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Abstract: Hospital patient outcomes can be improved by the early identification of physiological deterioration.  
Automatic methods of detecting patient deterioration in vital-sign data typically attempt to identify devia-
tions from assumed “normal” physiological condition.  This paper investigates the use of a multi-class ap-
proach, in which “abnormal” physiology is modelled explicitly.  The success of such a method relies on the 
accuracy of data annotations provided by clinical experts. We propose an approach to estimate class labels 
provided by clinicians, and refine those labels such they may be used to optimise a multi-class classifier for 
identifying patient deterioration.  We demonstrate the effectiveness of the proposed methods using a large 
data-set acquired in a 24-bed step-down unit. 

1 INTRODUCTION 

Adverse events in patient condition are often pre-
ceded by physiological deterioration evident in vital-
sign data (Buist et al., 1999), and it is well-
understood that patient outcomes can be improved 
by detecting this deterioration sufficiently early 
(NPSA, 2007).  Machine learning techniques have 
been shown to be able to detect such physiological 
deterioration by analysing vital-sign data acquired 
from patient monitors connected to acutely ill hospi-
tal patients, such as Parzen window estimators (Ta-
rassenko, 2005). 

A large number of manual methods (Smith, 2008) 
have been developed to allow clinicians to identify 
patient deterioration on the general ward, based on 
periodically-collected vital sign data, typically ac-
quired every two to four hours.   

Both manual and automatic methods typically 
perform novelty detection (or one-class classifica-
tion), in which deviations from some assumed 
“normal” behaviour are identified.  This is a com-
mon approach to the condition monitoring of critical 
systems (Tarassenko, 2009), for which large num-
bers of examples of “normality” exist, but where 
there are comparatively too few examples of system 
failure to construct a multi-class classifier, in which  

known failure conditions are explicitly modelled.   
However, should sufficient examples of patient 

deterioration be available, a multi-class approach 
may be taken.  It is assumed a priori that, given 
sufficient examples of system failure, a multi-class 
classifier will outperform a one-class classifier due 
to the inclusion of more information in the classifier 
(Bishop, 2006). This paper describes an investiga-
tion in which a large data-set of patient vital-sign 
data was acquired during a clinical study such that a 
multi-class approach to identifying patient deteriora-
tion may be taken.  For this to be successful, accu-
rate class labels for the data are required.  We inves-
tigate the reliability of class labels provided by clini-
cians, and propose methods to (i) estimate and refine 
those labels automatically, and (ii) use the resultant 
labels to optimise a multi-class classifier for detect-
ing patient deterioration. 

2 ESTIMATING  
CLINICAL LABELS 

Obtaining accurate class labels for large, multivari-
ate data-sets of vital signs is particularly difficult.  
The data-set considered in the investigation de-
scribed by this paper, for example, was four-
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dimensional, comprising heart rate (HR), breathing 
rate (BR), peripheral arterial oxygen saturation 
(SpO2), and the arithmetic mean of systolic and 
diastolic blood pressures (the systolic-diastolic aver-
age, or SDA), was acquired from 332 patients in a 
step-down unit, and contains over 18,000 hours of 
patient data (Tarassenko, 2005).  It is impractical for 
clinical experts to annotate such a large data-set in 
its entirety.   

The approach taken with the data-set was to de-
termine retrospectively which periods of patient data 
exceeded standard “medical emergency team” 
(MET) criteria (Smith, 2008).  The latter are stan-
dard thresholds on each vital sign that, if exceeded, 
should result in the clinical review of the patient.  
Periods of patient data that exceeded the MET crite-
ria for at least four minutes were shown to a panel of 
clinicians, who then determined which periods were 
due to artefact (such as a sensor becoming detached 
from the patient), and which were sufficiently ab-
normal to require patient review.  We here term the 
latter class labels of “abnormal” patient condition 
C2, and will refer to examples of “normal” patient 
condition to have class label C1. 
 As vital signs can take more extreme values 
during periods of abnormal physiology, the distribu-
tions of data from periods labelled C2 have heavier 
tails than the distributions of data from “normal” 
patients. However, there is significant overlap be-
tween the distributions of data from the two classes.  
Additionally some types of physiological abnormal-
ity are not represented in the data-set as frequently 
as other types; e.g., apnoea and bradycardia (low BR 
and HR, respectively) are under-represented in com-
parison with tachypnoea and tachycardia (high BR 
and HR, respectively).  We found that this imbal-
ance leads to a linear classifier trained using such 
data successfully classifying the majority of the 
more well-represented tachypnoea and tachycardia 
data, while misclassifying the under-represented 
apnoea and bradycardia data. 

Similarly, a non-linear classifier trained using the 
original labels incorrectly includes the distribution 
of bradycardia and apnoea data within its decision 
boundary, and hence misclassifies test data from this 
region of data space as belonging to class C1. 

The remainder of this paper investigates methods 
for refining class labels C1 and C2, such that they 
may be used to construct a multi-class classifier that 
successfully classifies under-represented types of 
“abnormal” data.  We will illustrate the procedure 
using bivariate analysis, such that the decision 
boundary of a classifier may be examined.  The 
application to the full multivariate data-set (e.g., 4-

dimensional in this example) is considered in  
Section 4. 

3 REFINING CLINICAL LABELS 
TO OPTIMISE THE 
CLASSIFIER 

The left-hand plot of Figure 1 shows all of the data 
from the two classes in the bivariate space of HR 
and BR. Clusters of C2 data corresponding to ap-
noea, tachypnoea, bradycardia, and tachycardia may 
be seen in the figure, although data from class C1 
often overlap with those clusters.  Intuitively, we 
wish to increase the separation between the two 
classes such that a classifier trained using those 
labels results in a decision boundary that correctly 
classifies data from all modes of class C2.  We pro-
pose a method for doing so using an estimate of the 
probability density function (pdf) of the entire data-
set. 

3.1 Defining a Multivariate  
Distribution to Estimate Labels 

We approximated the pdf of the whole data-set using 
a Parzen windows estimator (Bishop, 2006), after 
reducing the size of the data-set to 400 prototype 
patterns using k-means clustering with k = 400 clus-
ter centres.  The covariance σ2 of the 400 kernels in 
the pdf was set using the heuristic proposed in 
(Bishop, 2006).  Given some data-point x’, its den-
sity κx = p(x’) defines a contour on the pdf.  We then 
define a probability P[κx’] as follows: 

 
               Pሾܠߢᇱሿ =   ᇲܠౣܠ݀ ሻܠሺ                      (1) 

 
where κm = max[ p ], the density at the mode of the 
pdf, p.  Thus P[κx’] is the probability mass contained 
by integrating the pdf from its highest point down to 
the probability density contour κx’.  This represents 
the probability that some random data-point x dis-
tributed according to p will take a density value 
higher than density value κx’; i.e.,   P[κx’] ≡ P[ p(x) ≥ 
κx’ ].  Thus, as x’ varies throughout the data space, 
its probability density will vary over the range 
[0 κm], and thus P[κx’] will vary over the range [0 1] 
correspondingly. 
 We define a threshold T on P[κx’], and consider 
which data have P[κx’] ≥ T for varying values of T. 
 As described above, we expect data that lie fur-
thest from the mode of the distribution of the whole 
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Figure 1: Data from classes C1 and C2 shown in grey and black, respectively.  The left-hand plot shows all data from classes 
C1 and C2.  Data x from C1 are shown where P[κx] ≥ T, for T = 0, 0.5, and 0.9 from left to right, respectively, as described in 
Section 3.1. 

data-set to take largest value of P[κx’], and hence as 
T is increased, the proportion of data that have P[κx’] 
≥ T will decrease.  This effect is shown in Figure 1, 
in which increasing the value of T causes fewer data 
to lie above the threshold. 
 This suggests that we could use such a threshold 
T to estimate the clinical labels for “abnormal” data; 
i.e., those from class C2. 

3.2  Optimising a Classifier using a 
Threshold on the Multivariate  
Distribution  

In order to increase the separation between “normal” 
and “abnormal” data used for training a classifier, 
we can refine the C1 and C2 class labels provided by 
clinicians using the following rules: 

i. Define the training set of “normal” data to 
be 

            ሼܠ ∈ ሿܠߢଵ | Pሾܥ ൏ ܶሽ                           (2) 
 

ii. Define the training set of “abnormal” data 
to be   

                ሼܠ ∈ ሿܠߢଶ | Pሾܥ  ܶሽ                       (3) 

In order to examine the effect of varying values of 
the threshold T, 75% of the data from C2 that obeyed 
the above selection criterion were drawn at random, 
and an equal number of  data from class C1 were 
drawn at random. All remaining data from class C2 
were used as test data, and an equal number of data 
randomly selected from the unused data from class 
C1 were used as test data.   

The procedure involving threshold T was used to 
process the training data only, and thus results ob-
tained using the test data are independent of T, giv-
ing an accurate representation of the system’s per-
formance when classifying previously-unseen data.  
This is required in order to allow a fair comparison 
with classification performance obtained without 
using the proposed method. 

Figure 2 shows the misclassification rates

obtained when non-linear classifiers (multi-layer 
perceptron with a single layer of hidden units, or 
MLP, in this example) were compared over N = 50 
experiments.  We note that the results are shown 
based on the test data, and that the classifier archi-
tecture was selected using 10-fold cross-validation.   

It may be seen from the figure that, as the value 
of the threshold T is increased from 0 to 1, the num-
ber of false-positive misclassifications decreases 
while the number of false-negative misclassifica-
tions increases.  This is because the “normal” train-
ing data (the refined version of class C1) cover a 
larger locus as T increases.  Conversely, the “ab-
normal” training data (the refined version of class 
C2) cover a smaller locus as T increases.  Thus, the 
resulting decision boundary of the classifier be-
comes less sensitive to abnormality with increasing 
T, because the classifier is trained with an increas-
ingly large cluster of “normal” data and a decreas-
ingly small set of clusters of “abnormal” data. 

The figure shows that for T ≈ 0.4, these misclas-
sifications are minimised, which represents the “op-
timal” value of the threshold T for processing the 
training data obtained from this data-set. 
Similar results were obtained when applying the 
proposed technique with a support vector machine 
(SVM) classifier.  Figure 3 shows the decision 
boundary obtained using an SVM both using the 
original C1 and C2 labels, and the “refined” labels 
created by using the procedure described previously.  
It may be seen that the SVM decision boundary 
obtained without application of the proposed method 
covers large areas of data space that correspond to 
physiological deterioration; e.g., the region that 
corresponds to tachypnoea (at BR > 30 rpm) for HR 
≈ 75 bpm.  In comparison, the SVM decision boun-
dary obtained after application of the proposed me-
thod more closely describes the locus of “normal” 
data, in the centre of the data space, and accurately 
separates the four modes of data-space that corres-
pond to apnoea, tachypnoea, bradycardia, and  
tachycardia. 
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Figure 2: Misclassification performance evaluated using 
the test set, as threshold T is varied.  Mean false-positive 
(FP, shown by a solid line) and false-negative (FN, shown 
by a dotted line) errors over a range of N = 50 experiments 
for each value of T, with a confidence interval on each 
value shown at ± 1 standard deviation from the mean. 

 
Figure 3: Using original (left-hand plot) and refined (right-
hand plot) C1 and C2 labels to construct a SVM classifier. 
The SVM produces a decision boundary shown by the 
black line, with support vectors indicated by circles. 

4 DISCUSSION AND FUTURE 
WORK 

We have presented a method of (i) estimating clini-
cal labels, and (ii) using the technique to refine ex-
isting labels such that a classifier may be trained that 
better separates “normal” data from “abnormal” 
data, when compared with classifiers that do not use 
the proposed technique. 

While this paper has presented the results of a 
bivariate analysis, such that the decision boundaries 
of classifiers may be examined and compared, the 
procedure should be applied in the dimensionality of 
the original data space; in the example considered by 
this paper, the data-set is 4-dimensional (HR, BR, 
SpO2, and SDA).  The thresholding procedure is 
performed using the high-dimensional pdf, and so 
the proposed method of estimating and refining 
clinical labels is equally applicable to optimising 
classifiers in the original high-dimensional data-
space. 

A  further  advantage  of the proposed method is 

that, as described in Section 2, as the value of the 
threshold T is increased, the distribution of data with 
probability P exceeding that threshold tends towards 
the distribution of data labelled as being class C2 by 
clinicians.  While there is no equal substitute for the 
annotations of clinical experts, it is impractical for a 
panel of experts to review 18,000 hours of continu-
ous data.  As described in Section 2, the C2 labels 
were obtained as being a subset of those periods that 
exceeded univariate MET criteria for periods of at 
least four minutes, and so even these are not “gold 
standard” labels of the entire data-set.  However, 
being able to estimate such labels is useful: the pro-
cedure can be applied to further, unlabelled data-sets 
in order to estimate their class C2 labels.  Thus, it 
may be possible to obtain automatically labelled 
data-sets from large unlabelled data-sets, which 
would previously require the use of an unsupervised 
classification approach, such as the one-class 
method described in Section 1, and in (Tarassenko, 
2005) and (Tarassenko, 2009). 
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