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Abstract: The dominant methods to search for relevant patterns in protein sequences are based on character-by-
character matching, performed by software known as BLAST. In this paper, sequences are recoded as p-
peptide frequency matrix that is reduced by singular value decomposition (SVD). The objective is to 
evaluate the association between statistics used by BLAST and similarity metrics used by SVD (Euclidean 
distance and cosine). We chose BLAST as a standard because this string-matching program is widely used 
for nucleotide searching and protein databases. Three datasets were used: mitochondrial-gene sequences, 
non-identical PDB sequences and a Swiss-Prot protein collection. We built scatter graphs and calculated 
Spearman correlation (ρ) with metrics produced by BLAST and SVD. Euclidean distance was negatively 
correlated with bit score (ρ>-0.6) and positively correlated with E value (ρ>+0.7). Cosine had negative 
correlation with E value (ρ>-0.7) and positive correlation with bit score (ρ>+0.8). Besides, we made 
agreement tests between SVD and BLAST in classifying protein families. For the mitochondrial gene 
database, we achieved a kappa coefficient of 1.0. For the Swiss-Prot sample there is an agreement higher 
than 80%. The fact that SVD has a strong correlation to BLAST results may represent a possible core 
technique within a broader algorithm. 

1 INTRODUCTION 

Comparison of protein sequences is one of the most 
fundamental issues in Bioinformatics. The dominant 
methods of such analysis are based on character- by- 
character matching, made by rapid but not very 
sensitive algorithms with heuristics, known as 
BLAST – the basic local alignment search tool 
(Altschul et al., 1990). Even with good performance, 
these methods still have difficulties, due to 
computational complexity and other issues, as 
problems with genetic recombination and genetic 
shuffling (Vinga and Almeida, 2003). BLAST, for 
example, is inherently subjective and highly 
sensitive to the substitution matrix used in cut-off 
points and applied gap penalties, that are difficult to 

define and when altered, can produce conflicting 
results (Krawetz and Womble, 2003) and even 
“BLASTphemy” when users are unable to interpret 
its results (Pertsemlidis and Fondon III, 2001). 
Database redundancy, very common in a large 
protein sequence collection, is another problem for 
BLAST, slowing down searches and reducing the 
significance of an alignment because of the linear 
dependency of BLAST E value and the database size 
(Holm and Sander, 1998).  

Several methods for comparing sequences and 
complete genomes, which do not explicitly use 
comparisons of character-by-character, have been 
proposed and successfully applied as alternative to 
alignments approaches (Wu et al., 1992; Stuart et al., 
2002; Stuart & Berry, 2004; Yuan et al., 2005; Dong 
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et al., 2006; Teichert et. al, 2007; Liu et al., 2008; 
Jun, S.R. et al., 2010). In this paper, proteins are 
recoded as p-peptide frequency matrix that is 
reduced by singular value decomposition (SVD), in 
a latent semantic indexing information retrieval 
system as described by Stuart (Stuart et al., 2002) 
and adapted by Couto (Couto et al., 2007). We first 
represented proteins as vectors and then calculated 
sequences similarities using linear algebra methods.  

Figure 1 shows the simplest case where proteins 
are represented as three-dimensional vectors (3D): 
frequencies of Cystein, Alanine and Isoleucine are 
used to recode mitochondrial genes for four species. 
It is interesting to notice that protein vectors from 
the same family (COX3 and COX2) point to the 
same direction, which can be measured by the cosine 
among the vector angles (Eldén, 2006).  

 
Figure 1: Representation of proteins as three-dimensional 
vectors. 

The first objective here is to assess the 
relationship among similarity metrics from SVD, 
cosine and Euclidean distance, bit score and E value, 
statistics used by BLAST. We applied a scatter 
graph analysis and Spearman’s rank correlations 
technique to do so (ρ). The second objective is to 
verify if there is an agreement, when an unknown 
sequence is classified or identified, among SVD 
results and the “gold standard”, defined by the most 
similar BLAST hit. This was made by analysis of 
percent agreement, kappa coefficient, sensitivity, 
specificity and ROC curve (Altman, 1991). We 
chose BLAST as a standard because this string-
matching program “has become the single most 
important piece of software in the field of 
bioinformatics” and it is widely used for nucleotide 
searching and protein databases (Korf et al., 2003). 
According to Google, the first paper describing 
BLAST (Altschul et al., 1990) was cited over 23,000 
times (www.scholar.google.com). 

2 SYSTEM AND METHODS 

2.1 Programs and Datasets 

Programs implemented for this analysis were written 
in MATLAB (The Mathworks, 1996), using its 
inbuilt functions (SVD, sparse matrix manipulation 
subroutines etc). Three datasets were used in this 
paper. The first evaluated database had 64 vertebrate 
mitochondrial genomes composed of 832 proteins 
from 13 known gene families (ATP6, ATP8, COX1, 
COX2, COX3, CYTB, ND1, ND2, ND3, ND4, 
ND4L, ND5 and ND6). This curated protein 
database was downloaded from the online 
information by Stuart et al. paper (Stuart et al., 
2002). The file "pdb_seqres.txt.gz", located in 
http://bioserv.rpbs.jussieu.fr/PDB/, was the second 
database. This file has 121,556 redundant protein 
sequences from PDB (Protein Data Bank), which 
was reduced to 37,561 non-identical sequences. A 
randomly sample of 40,000 sequences from the 
Swiss-Prot section of the Universal Protein Resource 
(UniProt) was the third protein collection 
(http://www.uniprot.org/downloads). 

2.2 Vector Representation of Proteins  

Before one can apply the linear algebra methods 
used here, it is necessary to represent proteins as 
vectors in a high-dimensional Euclidean space. 

Firstly, we consider a bio molecular sequence as 
a complex written language, so its analysis can be 
very similar to that used by Information Retrieval 
Systems, where large amounts of textual information 
are organized, compared and categorized. In this 
case, individual protein sequences correspond to 
‘passage’ of text, whereas peptides of a given size 
(p) serve as ‘words’ (Stuart et al., 2002). Hence, 
sequences are recoded as p-peptide frequency values 
using all possible overlapping p-peptides window. 
With 20 amino-acids it is generated a 20p x n matrix, 
where p is the word-size and n is the number of 
proteins to be analyzed. In these matrices, proteins 
are treated as documents and the p-peptides as terms, 
which allow the problem to be solved by linear 
algebra methods (Eldén, 2006). 

The amino-acid word-size p that can be used to 
build the p-peptide frequency matrix varies from one 
to four. The utility of larger peptides is yet to be 
explored, but to use 5 or more amino-acids can be 
result in computational problems. With five amino-
acids the frequency matrix will be 3,200,000 rows, 
most of that with zero. This structure is huge and 
hard to handle. Besides computational issues, larger 
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peptides will lead to problem during the similarity 
search step. According to Stuart (Stuart et al., 2002), 
tripeptides may prove useful with highly diverged 
sequences and tetrapeptides with highly related 
proteins. On the other hand, larger peptides will 
remain real undetected similarity, even between very 
highly related proteins. 

Representing proteins as frequency vectors of p-
peptides has the limitation that it does not consider 
the occurrences order of p-peptides in the sequence. 
Despite this possible ambiguity, several studies have 
shown that this approach is surprisingly effective in 
discriminatory analysis of protein sequences (Vinga 
and Almeida, 2003). Anyway, before using this 
protein vector representation, we made an analysis 
of its ambiguity rate according to the number of 
amino-acids (p) in the matrix of frequency protein-
peptide. We compared 26,675 non-identical proteins 
longer than 100 amino-acids and selected from the 
PDB dataset. To identify ambiguities during vector 
recoding, we compared 355,764,475 sequences-
pairs. The percentage of ambiguity felt from about 
4%, when used only one amino-acid in the matrix of 
frequencies (p=1) to less than 0.5% in proteins with 
two or more amino-acids. The percentage of 
uncertainty was calculated considering the number 
of different sequences with the coding for all 
sequences that were compared pair-to-pair (26,675). 
It is noteworthy that in all pairs with identical vector 
coding, even among the 1,267 pairs with p=1, the 
protein involved was exactly the same, with minor 
changes of amino-acids in some positions. This 
happened because, before analysis, we removed 
from the PDB database only sequences with 100% 
identity. We can say that the ambiguity is a 
theoretical possibility in principle but not in practice. 

2.3 Singular Value Decomposition 

After the generation of the p-peptide frequency 
matrix (M) representing each dataset with n 
sequences, the matrix itself is subjected to SVD 
(Deerwester et al., 1990; Berry et al., 1995) and 
factorized as M = USVT. Where U is the p x p 
orthogonal matrix having the left singular vectors of 
M as its columns, V is the n x n orthogonal matrix 
having the right singular vectors of M as its 
columns, and S is the p x n diagonal matrix with the 
singular values σ1 ≥ σ2 ≥ σ3 ... ≥ σr of M in order along 
its diagonal (r is the rank of M or the number of 
linearly independent columns or rows of M). This is 
performed by many software, including MATLAB 
(The Mathworks, 1996), used in this work. The 
matrix (U) is related to the p-peptides of the dataset, 

whilst (V) is associated with the proteins studied. 
The central matrix (S) contains the singular values 
of (M) in decreasing order. These singular values are 
directly related with independent characteristics 
within the dataset. Actually, the largest values of (S) 
provide meaning of the peptides and proteins in the 
matrix (M). On the other hand, the smaller singular 
values identify less significant aspects and the noisy 
inside the dataset (Eldén, 2006). The number of 
significant singular values from SVD analysis shows 
how many process or groups can be hidden in 
database. 

For the sequence similarities analysis, instead of 
using the original matrix M, a rank reduction of M is 
done by using the k-largest singular values of M, or 
k-largest singular triplet Uk, Sk, Vk, where k < r. The 
truncated matrix Mk = UkSk(Vk)T has two main 
advantages. Reduced dimensionality makes the 
problem computationally approachable, which is 
crucial in whole genome analysis. Besides, and very 
important, the rank reduction improve accuracy of 
protein matrix by discarding noise and reducing the 
variability in p-peptide usage for the same protein 
family (Couto et al., 2007). The choice of k, the 
number of singular values that must be used in the 
reconstruction of the protein matrix after SVD, is 
critical and normally empirically decided. Ideally, 
the k factor or matrix dimension must be large 
enough to fit all the real structure in the data, and 
small enough not to fit the sampling error or 
unimportant details. In this work we used the 
method proposed by Everitt and Dunn, that 
recommends analyzing the relative variances of each 
singular values. Singular values which relative 
variance is less than 0.7/n, where n is the number of 
proteins in the document-term matrix, must be 
ignored (Everitt and Dunn, 2001). 

3 RESULTS 

Firstly, we analyzed 620 sequences randomly 
selected from the first database with mitochondrial 
gene families. BLAST, actually bl2seq.exe program 
with default parameters, were used to compare each 
pair of sequence, which totalling 191,890 
comparisons. The same proteins were recoded as 
vectors in a high-dimensional space that was 
reduced by SVD and analyzed according to the 
methods described by Couto (Couto et al., 2007). 
Scatter plots were built and suggested that Euclidean 
distance is negatively related with bit score, but 
positively correlated with E value. For the cosine we 
found a negative association with E value and a 
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positive relationship with bit score. Those results are 
consistent because, the higher cosine, the more 
similar are the two protein vector. The same happens 
with BLAST bit score. As the E value, the smaller 
Euclidean distance between the end points of two 
protein vectors, the more similar are the sequences. 
Figure 2 and 3 presents respectively scatter graphs 
between the bit score and cosine and between the bit 
score and Euclidean distance. 

 
Figure 2: Scatter graph for mitochondrial gene dataset: 
cosine of angle between protein vectors has a positive 
correlation with BLAST bit score. 

 
Figure 3: Scatter graph for mitochondrial gene dataset: 
Euclidean distance between protein vectors has a negative 
correlation with BLAST bit score. 

For the second database, 27,361 non-identical 
PDB sequences longer than 100 amino-acids were 
compared with BLAST and SVD. In this analysis, 
the first protein was compared with the second, than 
was compared with the third and so on, which 
totalled 27,360 comparisons. Figure 4 shows the 
parameters used by bl2seq.exe program analysis. 

 
Figure 4: BLAST parameters used in the PDB database. 

We built scatter graphs and calculated Spearman 
correlations (ρ) among bit score and E value from 
the most similar BLAST hit, respective cosine and 
Euclidean distance from SVD (Figure 5). All plots 
had the same shape that observed for the first 
database. For BLAST analysis we also compared the 
results obtained by applying different substitution 
matrix: BLOSUM62, BLOSUM45, BLOSUM80, 
PAM30, PAM70 and PAM2050. The Euclidean 
distance was negatively correlated with bit score 
(ρ>-0.6) and positively correlated with E value 
(ρ>+0.7). For the cosine we found a negative 
correlation with E value (ρ>-0.7) and a positive 
correlation with bit score (ρ>+0.8). It is interesting 
that the correlation between E value and bit score 
was not exactly 1.0 because of rounding errors. 

Besides the correlation analysis, we made an 
agreement test between SVD and BLAST in 
classifying protein families. For the mitochondrial 
gene families database, we used a sample of 212 
sequences from the 13 gene families as queries (test 
set), and the other proteins (620) were used to 
generate the frequency matrix (training set): the 
kappa coefficient between SVD and BLAST was 1.0 
(agreement = 100%). If we use the first three 
significant singular values from the SVD analysis of 
the thirteen gene families’ database, we can generate 
a three-dimensional graph showing how these genes 
can be visualized in space (Figure 6). It is interesting 
how the families are well separated in space, which 
facilitates classification. 

In another analysis, the 27,360 pair-to-pair 
comparisons made by BLAST and SVD of the PDB 
sequences, were evaluated in order to asses the 
agreement of both techniques in detecting biological 
significance. The gold standard for a biological 
significant alignment was defined by an E value less 
than 0.05 obtained using BLOSUM62 as the 
substitution matrix (Pertsemlidis and Fondon III, 
2001). The area under the ROC curve (AUC) was 
estimated for both, cosine, Euclidean distance and 
for the frequency matrix using one, two, three and 
four peptides. The eight AUCs estimated were 
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higher than 0.80 (Figures 7 and 8), which indicates a 
good performance of SVD in detecting biological 
significant similarities (Altman, 1991).  

 
Figure 5: Correlation matrix: BLAST versus SVD. 

 
Figure 6: Visualization of mitochondrial genes using the 
three first singular values from SVD: the 13 gene families 
are well separated in space, which facilitates classification. 

Table 1 summarizes the results when cosine 
among protein vectors is used to detect a biological 
significance similarity. When is used a cut-off of 
0.90 for the cosine, the sensitivity and specificity for 
detecting biological significance were, respectively, 
72% and 94%. 

 
Figure 7: ROC curve built when SVD Euclidean distance 
is used to detect biological significant similarity. 

 
Figure 8: ROC curve built when SVD cosine is used to 
detect biological significant similarity. 

Table 1: Two-way contingency table: cosine higher than 
0.90 between protein vectors has 72% sensitivity and 94% 
specificity to detect biological significant similarities. 

BLOSUM62 
biological 

significance? 

Cosine biological significance? 
 

(+) 
 

(−) 
 

Total 
Yes 9,678 3,843 13,521 
No 808 13,031 13,839 

Total 10,486 16,874 27,360 

During the analysis of the third protein 
collection, a sample of 40,000 Swiss-Prot sequences 
was randomly divided into two groups: 9,953 
proteins were selected as queries (test set), and the 
other 30,047 sequences (training set) were used to 
generate the frequencies matrix of SVD and to 
become the BLAST database for evaluating the 
queries. All 9,953 unknown proteins were analyzed 
by SVD and BLAST (actually, blastall program 
with default parameters) and results of both methods 
were compared in order to detect agreement. If the 
Swiss-Prot mnemonic protein identification code of 
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the most similar BLAST hit was identical as that 
obtained by a SVD analysis, so we had an 
agreement. When this happened, the matched 
proteins are the same, from the same or different 
species. Table 2 presents the percent agreement 
between BLAST and SVD: the results were good, 
except when the p-peptide matrix is built by using 
just one amino-acid as the word-size. 

Table 2: Agreement between SVD and BLAST for 
classifying proteins from the Swiss-Prot dataset. 

p-peptide 
matrix 

SVD similarity metric Percent agreement 
with BLAST 

p=1 Cosine 20% 
Euclidean distance 30% 

p=2 Cosine 79% 
Euclidean distance 82% 

p=3 Cosine 80% 
Euclidean distance 82% 

p=4 Cosine 69% 
Euclidean distance 72% 

4 CONCLUSIONS 

We worked with quite different techniques and we 
found important association among their metrics and 
good agreement between both methods. Despite the 
fact that is presumably not surprising that e.g. 
BLAST bit score could be positively correlated to 
cosine of angle, or negatively correlated to 
Euclidean distance, the sizes of these correlations 
are very interesting (Figure 5). 

We achieved similar results between BLAST 
and SVD in several protein analyses. The findings 
strongly suggest that SVD can be used to protein-
protein comparisons with biological significance of 
the similarities identified both for cosine and 
Euclidean distance. The fact that SVD has a strong 
correlation to BLAST results may represent a 
possible core technique within a broader algorithm. 

Besides, SVD has some characteristics that could 
be an advantage over alignment algorithms. For 
example, SVD analysis can be very rapid, it does not 
use any heuristics to asses an unknown sequence, its 
metrics are exact in a sense of direction and position 
in a high-dimensional Euclidean space, it is not 
affected by database redundancy because of rank 
reduction, its similarity metrics do not depend on the 
database size, and any analyze does not need a 
substitution matrix nor gap penalties to produce 
biological significant results.  

An assessment of the singular value spectrum 
visualized as scree plots (Zhu and Ghodsi, 2006) can 
unreveals the main components, the process that 

exists hidden in a database. This information can be 
used in many applications as clustering, gene 
expression analysis, immune response pattern 
identification, characterization of protein molecular 
dynamics and phylogenetic inference.  

SVD can be also used to visualize the 
relationships between sequences and even whole 
genomes, which can be essential to better analyze 
complex systems and can be very helpful to 
categorize genes or species in phylogeny.  

All results found in this work and the 
characteristics described are important because SVD 
can be a solution for the potential problems with 
alignment algorithms and can be a substitute for 
those methods, for example, in whole genome 
analysis. 
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