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Abstract: This paper describes an accelerometer based gait analysis system for the assessment of fall risk. The 
assessment is based on 22 different features calculated from the signal. The different features are combined 
using machine learning algorithms in order to decide whether the subject has an increased fall risk. Results 
from Naive Bayes, Neural Networks, Locally Weighted Learning, Support Vector Machines and C4.5 are 
reported and compared. It is argued that the neural networks provide low accuracy results because of the 
high dimensionality of the feature space compared to the available data. It is shown that FD-NEAT (a 
method from neuro evolution which simultaneously learns the network topology, the network weights and 
the relevant features) outperforms the other methods in the given classification task. The system is evaluated 
on a database consisting of 40 elderly with known fall risk and 40 healthy elderly controls.  

1 INTRODUCTION 

The field of accelerometer based fall risk assessment 
is characterised by an intense debate on the 
relevance of some specific features calculated from 
the accelerometer signal in a univariate classification 
problem on the distinction between fallers from non 
fallers (e.g. Moe-Nilssen and Helbostad, 2005). 

Many of these features are known for decades 
(e.g. a decrease in step length is related to an 
increase in fall risk); others could only be described 
since the availability of small, battery powered 
accelerometer sensors (e.g. step regularity and 
symmetry). Only recently, the validity, reliability 
and repeatability of most of these features in the 
context of fall risk assessment have been described 
in the clinical literature (e.g. Moe-Nilssen, 1998). 

For some specific diseases and conditions having 
a direct impact on the gait pattern, it is well 
described how the disease is affecting the 
neurological or muscolatory system and how this 
affects the accelerometer based gait features. For 
example, in Parkinson patients, the freezing of gait 

increases the variability in stride time and the effect 
of specific treatment on the freezing of gait can be 
evaluated by investigating stride time variability 
(Hausdorff et al, 2005).  

However, in a majority of the growing 
population of elderly, an increase in fall risk cannot 
directly be attributed to  a specific disease. Rather, a 
condition of general frailty, multiple chronic 
diseases and a general decrease in mobility all 
together contribute to the increased fall risk. 
Therefore, it is to be expected that in a general 
population of elderly, a less clear relationship 
between single accelerometer based gait features and 
fall risk can be observed. However, very few 
attention was paid so far to the construction of 
intelligent multi-variate classifiers for fall risk 
assessment.  

This paper evaluates the use of the FD-NEAT 
algorithm (Tan et al, 2009) for the classification of a 
population of eighty elderly into a class of elderly 
presenting increased fall-risk and a class of elderly 
without an increased risk of falling, based on a wide 
variety of accelerometer based gait features. 
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From a machine learning perspective, the 
problem is far from trivial, as there is extremely few 
training data available, compared to the large 
number of features considered. We will show that 
FD-NEAT outperforms traditional neural networks 
and other machine learning algorithms, because it 
better copes with the dimensionality problem, by 
means of intelligent feature selection. Because of the 
clinically unclear relationship between many of the 
features used in this paper and fall risk in a general 
population of elderly, no a priori feature selection 
was performed based on the available medical 
knowledge.   

2 PREVIOUS WORK 

2.1 Accelerometer based Fall Risk 
Assessment 

Most studies in accelerometer based gait analysis for 
fall risk assessment are focusing on the repeatability 
or validity of single outcomes. Only very few studies 
are combining multiple outcomes in intelligent 
classifiers. Recently, Marschollek et al. showed how 
measures obtained from accelerometry could be 
combined with clinical scores, in order to 
discriminate between fallers and non-fallers during 
an instrumented timed up and go (TUG) test 
(Marschollek et al., 2009).  Another study, 
combining results from accelerometer based TUG 
tests, stepping tests and a sit-to-stand tests, is 
reported by (Narayanan, 2010).   

(Swanenburg et al, 2010) report on a one year 
prospective study of fall risk assessment, based on 
features calculated from force plates. Intelligent 
classifiers based on neural networks were also used 
for fall risk assessment from posturography tasks, 
instrumented with accelerometer and gyroscopes 
(Giansanti et al. 2008).  

3 METHODS 

3.1 Subjects 

Eighty subjects participated in this study. They 
consisted of two groups (n=40 each): elderly with 
known fall risk (EF) and elderly controls (EC), see 
table 1. Each group contained twenty males and 
twenty females.  

Table 1: General subject information. None of the 
parameters was significantly different between the groups 
(ANOVA p < 0.05). EF = elderly with increased fall risk, 
EC = elderly controls. Standard deviations are shown 
between brackets. 

 Group 
 EF (n=40) EC (n=40) 

Age 80.59 (5.38) 79.03 (4.95) 
Weight 66.89 (14.97) 69.74 (11.56) 
Length 1.62 (0.12) 1.64 (0.08) 
BMI 25.46 (4.29) 25.61 (3.93) 

All subjects were older than 70. Known fall risk 
was defined as a reported history of falls and/or 
Timed-Get-Up-and-Go-Test > 15s and/or Tinetti test 
≤ 24/28.  The local ethical committee approved this 
study and all participants provided their written 
informed consent.  

3.2 Data Acquisition 

The DynaPort Minimod tri-axial accelerometer 
(McRoberts BV, The Hague, The Netherlands) was 
placed at the sacrum of the subjects. The device 
stores the accelerometer signal on a standard SD-
card. Before every walking episode, the SD-card 
was emptied, put in the sensor and the sensor was 
restarted. After every walking episode, the SD-card 
was placed in the laptop and the acceleration data 
along the three axes was read out using the Mira 
software (same manufacturer) and exported to plain 
text files. The plain text files were loaded into our 
own gait analysis toolbox, an in-house developed 
software package programmed in C#. 

3.3 Test Procedure 

Subjects were asked to walk a straight line trajectory 
of 18 meters, separated by two clear lines on the 
floor. Subjects started with both feet in front of the 
first line and stopped when the second foot landed 
beyond the second line. The distance between the 
stop line and the final heel strike was measured and 
added to the 18 meter to obtain the total distance 
walked. At the beginning of each walk, the observer 
placed the sensor at the sacrum and initialized the 
sensor as described above.  Subjects were always 
instructed to walk at preferred speed and no walking 
aids were allowed. 

3.4 Statistical Analysis 

A dataset of eighty elderly consisting of forty elderly 
with increased fall risk and forty controls is 
available. Compared to similar datasets used in 
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accelerometer based gait analysis, this is quite a 
large set. However, from a machine learning 
perspective given the high amount of included 
features, its size is extremely small. Therefore, it 
was decided not to partition the dataset into a single 
training set and a single test set, but ten-fold cross 
validation was used (Duda et al, 2000). 

Data analysis was performed using SPSS version 
17, WEKA and Excel. For each of the studied 
machine learning algorithms averages over the ten 
folds of accuracy, true positives, false positives, 
precision, recall and Area under the Curve (AUC) 
are provided.  

Significant differences among outcome measures 
are evaluated using a one way ANOVA with 
significance set to p<0.05 and with a post-hoc 
Bonferroni test to identify two differing measures. 
Correlations between different types of features 
were assessed by calculating Pearson’s correlation 
coefficient.  

3.5 Data Analysis 

In total, 22 features were calculated from the 
accelerometer signal. Features can be divided into 
five groups: step count, step time (and derived 
statistics), step length (and derived statistics), step 
symmetry and step RMS. Each of the five groups is 
explained below. 

3.5.1 Step Count 

The 3D accelerometer signal is rotated to align the Y 
axis of the signal to gravity and steps (defined as 
initial contacts of the heel (IC)) are identified, based 
on the maxima before the zero-crossings in the 
forward acceleration signal, after applying a fourth 
order zero lag Butterworth low pass filter with a cut-
off frequency of 2 Hz (Zijlstra, 2004).  

3.5.2 Step Time 

From the IC’s detected from the signals as described 
above, the average step time is obtained, as well as a 
range of derived statistics including standard 
deviation, coefficient of variation, inter quartile 
range etc. Also, step frequency, walking speed and 
step time asymmetry are available. Step time 
asymmetry is the difference of the left step time and 
the right step time, scaled by the average and 
expressed as a percentage (equation 2). ݐ௔௦௬௠ = 200 หݐ௟௘௙௧ − ௟௘௙௧ݐ௥௜௚௛௧หݐ  + ௥௜௚௛௧ݐ   (2) 

In all features based on step time, the initial two 
steps and the final two steps are discarded from the 
signal, in order to exclude effects from gait initiation 
and gait termination. The study of irregularities in 
the gait initiation and termination phases is beyond 
the scope of this paper. 

3.5.3 Step Length 

As the total length of the trajectory and the number 
of steps are known, the average step length is 
available. Step length can also be calculated without 
relying on the measured true trajectory length using 
the inverted pendulum model (Zijlstra, 2004). The 
inverted pendulum model is a biomechanical model 
of human gait, which is relating a vertical movement 
of the pelvis during the gait cycle with the step 
length, as specified in equation 3:  ݐ݈݃݊݁݌݁ݐݏℎ = 2 ඥ2݈ℎ − ℎଶ (3) 

where l is the leg length and h is the vertical 
displacement of the pelvis, which is obtained from 
the double integration of the vertical acceleration 
component. The advantage of this method is that the 
step length of each gait cycle can be calculated 
individually, using only two parameters.  The 
disadvantage of this method is that the double 
integration step in calculating the vertical 
displacement is prone to drift.  Step length as 
calculated from the known trajectory length, step 
length according to the inverted pendulum model 
and the vertical displacement of the pelvis itself are 
included as features of this study. 

3.5.4 Step and Stride 
Regularity and Symmetry 

A whole family of related measures exist which all 
capture the regularity of the accelerometer signal 
over multiple steps (Moe-Nilssen and Helbostadt, 
2004). Suppose y[t] is the auto correlation of the 
acceleration signal a[t], then y[t] has maxima 
corresponding to a time shift of 1,2,.. k steps. Hence, 
the auto correlation at the first maximum expresses 
the step regularity, whereas auto-correlation at the 
second maximum expresses the stride regularity. 
Step symmetry is defined as the step regularity 
divided by the stride regularity. 

These measures are typically calculated in the 
medio-lateral (ML) and cranio-caudal (CC) 
direction. Auto correlation could be normalized or 
not. Biased and unbiased versions have been 
proposed. In this study only the unbiased measures 
in the CC orientation were incorporated.  
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3.5.5 Step and Stride RMS 

The root mean squared acceleration per step or per 
stride, in the CC and the ML direction were 
calculated (equation 4).  

ܵܯܴ = ඨ∑ ܽ௜ ଶܰ  (4) 

ai is the acceleration in the i-th sample of the 
considered step in either the CC or ML orientation 
and N is the number of samples in the current step. 
RMS values per step are averaged over all steps in 
the signal. 

3.6 Machine Learning 
Algorithms and Classifiers 

Standard machine learning methods for pattern 
recognition and classification were employed:  
Naive Bayes (NB), Multi layered perceptron (MLP), 
Support Vector Machines (SVM), Locally Weighted 
Learning (LWL) and C45.  For more information on 
any of these classifiers, the reader is referred to 
(Duda et al, 2000). WEKA version 3.4.13 was used 
for the classification based on each of these 
classifiers. Weka is an open source machine learning 
software package, provided by the University of 
Waikato. For each of the included algorithms, the 
default parameters as proposed by WEKA were 
used.  
Naive Bayes. This is a simple Bayesian classifier, 
assuming conditional independence between the 
attributes. 
Multi layered Perceptron. We have used a MLP 
with one hidden layer, consisting of 22 input units, 
12 hidden units, which is (nr inputs + output values) 
/ 2, and a single output unit. Learning rate was set to 
0.3 and momentum to 0.2. In the hidden units a 
sigmoid activation function was used, in the output 
unit the identity function was used as an activation 
function. Back propagation was used as a training 
algorithm, performing 500 iterations. 
Support Vector Machines. Sequential Minimal 
Optimization is used for fast training (Platt J, 1998). 
Locally Weighted Learning. This is a nearest 
neighbor classifier, which is considering all 
neighbors and attributing a weight to each of the 
neighbors. The weight scales linear with the inverse 
distance to the query point (Atkeson, Moore and 
Schaal, 1996). 
C45. is a traditional decision tree learning algorithm 
introduced by (Quinlan, 1993). 

3.7 FD-NEAT 

Training neural networks for classifying gait data 
with back propagation as used in the MLP, has 
several drawbacks: (1) the user must define the 
network topology; (2) the user must carefully select 
the relevant features, as (3) a fastly growing number 
of training instances is required with the addition of 
each new attribute. In the current study, only 80 
subjects are available, which might hence lead to 
low classification accuracy of neural networks.  

Approaches based on genetic algorithms were 
proposed in which the network topology and the 
weights are learnt simultaneously. An example of 
such a system is “neuro evolution of augmenting 
topologies” or NEAT (Stanley and Miikkulainen, 
2002) in which a population of neural networks 
evolves from simple perceptrons into more complex 
networks, based on mutation (both weights and 
connections evolve) and cross-over. NEAT was 
shown to perform superior to classical neural nets in 
typical benchmark problems. A straightforward 
extension of NEAT is “feature selective” NEAT or 
FS-NEAT (Whiteson et al, 2005) which performs 
feature selection, topology learning and weight 
learning simultaneously. In FS-NEAT the initial 
networks in the population only have a single input 
neuron, randomly selected from the available 
attributes. A mutation operator which can connect 
additional input nodes is added. A modification to 
FS-NEAT is “feature deselective” NEAT or FD-
NEAT (Tan et al, 2009), which is similar but starts 
from networks in which all inputs are connected and 
has a mutation operator which drops connections 
from input nodes. In most cases, FD-NEAT 
outperforms FS-NEAT.  

In the experiments we report in this article, the 
best result out of ten runs was obtained for each fold. 
The populations in the genetic algorithm consisted 
of 200 networks that were evolved over 60 
generations.   

4 RESULTS 

4.1 Comparison of Classifiers 

The main experiment consists of evaluating the 
performance of five different machine learning 
algorithms in a binary classification problem based 
on 22 features calculated from an accelerometer 
signal obtained from a single walk of 18 m. Detailed 
results are given in table 3. In summary, the results 
show that NB outperforms the other classifiers: it 
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has the highest accuracy (0.77), true positive rate (= 
recall) (0.75), precision (0.79) and area under the 
curve (0.82), for the lowest false positive rate (0.2).  
The multi layered perceptron scored very low, on 
each of the five performance measures incorporated 
in this study. Given the high amount of attributes 
(22) compared to the low amount of training 
instances (72 out of 80 in each fold), it is to be 
expected that inferior results of the MLP are due to a 
severe lack of training instances compared to the 
complexity of the network. Feature selection is 
hence appropriate.  

Table 2: Results of the classifiers, 22 features. TP = true 
positives, FP = false positives, AUC = area under the 
curve, NB = Naive Bayes, MLP=Multi Layered 
Perceptron, SVM = Support Vector Machine, LWL = 
Locally Weighted Learning.  X= AUC for FD-NEAT not 
available, see text. 

 
Given the inconclusive results of the debate in 

the gait analysis community on the relevance of each 
of the individual features, it is not advised to 
manually select the relevant features. On the other 
hand, one of the main observations in the field of 
clinical gait analysis is that almost all features are 
somehow influenced by walking speed.  In this 
study, subjects were asked to walk at normal speed. 
Hence, differences in any of the calculated features 
between EF and EC may be related to gait speed 
differences between both groups.  

Using FD-NEAT the accuracy increases up to 
82.5%. Also TP (recall) and precision are the highest 
of all experiments reported, while FP is the lowest of 
all reported experiments. For FD-NEAT ROC 
analysis with AUC could not be reported, as it uses a 
sigmoid in the activation function, resulting in 
nearly binary outputs such that threshold varying is 
unfeasible. 

Standard deviations of the accuracy over the ten 
folds were calculated for MLP-22 and FD-NEAT-22 
and are quite high (σ=0.17 and 0.17 
respectively). This is caused by the too small fold 
size (for N=80, the fold size is 8). At the 0.05 level, 

accuracy of FD-NEAT-22 is significantly better than 
MLP-22. 

5 DISCUSSION 

From a clinical perspective, this study confirms that 
accelerometer based fall risk assessment is feasible 
with high accuracy (82.5%) and with high sensitivity 
(80% recall). However, the study population was 
recruited based on self reported falls, the timed up 
and go test and the Tinetti test. Hence, amongst EF, 
a wide variety of conditions and diseases which are 
possible related to fall risk are present. In a study 
design in which only fallers suffering from a specific 
disease or condition are included (e.g. sarcopenia or 
Alzheimer’s disease), higher accuracy results could 
probably be obtained, using another subset of 
features, as each disease results in specific gait 
disorders. As this article is focussing on the 
screening potential of accelerometer based gait 
analysis for fall risk, we have chosen not to restrict 
the study population to specific subgroups. 

Most measures employed do not show significant 
differences between the different classifiers studied. 
This is due to the high standard deviations as the 
sizes of the folds studied are extremely small. 
However, validating over the test set was not 
considered a viable approach. Hence, it is to be 
advised to repeat the experiment over larger 
population sizes in order to reach significance. 

Nevertheless, FD-NEAT based on 22 features 
significantly outperforms MLP based on 22 features, 
confirming our initial hypothesis that FD-NEAT 
suffers less from the described dimensionality 
problems.  

6 CONCLUSIONS 

This article evaluated the possibility of fall risk 
stratification of elderly based on a single walk of 18 
meters, instrumented with an accelerometer. 
Opposed to many systems, the system is not limited 
to a single feature. We’ve investigated the 
performance of five different classifiers using 22 
features, commonly used in various gait 
experiments. Given the extremely small data set (40 
positive and 40 negative cases) compared to the 
number of attributes (22), the performance of the 
classifiers is suboptimal (60 to 70 % accuracy). 
We’ve put forward that FD-NEAT, an evolutionary 
approach to perform feature selection, to learn a 
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LWL-22 .69 .58 .2 .74 .58 .74

C45-22 .69 .65 .28 .70 .65 .64

FD-NEAT .82 .8 .15 .84 .8 X
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neural network topology and to learn the weights 
simultaneously, outperforms the traditional 
classifiers (82.5 % accuracy). 

From a clinical perspective, this article illustrates 
that in a general population of elderly, fall risk is 
related to different underlying constructs, with clear 
manifestations among different dimensions in the 
gait pattern as captured by the accelerometer.  
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