also depends on kmer 
length (longer kmers may contain multiple sequence 
errors, in turn creating longer dangling links). 

3.2.2 Redundant Path Removal 

Another common structure found in de Bruijn 
graphs is often caused by sequencing errors or single 
nucleotide polymorphisms in the middle of reads. 
Sequence variation of this kind creates ambiguity in 
the graph and impairs contig extension. The graph is 
traversed to find all points of divergence, and at each 
point of divergence the path is traced forward until a 
user-defined threshold is reached. If the paths 
converge and contain equal number of nodes, then 
the path with lower coverage is removed from the 
graph. 

3.3 Contig Builder 

In the final step of the first phase of sequence 
assembly, the graph is traversed to find nodes with 
ambiguous edges and these edges are removed, 
breaking the graph into a number of sub graphs. The 
DNA sequence of each sub-graph is reconstructed 

from its constituent kmers to create the initial set of 
contigs. 

3.4 Scaffold Generation 

The second phase takes into consideration mate-pair 
information to determine an overall ordering of 
contigs.  
Libraries of DNA fragments used in sequencing are 
frequently generated by experimental techniques that 
guarantee all fragments fall within a defined size 
range.  
Mate-pairs are pairs of reads corresponding to the 
DNA sequence at each end of the same fragment of 
DNA and have a known strand and orientation 
relative to each other. Where the mean and standard 
deviation of fragment length is known for a library, 
we can estimate the distance between reads in a 
mate-pair and use this information to find an order 
and orientation of all contigs – a process known as 
scaffolding.  
Mate pairs from multiple DNA libraries can also be 
used in this step.  Each library is considered for 
distance estimation between contigs.  

3.4.1 Aligning Reads to Contigs 

Reads are aligned to contigs before attempting to 
establish links between contigs. In PadeNA, we 
create ungapped alignments by converting each read 
to a list of kmers and matching these kmers to a list 
of kmers similarly generated from the contig. 

3.4.2 Establishing Mate-pair Links 
between Contigs 

Potential links between contigs are determined from 
mate-pair information in the aligned reads. The 
information is encoded in the read id, and PadeNA 
supports several standard naming conventions. 

3.4.3 Filtering Mate-pairs 

Mate-pairs are initially filtered based on contig 
orientation. The orientation of pair of contigs is the 
orientation supported by the largest number of mate-
pairs that connect them. A mate-pair connection is 
confirmed between a pair of contigs only if the 
number of mate-pairs supporting a particular 
orientation is greater than or equal to a threshold 
value. This removes spurious links between contigs 
and helps in the correct estimation of distance 
between contigs. (Pop, 2004) 
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Figure 2: (a) Five mate-pairs are aligned to contig 1 and 
contig 2. Out of five mate-pairs, three support forward 
contig orientation of contig 1 and two support reverse 
orientation. (b) After filtering, the two mate-pairs 
supporting reverse orientation for contig 1 are removed 
and both contigs are given orientation based on the 
majority of mate-pairs. 

3.4.4 Distance Calculation 

The distance between contigs is calculated using 
mate-pair links. Each edge distance is given weight 
= 1. 

 
Figure 3: D = m – (l – F(i)) – R(j) where D is the distance 
between contigs, m is mean length of fragments in the 
library, l is length of contig 1, F(i) and R(j) are respective 
positions of alignment between the contig and read. 

3.4.4.1 Edge Bundling 

If there is more than one-mate pair link between a 
pair of contigs, these mate-pairs are bundled into a 
single distance provided that mate pair distances lie 
in ± 3σ range from the median distance between 
contigs. The length of the new edge after bundling is 
p/q and standard deviation = 1/ √q where:  =  ∑ ݍ ሻమ andࢋሺ࣌ሻࢋሺ =  ∑ ଵఙሺሻమ (1) 

This process is repeated until no edges fall in this 
range. The weight of the new edge is equal to the 
sum of the weights of the bundled edges. (Huson, 
2002). 

 
Figure 4: D1, D2, D3, D4 are distances between a pair of 
contigs with different mate pairs. D represents distance 
between contigs after edge bundling. 

3.4.4.2 Weighted Reduction 

If there are still edge distances which cannot be 
bundled using the above criterion, we perform 
weighted bundling, taking the weight of all edges 
into account: lሺeሻ = ∑ ୪ሺୣሻ∑ ୵ሺୣሻ and ߪሺ݁ሻ =  ∑ ఙሺሻ∑ ௪ሺሻ (2) 

Where l(e) denotes length of the new edge and σ(e) 
denotes the standard deviation of the new edge. The 
weight of the new edge will be the sum of the 
weights of all merged edges. 

3.4.5 Contig Overlap Graph 

A contig overlap graph is created for a given set of 
contigs. Each node represents a contig and contigs 
are connected to other contigs if there is k -1 
overlap, where k denotes kmer length used for 
construction of contigs. (Huson, 2002). 

3.4.6 Graph Traversal 

The graph is traversed in a depth-first search manner 
to look for a single unique path from start contig Ci 
until all contigs paired with Ci are included in the 
path. As the graph can be extremely dense in 
repetitive areas, parameter threshold value is defined 
to limit the depth of search in the graph. This 
process is repeated for each contig Ci. The final step 
removes overlapping contigs and stitches together 
the consistent paths to generate the scaffolds. 
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4 PARALLELIZATION 
IN PADENA 

Each step in PadeNA is individually parallelized 
which aids in extensibility and reusability of code. 

4.1 Parallel de Bruijn Graph 
Construction 

A de Bruijn Graph is the core data structure used in 
the assembly process. In PadeNA, we have 
developed a unique implementation of the de Bruijn 
Graph for shared memory architecture systems. The 
entire read set is portioned using .NET Partitioner 
equal to the number of cores in the system. Then 
individual core constructs kmer dictionary on 
portioned reads. Finally, dictionaries are merged into 
a single dictionary. While constructing dictionary 
forward and reverse complement are treated as 
same. Each kmer sequence as key in dictionary is 
defined as a node of a de Bruijn Graph. The 
adjacency information of each node is generated 
independently. Each node can be connected to a 
maximum of 8 neighbors, each sharing a (k -1) 
overlap with the node either in the forward or 
reverse direction. This connectivity information is 
also stored in nodes to fasten the step of graph 
traversal. 

4.2 Error Removal  

Dangling links identification and removal steps are 
both performed as a parallelized activity. Redundant 
paths which are also present can be similarly 
removed in parallel. For definitions of dangling links 
and redundant paths, please refer to the assembly 
algorithm section. 

4.3 Scaffold Generation 

Scaffold generation is the second phase of assembly. 
As with previous phase of assembly, each step is 
individually parallelized. 

4.3.1 Contig Overlap Graph  

The contig overlap graph is a core data structure for 
the second phase of assembly.  Each contig is 
considered as a node of the graph. Each contig 
independently locates its neighbor such that each 
neighbor should have a (k-1) overlap in either 
forward or reverse complement direction. 

4.3.2 Depth-First Search 

The contig overlap graph is traversed in a depth-first 
fashion to generate all possible paths meeting the 
distance constraints imposed by mate-pair data. This 
step can be parallelized because each path 
originating from different node can be traversed 
independently and a list of paths generated. These 
paths may then be merged to generate scaffolds. 

4.4 Scalability of PadeNA 
on different cores 

The scalability of the algorithm is a major concern 
while parallelization of algorithm.  The Euler dataset 
as explained in results section is used to assemble 
using default parameters on various system 
configurations. 
The scalability of the algorithm depends on size of 
the data and error rate. 

 
Figure 5: Variation of time taken for assembly vs. number 
of processors. 

5 ASSEMBLY ANALYSIS 

For all data sets, only contigs ≥ 100 bp in length 
were used for evaluation. In addition, contigs are 
only considered to be aligned, if they align ≥ 95% to 
a reference genome, if available. The parameters 
used to estimate quality of assembly are: 

• N50: N50 is a statistical measure given in base 
pairs, such that 50% of the assembled genome 
lies in contigs of at least this length. 
Genomic Coverage: The percentage of bases 
of reference genome covered by contigs or 
scaffolds. This is computed using the MUMmer 
(Kurtz, 2004) tool where a reference genome is 
available. 

• Largest contig/Mean size of contigs/number 
of contigs ≥ 100 bp 

These   parameters  are  calculated and used  as a 
guideline     to      denote    relative   quality   of   the  
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Figure 6: Sequence assembler view of sequence assembly and BLAST result for assembled sequence. 

assembly performed (De Novo, 2009). MUMmer is 
used for alignment because of its speed and 
suitability for genome-level alignments  

6 RESULTS 

6.1 Evaluation of PadeNA Assembly 
using Euler Data 

The data used for the analysis is the data provided 
by the Euler SR (Chaisson, 2008) tool as test data. It 
is a 6.8 MB paired-read dataset with mean insert 
length of 1000bp and standard deviation of 500bp. 
We performed assemblies with Euler SR. version 
1.1.2 and PadeNA version 1.0. Assemblies were 
analyzed using the above-mentioned assembly 
analysis parameters. 

The results show PadeNA produces more 
contigs, which may be due to repeats in the base 
sequence. The reference sequence was not available 

and so we were not able to calculate genomic 
coverage and analyze the reason for a large number 
of contigs. 

Table 1: Comparison of PadeNA output quality against 
Euler SR. 

Assembler Contigs
≥ 100 bp 

Mean Size 
(in bp) N50 

Largest 
Contig 
(in bp) 

Euler SR version 
1.1.2 (k = 20) 

19 5185 14335 30523 

PadeNA 
(k = 20 and Depth = 
20 

50 10543 30628 30673 

7 DISCUSSION 

The PadeNA algorithm described above is included 
as part of the broader Microsoft Biology Foundation 
(MBF) library of general bioinformatics 
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functionality, and is available directly to the 
application developer or may be accessed by the 
user via the included Sequence Assembler 
demonstration application (Fig. 6). The Sequence 
Assembler application is a GUI-based interface to a 
range of MBF functions and uses rich user interface 
elements to enable visualization and manipulation of 
genomic data. The user can perform assembly, 
alignment and multiple sequence alignment of DNA, 
RNA and protein sequences, visualizing the output 
in a graphical alignment display built using the 
Windows Presentation Foundation and Silverlight. 
The Sequence Assembler also provides a connector 
to various BLAST (Altschul, 1997) web services, 
which can be used to characterize an assembled 
sequence using public databases.  
While our initial results are promising, some work is 
needed to further improve the quality and utility of 
the assembled output, especially for large size 
genomes. Nonetheless, PadeNA can currently be 
used for assembling bacterial genomes on shared 
memory architectures and each step can be 
customized to handle datasets with different 
characteristics, or better meet the needs of different 
groups of scientific users. 
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