PATIENT-BASED LITERATURE RETRIEVAL AND INTEGRATION
A Use Case for Diabetes and Arterial Hypertension

Ana Jimenez-Castellanos1,2, Izaskun Fernández3, David Perez-Rey1, Elisa Viejo2
Francisco Javier Díez3, Xabier García de Kortazar3, Miguel García-Remesal1, Víctor Maojo1,
Antonio Cobo4,2 and Francisco del Pozo2,4

1Dept Inteligencia Artificial, Facultad de Informática, Universidad Politécnica de Madrid
Campus de Montegancedo S/N, 28660 Boadilla del Monte, Madrid, Spain
2Centre for Biomedical Technology, Technical University of Madrid (CTB – UPM)
Campus de Montegancedo – UPM Autopista M-40, km 38. Pozuelo de Alarcón, 28223, Madrid, Spain
3Tekniker-IK4, Av Otaola, 20, 20600 Eibar, Guipuzcoa, Spain
4Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER –BBN)
Madrid, Spain

Keywords: Electronic Health Record, Search engines, Literature retrieval, Integration, Federated search.

Abstract: Specialized search engines such as PubMed, MedScape or Cochrane have increased dramatically the visibility of biomedical scientific results. These web-based tools allow physicians to access scientific papers instantly. However, this decisive improvement had not a proportional impact in clinical practice due to the lack of advanced search methods. Even queries highly specified for a concrete pathology frequently retrieve too many information, with publications related to patients treated by the physician beyond the scope of the results examined. In this work we present a new method to improve scientific article search using patient information. Two pathologies have been used within the project to retrieve relevant literature to patient data and to be integrated with other sources. Promising results suggest the suitability of the approach, highlighting publications dealing with patient features and facilitating literature search to physicians.

1 INTRODUCTION

Physicians attending daily a high number of patients hamper their availability to keep up to date with the latest research news in their field. They frequently lack the time to locate relevant information related to the patient Electronic Health Record (EHR). Physicians need specific information rather than large amounts of information, however the amount of data generated nowadays and stored both, within EHR and research literature, is overwhelming. The more data the more challenging is to find relevant information (for research and training of the physician) and to integrate it with current resources. Search engines and other Web 2.0 technologies such as RSS feeds facilitate these tasks, but advanced methods are required to retrieve research information related to, not only a pathology, but also a specific demographic group.

Scientific research papers regarding clinical practice deals with population groups rather than specific patients. Physicians must generalize patient data in order to find patient-related clinical literature. They should analyze the EHR of the patient to include relevant keywords in the query that filter the results from several information sources. After that, the physician reviews the scientific articles retrieved and selects the relevant information for the patient, discarding the majority of the results. This is particularly interesting for patients who do not respond to therapies or treatments, who need special attention to avoid further complications. These kind of patients are those for whom physicians need more specific research information about their disease.
In this work we present a new method, implemented by the authors, aiming to provide an advanced method to retrieve biomedical literature based on EHRs. Diabetes and arterial hypertension are the two use cases that have been tested, within the framework of “Treatment 2.0”, a research and development project aiming to create a generic middleware platform that serves as the basis for the development of management services and intelligent application for treatment for patients, especially chronic (Tratamiento 2.0 2010 June).

2 BACKGROUND

Patient information inclusion in search queries for biomedical literature, requires techniques and technologies with a high research activity. Those used to store the required information, such as Electronic Health Records and Decision Support Systems, and those used to extract information, such as Natural Language Processing and Federated Searching described in this section.

Electronic Health Records (EHR), defined as “electronic objects that contain data, evaluations and information of any kind, on the status and the clinical course of one patient through the care process” (Healthcare Information and Management Systems Society 2010 June), have been a fundamental advance in clinical practice. Electronic information can be automatically analyzed and there exist research efforts to generate knowledge from EHRs such as (Weaver et al. 2005), where the data generated from care delivery and captured in the EHR systems, is used for being analyzed to discover and then inform about best practice. In (Antolik 2005), how to transfer knowledge from a medical record written in a free text form into a structured format represented by the EHR is analyzed. Finally, (Natarajan et al. 2010) is a study aiming to understand user needs as captured by their search queries in an EHR system.

EHR are the essential infrastructure to other software elements in clinical practice such as Decision Support Systems, a kind of information systems that supports decision-making activities (Keen, Morton 1978). Specifically, Clinical Decision Support Systems (CDSS) are software programs that assist the physicians in the decision making process (Kawamoto et al. 2005, Sim et al. 2001). Some methods to integrate CDSS and EHR are: (van der Weijden et al. 2010) and (Seidling et al. 2010), systems dealing with CDSS adaptation, to facilitate the integration of individual patients preferences and characteristics and improve decision making.

To retrieve further clinical information, the EBM (Evidence-Based Medicine Working Group 1992) recommends physicians to formulate clinical questions in terms of the problem/population, intervention, comparison, and outcome for searching clinical reports efficiently. These elements comprise the PICO frame: P represents problem/population; I intervention’s information; C the comparison; and finally O the outcome. The construction of this kind of query is not an easy task as it is shown in (Huang, Lin & Demner-Fushman 2006). For instance, defining P requires an exhaustive reading of the patient EHR and the selection of the most relevant characteristics for the current context.

Information extraction dealing with free text instead of structured data is treated with Natural Language Processing (NLP) techniques, that have been applied to many tasks of Biomedicine such as bio-entity recognition, protein/gene normalization, interaction, extraction and many others. As there are many fields where NLP techniques can be used, various NLP tools are available. There are domain specific tools resolving an specific task like GoAnnotatorTool (Couto et al. 2006), but also we can find more generic and flexible NLP tools, like Freeling (Atserias et al. 2006) or GATE (Cunningham 2002) which can be used for many tasks and domains. The fundamental problem of NLP analysis is the fact, that a particular meaning may be expressed using different synonymous expressions. Lexical repositories recording meaning and lexical forms relations are frequently used in NLP techniques for interpreting texts. MeSH (Díaz-Galiano et al. 2008) or SNOMED (Spackman, Reynoso 2004) are two well known lexical repositories in the medicine domain which can be exploited for scientific article interpretation.

Finally, heterogeneous data sources stored in different locations require distributed or federated methods to extract information. The federated search paradigm was thus created, evolving in response to the vast number of information resources. As defined in (Jacso 2004), federated searching consists of firstly transforming a query and broadcasting it to a group of different sources; merging the results obtained from the different asked sources; presenting it in a unified format without duplications; and providing the option of sorting the result set. Search engines like Sphinx (Lee 1989) help in the development of this kind of systems,
indexing the information and providing a fast information retrieval.

These techniques have been used in projects such as Parallel IE for bio-medical text mining and indexation at Merck kGaA, Darmstadt and Medline Analysis (Karopka et al. 2004) at Institute for Medical Informatics and Biometry, University of Rostock, Germany for extracting causal functional relations on MedLine abstracts using GATE. There are also tools like MeSHMap (Srinivasan 2001) and MedMeSH Summarizer (Kankar et al. 2002) that exploits MeSH ontology for document indexation and summarization, respectively.

3 PATIENT-BASED LITERATURE RETRIEVAL AND INTEGRATION

The approach proposed in this paper aims to provide an improved method to search biomedical literature based on patient data. Data used to identify the relevant information for literature retrieval is collected from two sources: sensors on the patient’s home — described elsewhere (Tratamiento 2.0 2010 June) — and data contained in the EHR of the patient. Both sources are stored in the platform of the project and then feed the services explained below.

Figure 1 presents the two main phases performed to retrieve relevant publications. Firstly, the system should receive both data sources and locate relevant characteristics of the patient and then looking for and integrating the most relevant publications based on these characteristics.

To automatically query current biomedical literature search engines for relevant publications based on EHRs and sensor info, a web services architecture was proposed. Three main web services were identified to cover the required functionality:

- **patientCharacteristics**, receiving a set of parameters from the EHR and sensors to identify the relevant characteristics.
- **federatedSearch**, receiving the relevant characteristics, generates and launches queries against different data sources.
- **resultAggregation**, that collect, integrates and present the results to the user.

These web services are explained within the next subsections, 3.1, 3.2 and 3.3 respectively.

3.1 Characteristics Extraction

The patientCharacteristics web service receives a set of parameters in XML format from the platform of the project. This platform stores data contained in the patient's EHR in addition to other data resulting from the monitoring of the patient at home — e.g. certain data is needed in real time (like glucose levels before and after eating). This was implemented using sensors within the patient environment. Figure 2 shows the structure of the web service which extracts the characteristics of a patient.

Two separated phases can be identified: (i) parameter processing and (ii) curation. Within the first phase, parameters are processed to extract the relevant characteristics. Afterwards, during the curation phase, an expert may evaluate the characteristics extracted to filter those relevant for the publication search.
Parameters from EHR or sensors are integrated into a single XML parameter list:

```xml
<patient_parameters>
  <pathology>diabetes</pathology>
  <parameters_list>
    <parameter>
      <name>age</name>
      <value>62</value>
    </parameter>
    ...
  </parameters_list>
</patient_parameters>
```

For each parameter its name and its value are required. The patientCharacteristics web service extracts the significant characteristics focused on a given pathology.

The set of parameters is not closed, the service can receive any type of parameters, i.e. that the application will analyze only the parameters that can be treated according to certain rules, discarding those that are not recognized.

After receiving the parameters, the web service separates among structured and non-structured parameters. Structured data are those which have a numeric or enumerated value (E.g.: the numeric value of the patient’s age, or the values “male” or “female” identifying the sex of the patient). Not-structured data are free text and they are directly addressed to the curation phase as characteristics of the patient.

Depending on the pathology, structured parameters are selected for its relevance. For each disease there is a knowledge base of rules that is responsible for processing related parameters. Thus, when the characteristics of a patient have to be extracted based on a new disease, only the corresponding rules are required. The knowledge base of each pathology is built based on standards of CDSSs.

Relevant data for the pathology is analyzed following rules contained within the knowledge bases, which are associated with the parameters. Those rules deal with patient stratification. Most of the rules are constructed based on expert approved thresholds. Depending on parameters values, characteristics are extracted and mapped to one or several MeSH terms.

All parameters are evaluated to extract significant characteristics related to one patient. In the curation phase, the physician (using a simple interface) may choose characteristics to be used to build the search query. Relevant characteristics selected by the physicians will be sent to the next web service for retrieving the corresponding literature.
3.2 Query Generation

Search federation intends to aggregate information units from heterogeneous sources, presenting the results on a unified way, without duplicates and ordered by relevance. This architecture enables a high scalability and stability, since adding new sources is only a matter of new connectors’ configuration, and system remains working even if some sources are down.

So the federatedSearch web service gets as input the XML characteristics generated by patientCharacteristics service as context and a query defined by the expert, which expresses the searching topic. In order to represent efficiently those characteristics and the free query, the service exploits MeSH ontology combined with NLP tools, trying to find corresponding MeSH terms both, for the characteristics and on the input free text. The MeSH lexicon as a flexible Gazetteer on GATE tool has been integrated in the service. In this way MeSH terms on any text are tagged, first parsing it with the morphological module of GATE and then identifying MeSH terms with the gazetteers module.

The characteristics are extracted from the patient EHR, so it can be considered that the selected MeSH terms define the problem (P) of the PICO query. Intervention (I) and outcome (O) will be completed with the identified and after selected terms on the expert query. At this moment, the system does not consider the comparison (C) parameter.

In order to get the federated search, the web service queries different information sources. Each registered expert has associated a collection of information sources. For each new query the expert selects a set of those sources to search. Each information source encloses its own query format. Before searching, it is necessary to transform the PICO query to each source query format. For the transformation process, regardless of the source, the system applies always the same methodology: taking PICO query as input, it applies an xslt based transformation. The xslt object is a source dependent element where the source specific query syntax is considered for the final query representation. Together with query representations, the service launches different queries, getting one result set from each source in XML format. This procedure is graphically represented at figure 3.

3.3 Integration and Presentation

The publication sets obtained from the previous web service are the input of the resultAggregation service. The aim of this service is to aggregate all the result sets presenting to the expert the publications as a unique collection. The final collection should not have duplicated items and must be sorted by relevance regardless of the source. The web service processes the publications, tagging MeSH terms and storing both the item itself and the tagged MeSH terms in a MySQL database in order to index the entire collection with Sphinx and...
improve the efficiency of the sorting search.

Once the collection is indexed, the service ranks the publications based on the initial query using Sphinx. The result is a sorted collection based on the relevance of each publication respect the initial query as it is shown in figure 4.

4 USE CASES: DIABETES AND ARTERIAL HYPERTENSION

Two use cases were developed to test the proposed method: (i) diabetes and (ii) arterial hypertension. A knowledge base to analyze the parameters related with them has been implemented to test the system. Information needed to evaluate each parameter received by the patientCharacteristics web service is stored in different knowledge (one for each pathology). Structured parameters were selected by experts within the project using a focus group methodology. These parameters are shown in table 1.

Depend on the pathology, structured parameters are selected by its relevance. Due to the characteristics of the diseases, there are some parameters that are common to both and others are specific for each pathology (table 1).

Finally, for each structured parameter, the Web Service applies several rules, extracting the related characteristic. For example, treatment of the glycated hemoglobin (HbA1c) and related characteristics are:

- HbA1c < 6.5 → "normal HbA1c"
- HbA1c < 7 → "high HbA1c"
- HbA1c < 8 → "high HbA1c AND glycemic control"
- HbA1c ≥ 8 → "high HbA1c AND intensive glycemic control"

Table 1: Structured data recognized.

<table>
<thead>
<tr>
<th>Structured parameters</th>
<th>Common parameters</th>
<th>Diabetes specific parameters</th>
<th>Arterial hypertension specific parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>sex</td>
<td>diabetic_familiar neuropathy</td>
<td>hypertensive_familial total_cholesterol</td>
</tr>
<tr>
<td>race</td>
<td></td>
<td>basal_glycemia</td>
<td>triglycerides</td>
</tr>
<tr>
<td>body_mass_index</td>
<td></td>
<td>gestational_diabetes</td>
<td>systolic_pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>retinopathy</td>
<td>diastolic_pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nephropathy</td>
<td>HDL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cardiopathy</td>
<td>abdominal_wall_size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>glucose_intolerance</td>
<td>smoker</td>
</tr>
<tr>
<td></td>
<td></td>
<td>glycated_hemoglobin</td>
<td>cLDL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>diabetic_foot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Once all the characteristics are extracted went through the curation phase, the system constructs a searching query with the pathology, the relevant characteristics previously gathered and the MeSH terms identified with the expert’s input query (with the searching topic).

With queries close to the mentioned pathologies, the system searches on expert defined sources using their corresponding connectors to obtain the most relevant publications and evidences. Nowadays, sources covered by the system are PubMed, Cochrane and MedScape, where the most relevant publications about diabetes and hypertension are published.

Finally, the results of each source are integrated, indexed and presented to the expert as a unique collection as shown in the following section.

5 RESULTS

Characteristics are extracted according to the pathology and the parameters introduced. From this output, the expert will select the most relevant features to be launched to the search.

A preliminary test set of ten patient data and fifty queries were used to check the functionality of the system. The retrieved characteristics were correct for all the cases. The results correctly identified the 90% of the relevant papers, according to assessment of experts of the project.

As it is shown in figure 5, the expert can choose a more specific term for the search, i.e. optimizing the query that will be launched against the selected sources. The expert can also specify the number of results obtained from the query.

With the optimized query, the system accesses the different sources and aggregates the results, filtering those fulfilling the initial requirements and finally presenting them ordered by relevance, as it is shown on figure 6.

Two filters were applied to the parameters in order to extract the most relevant literature referred to a patient: (i) a transformation of the parameters into Mesh terms and (ii) an optimization of the characteristics, using the MeSH ontology and the medical knowledge of the expert. Through the final query and the federated search the expert will retrieve biomedical literature based on patient data.

6 CONCLUSIONS AND FUTURE LINES

In this work, a new method for search clinical literature has been proposed and implemented within the framework of a research project for the personalization of treatments and therapeutic strategies. Promising results of the system suggest that EHR-based literature retrieval may facilitate the work of physicians obtaining biomedical patient-related research publications. Also, within the project, a set of tests with real patients and experts from the “Hospital Universitario de Valencia” will be conducted.

As work in progress, extensions of services described within this paper are being implemented: further non-structured data processing, clustering techniques to group the results, open of generic connectors and source weighting for final ranking.

First, the service will use Natural Language Processing techniques to process non-structured data of the patient for characteristic extraction. Clustering techniques are being used to present results not only as a sorted collection but also grouped by their semantic similarity, providing a more intuitive representation for the navigation.

Regarding information sources, connector designing process is being generalized to facilitate new source integration within the system. This
service will add a weighting functionality for sources, to adjust the final publication relevance not only based on the initial query but also considering the relevance of the source.

The system presented in this work has proven the suitability of a patient-based literature retrieval approach. And we are confident that current extensions will improve the location of relevant publications for physicians, facilitating more relevant results when searching at main biomedical literature search engines.

ACKNOWLEDGEMENTS

The present work has been funded by the Spanish Ministry of Industry, Tourism and Trade in the framework of the "Avanza I+D" programme under the project "Tratamiento 2.0" (project number TSI-020301-2008-15). We would like to express our gratitude to the "Hospital Universitario de Valencia" for their collaboration in the election of the parameters used in this work.

REFERENCES

