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Abstract: Electrical Impedance Tomography (EIT) has been the subject of intensive research since its development in 
the early 1980s by Barber and Brown at the Department of Medical Physics and Clinical Engineering, 
Hallamshire Hospital in Sheffield (UK). In particular, pulmonary measurement has been the focus of most 
EIT related research. One of the relatively recent advances in EIT is the development of an absolute EIT 
system (aEIT) which can estimate absolute values of lung resistivity and lung volumes. However, there is 
still active research in the area of validating and improving the accuracy and consistency of the aEIT 
estimation of lung volumes towards characterising the system as suitable for clinical use. In this paper we 
present a new approach based on Computational Intelligence (CI) modelling to model the ‘Resistivity - 
Lung Volume’ relationship that will allow more accurate lung volume predictions. Eight (8) healthy 
volunteers were measured simultaneously by the Sheffield aEIT system and a Spirometer and the recorded 
results were used to develop subject-specific Neural-Fuzzy models able to predict absolute values of lung 
volume based only on absolute lung resistivity data. The developed models show improved accuracy in the 
prediction of lung volumes, as compared with the original Sheffield aEIT system. However the inter-
individual differences observed in the subject-specific modelling behaviour of the ‘Resistivity-Lung 
Volume’ curves suggest that a model extension is needed, whereby the modelling structure auto-calibrates 
to account for subject (or patient-specific) inter-parameter variability.  

1 INTRODUCTION 

Electrical Impedance Tomography (EIT) has been a 
topic of interest for researchers including clinicians 
due to its ability to offer a non-invasive, radiation-
free monitoring. EIT aims to generate cross-
sectional images of the studied subjects based on 
measurement of surface electrical potentials 
resulting from an excitation with small alternating 
currents via an array of equally-spaced electrodes 
attached to the surface of the thorax at about 4-5 cm 
above the xyphoid process (Barber, 1984 and 
Brown, 2003).  

EIT has been used to generate images of various 
parts of the human body, nonetheless, the lung 
ventilation measurements have always been 
regarded as one of the areas which seem to have 
possible benefits from the development of EIT. In 
1985 Brown et al suggested the use of EIT in lung 
imaging and ventilation monitoring in what was the 
first summary of possible clinical applications for 
this technique (Brown, 1985). For most of the recent 
EIT studies, the focus has been on the changes in 
impedance with time (relative/functional EIT), 
instead of the absolute values. The new absolute 
impedance tomography takes this a step further, by 
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not only looking at the changes in impedance during 
the respiratory cycles, but also producing absolute 
(as opposed to relative) values of impedance that can 
be compared to normal or reference values. Indeed, 
a multi-frequency system was developed in the mid 
1990’s to calculate the absolute impedance (Brown, 
1995) and subsequently calculate an absolute 
volume measurement of the lung. The method of 
determination of lung absolute resistivity (Brown, 
2002) is based on a 3D finite difference model of the 
thorax developed from CT cross sections of a 
normal subject (G. Zubal, 1994) and scaled to take 
into account the geometry of the chest 
(circumference and ellipse ratio) of a particular 
subject. The elements in the model were assigned 
fixed resistivity values in the range 1-80 Ω-m 
depending on their anatomical location (fat, muscle, 
bone, blood or lung) in the CT images. The modeled 
data are then compared with the real measurements 
over a pre-determined region of interest for values of 
the lung resitivities between 3 and 80 Ω-m. The 
value of lung resistivity, which minimizes the mean 
difference between these data sets, is returned as the 
value of the absolute lung resistivity, an EIT image 
is reconstructed by filtered back projection (Barber, 
1987). As lung resistivity is a function of the 
frequency of the applied current, at high frequency, 
when the capacitive reactance of the cell membranes 
are reduced virtually to zero, the lungs consist of just 
two equivalent electrical components; air with 
almost infinite resistivity and lung tissue with an 
almost homogeneous resistivity determined by that 
of the intracellular and extra-cellular fluids (Barber, 
2005). If these resistivities are known, then it 
becomes possible to calculate both lung density and 
air volume using a Cole equation (Brown and Mills, 
2006). The complexity of aEIT in the absolute lung 
air volume has more or less contributes to some 
problems in getting a consistent and accurate 
measurement from the system. 

A significant amount of research has so far been 
devoted to investigating the feasibility of EIT to 
assess the level of lung ventilation in comparison 
with the volume of air measured with spirometer. 
Harris et al. (1987) showed the proportional 
relationship between the lung volume change and 
lung resistivity using EIT imaging and confirmed the 
system’s ability to assess the level of lung 
ventilation. Their work identified a close correlation 
between an impedance index computed from 
dynamic resistivity images and volume of inspired 
air measured by a spirometer. In 1988 research 
confirmed a high correlation (r > 0.95) between the 
change in lung impedance and volume of air 
inspired in four healthy subjects while at rest and on 

a bicycle ergo-meter (Harris, 1988). The study 
demonstrated that real-time EIT ventilation 
measurements of lung volume were possible to an 
accuracy of +/- 10% of the spirometer values. The 
posture of the subject was again an area of interest, 
with data recorded in five subjects in both seated and 
supine positions, showing an impedance variation of 
between -3.8% and +9.5% from the former to later 
posture.  Nicolas et al. (2005) elicited a parametric 
model of the relationship between EIT and total lung 
volume with the aim at facilitating inter individual 
comparisons of EIT images by providing volumetric 
scale in place of the usual arbitrary units scale. The 
lung volume changes predicted by the model were 
compared to the volume changes measured by 
spirometry. The model was able to predict the lung 
volume changes with 9.3% to 12.4% accuracy. 
These studies confirmedthe fact that there exists 
significant correlation between the variable derived 
by EIT and lung volume changes measured with 
spirometer and it is possible to model associated 
relationship.  

In this paper, the relationship between absolute 
resistivity from the aEIT system and the lung 
volume measured from spirometry were studied 
based on the data from 8 healthy volunteers. Two 
data-driven models were developed; the first model 
(AEIT) was built for the relationship between data 
from aEIT to mimic the behaviour of the system in 
producing the absolute lung air volume from 
absolute resistivity, while the second model 
(EITSPIRO) was developed for the relationship 
between spirometry lung air volume and absolute 
resistivity. An Adaptive Neural-Fuzzy Inference 
System (ANFIS) network design (Jang, 1993) is 
used in this modelling exercise. Finally, a new 
hybrid model structure is proposed for selecting the 
best model to predict the absolute lung air volume to 
be used in the aEIT system. 

2 STUDY PROTOCOL 

2.1 Subjects 

A total of eight (8) healthy subjects (males) 
participated in this study. The subjects’ height, 
weight, circumference and ellipse ratio were 
measured and recorded. The studied subjects’ 
information is shown in Table 1.  
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Table 1: The anthropometric information of the subjects. 

Subject Gender 
Height
(cm) 

Weight 
Circum 

(cm) 
Ellipse 
ratio 

1 M 170 80 95 1.51 
2 M 170 67 88 1.38 
3 M 171 60 83 1.58 
4 M 186 113 109 1.39 
5 M 184 93 104 1.53 
6 M 191 79 95 1.53 
7 M 168 66 90.5 1.36 
8 M 171 62.5 88 1.45 

2.2 Equipments and Tools 

A disposable tape measure was used to measure the 
subjects’ chest circumference. “Mitutoyo Absolute 
Digmatic” callipers were used to measure the 
subjects’ chest; measurements were taken of chest 
width and depth in order to calculate an ellipse ratio. 

The aEIT data were acquired via the Sheffield 
Mk 3.5 absolute EIT system. The Mk3.5 aEIT 
(Figure 1) uses eight AgCl ECG type electrodes to 
inject small alternating currents at 30 frequencies 
typically within the range 2 kHz to 1.6 MHz and 
records the resulting potentials at a rate of 25 
frames.s-1. The computer user interface to control the 
Mk3.5 system is written in MATLAB, and is able to 
display real-time images. 

 

Figure 1: The Sheffield EIT Mk 3.5. 

2.3 Data Acquisition  

2.3.1 Spirometry and EIT Measurements 

Eight (8) skin electrodes were attached around the 
circumference of the chest, and connected to the EIT 
data acquisition unit. Ideally the electrodes were 
attached in a horizontal plane 5cm above the xiphoid 
process, and equally spaced around the 
circumference (Figure 2). 

 
Figure 2: The level of the EIT electrode array in the 
frontal plane. 

The subjects were simultaneously breathing 
through the spirometer tube (SensorMedics) while 
attached to the Mk 3.5 aEIT system. The data were 
measured using adjacent drive and receive 
combinations of electrodes, connected to the data 
acquisition unit. A 60 sec recording of data were 
performed involving quiet breathing and maximum 
inspiration and expiration manoeuvres in sitting 
position. The acquired EIT data were then resampled 
using MATLAB according to the spirometry 
sampled data. The spirometry sampled data 
represent the instantaneous changes in lung volume 
(relative to residual volume). 

3 DATA-DRIVEN MODELLING 
USING ANFIS 

Neural-Fuzzy modelling falls under the umbrella of 
Computational Intelligence (CI) modelling and can 
be used as a non-linear method for mapping a certain 
number of inputs to a certain number of outputs. 
This non-linear mapping can be learned from 
process data using various algorithms. The 
architecture used in this study is the Adaptive 
Neural-Fuzzy Inference System (ANFIS) consisting 
of a set of TSK-type fuzzy IF-THEN rules. The 
TSK-type fuzzy model was proposed by Takagi, 
Sugeno and Kang (Sugeno and Kang, 1988, Takagi 
and Sugeno, 1985) in an effort to develop a 
systematic approach to generate fuzzy rules from a 
given input-output data set. A typical fuzzy rule in 
Sugeno fuzzy model has the form: 

IF ݔ is A and ݕ is B THEN z = ݂(ݔ,  (ݕ
Where A and B are fuzzy sets in the antecedent, 
while z = ݂(ݔ,  is a crisp function in the (ݕ
consequent. The ANFIS architecture is used as the 
facet of the modelling structure in order to map the 
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aEIT data. In the first part of the ‘Results’ section 
(4.1) only the aEIT data recordings are used to 
develop a data-driven model of the ‘Lung Resistivity 
– Lung Volume’ (Lung R-V) relationship. This 
model will map the non-linear relationship ‘Lung R-
V’ by ‘imitating’ the aEIT system’s physical 
equations (Brown, 2002). This modelling structure is 
shown in Figure 3a. 

(a) 

 
(b) 

 
Figure 3: (a) Model structure for AEIT model. (b) Model 
structure for EITSPIRO model. EIT absR =EIT absolute 
resistivity. LV Spiro= spirometry lung volume, EIT 
absLV= EIT absolute lung volume and )(tε  = error 
between actual and predicted lung volume. 

In the second part of the ‘Results’ Section (4.2) 
the Spirometry recordings are used along the aEIT 
data in an effort to ‘bypass’ the aEIT system’s lung 
estimations using physical equations, hence 
attempting to predict directly lung volumes using the 
Spirometry data for a reference. The Spirometry data 
(relative lung volume) were converted to absolute 
lung volume data by estimating the Residual 
Volume (RV) of all eight volunteers using Body 
Plethysmography in the Royal Hallamshire Hospital, 
Sheffield U.K. Figure 4 shows an overview of the 
various modelling structures. 

 
Figure 4: An overview of the various modelling structures. 

4 RESULTS AND DISCUSSIONS 

4.1 AEIT Models 
Training and Testing Results 

The first type of model built in this study is the 
AEIT model which is based on data of absolute EIT 
resistivity and absolute lung air volume (as 
measured by the aEIT system) obtained from 8 
healthy subjects in a sitting position. The aEIT 
mk3.5 system uses a number of non-linear equations 
to infer absolute lung volumes from resistivity data. 
Example of such equations include the Cole-Cole 
equation (to link a frequency spectrum to resistivity 
data), the Nopp model (to link lung tissue resistivity 
as a function of lung volume) (Brown and Mills, 
2006), and a number of population mean models of 
lung weight based on gender. Most of these 
equations are empirical/theoretical and introduce 
uncertainties and inaccuracies in the final 
estimations of lung volumes. The objective of first 
modelling exercise is to mimic the behaviour of the 
physical/theoretical/empirical equation based on 
data from these 8 healthy subjects. The 8 subject-
specific AEIT models results are shown in Figure 5. 
Table 2 shows the modelling performance results. 
Root mean square error (rmse), mean absolute error 
(mae%), correlation coefficient (cor.) and standard 
deviation of the error (eSD) were used as the 
performance indices. As shown in Figure 5, the 
AEIT model can predict the absolute lung air 
volume with a good accuracy in training (99.8%) 
and testing (95%). The current modelling results 
show that ANFIS is a good modelling method to 
learn the relationship between the absolute 
resistivity and absolute lung air volume as currently 
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described in the aEIT system. However, such a 
model would inherit all the inaccuracies of the aEIT 
system in the estimation of lung volumes, as shown 
in (Panoutsos, 2008 and Tunney, 2008) and detailed 
in the following paragraph. 

(a) 

 

(b) 

 
Figure 5: (a) The AEIT model training results (b) The 
AEIT model testing results. 

Table 2: (a) The models training fit results. (b) The models 
testing fit results. 

(a) 

 
(b) 

 

Even though that the AEIT models show good 
performance, in reality the models also inherit the 
errors of the aEIT system when we compare the lung 
volumes with real Spirometry data. Figure 6 shows 
an example of the absolute EIT lung air volume as 
compared to the real lung air volume as measured by 
Spirometry. As it can be seen in Figure 6, there is a 
clear difference between the aEIT estimated lung 
volume and the real lung volume measured using 
Spirometry (20.7% average error for all eight 
subjects) Hence it can be concluded that the ANFIS 
model is capable of mapping such non-linear 
behaviour very accurately, but some inherited 
modelling errors (included in the aEIT equations) do 
not allow for a very accurate lung volume 
modelling. It is possible to ‘bypass’ the aEIT 
equations and attempt to model the lung volume 
directly from volumetric measurement data using 
Spirometry as described in the next section. 

 
Figure 6: The plot of actual absolute EIT lung volume and 
actual spirometry lung air volume.  

4.2 EITSPIRO Models 
Training and Testing Results 

The second type of model built in this study is the 
EITSPIRO model which is based on data of absolute 
EIT resistivity and Spirometry lung air volume 
obtained from 8 healthy subjects in sitting position. 
The models are designed to predict the spirometry 
lung air volume directly from the absolute EIT 
resistivity as obtained from the EIT Mk 3.5 system. 
The 8 subject-specific EITSPIRO models results 
summarised in Table 3 and a representative example 
of one subject is shown in Figure 7. Root mean 
square error (rmse), mean absolute error (mae%), 
correlation coefficient (cor.) and standard deviation 
of the error (eSD) were used as the performance 
indices.  
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(a) 

 
(b) 

Figure 7: (a) The EITSPIRO model training results (b) 
The EITSPIRO model testing results. 

Table 3: (a) The models training fit results. (b) The models 
testing fit results. 

(a) 

 
(b) 

 

The EITSPIRO modelling results show that this 
modelling structure can predict the lung air volume 
with good accuracy in training (95.3%). When 

testing a subject-specific model on a different 
subject the average performance deteriorates to 
about 72.7% accuracy. While this is an acceptable 
performance it clearly demonstrates the effect of 
inter-individual difference and the need for subject-
specific models (or patient-specific in the case of 
clinical use). Figure 8 shows the lung R-V 
relationship for the eight subjects as predicted by the 
ANFIS model. There is a common trend between the 
different subjects (resembling the Nopp 
model/equation), but it also shows how different this 
behaviour can be between subjects. Figure 9 shows 
the lung volume of one healthy subject as measured 
by Spirometry, estimated by aEIT and predicted by 
the ANFIS model. It is clear that the ANFIS model 
best predicts the subject’s lung volume as compared 
with the aEIT system. The advantage of the ANFIS 
model is clear, however to be able to implement this 
on a real system the model would need some type of 
calibration, for every time it is used, to account for 
the inter-individual differences of the subjects. 

 
Figure 8: The plot of lung R-V relationship for the eight 
subjects as predicted by the ANFIS model. 

 
Figure 9: The plot of EITSPIRO model predicted lung air 
volume, actual absolute EIT lung volume and actual 
spirometry lung air volume.  
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5 CONCLUSIONS AND FUTURE 
WORK 

Electrical Impedance Tomography was developed in 
the early 1980s and it has since shown real potential 
to being exploited for clinical use (bedside 
monitoring in the Intensive Care Unit - ICU). Recent 
developments in the field of absolute EIT 
demonstrate how one may use it to estimate absolute 
values of lung volumes which are key to any on-line 
EIT based monitoring system. However, the current 
system can be further improved, in particular in the 
area of lung volume estimation accuracy. In this 
study a Neural-Fuzzy modelling structure is used to 
model the relationship between the lung absolute 
resistivity and lung volume (lung R-V). Data 
recordings were used from eight (8) healthy subjects 
in a sitting position in order to train the models. It 
was shown that the modelling structure can model 
very accurately the aEIT lung volume estimation, 
although this method forces the model to ‘inherit’ 
the inaccuracies associated with the aEIT theoretical 
and empirical equations. In a different approach, it 
was also shown how one can model the lung R-V by 
‘bypassing’ the physical equations and directly 
model the lung volume based on real volumetric 
measurements using Spirometry (to record relative 
volume) and Body Plethysmography (to record lung 
Residual Volume). To our knowledge this is the first 
data-driven model developed to describe the 
behaviour of lung Resistivity-Volume in the 
absolute EIT system. The developed models show a 
very good agreement between the real data and the 
model predictions, however high inter-individual 
differences were also noted. Although, on an 
individual basis, each ANFIS model (patient-
specific) outperforms the current aEIT system’s lung 
volume estimations. In clinical science, inter-patient 
variability is endemic; this is why it is of the opinion 
of the authors that an extension to the presented 
approach is needed, whereby the model auto-
calibrates to account for inter-individual differences 
between patients. The new modelling structure 
should be able to classify the ‘patient-type’ based on 
the R-V behaviour curves and adjust the predictions 
accordingly. 
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