
A MOBILE APPLICATION ACCESSING PATIENTS’ HEALTH
RECORDS THROUGH A REST API

How REST-Style Architecture can Help Speed up the Development of Mobile
Health Care Applications

Francois Andry, Lin Wan and Daren Nicholson
Axolotl Corp., 160 West Santa Clara Street, San Jose, CA 95113, U.S.A.

Keywords: Mobile Application, Health Records, RHIO, Lab Results, HL7, REST API, Web Services, JAX-RS,
Security.

Abstract: Mobile devices offer new ways for users to access health care data and services in a secure and user-friendly
environment. These new applications must be easy to create, deploy, test and maintain, and they must rely
on a scalable and easily integrated infrastructure. In this paper we present the motivations and technical
choices for creating a REST API integrated with a mobile application (iPhone/iPad) that offer physicians,
access to their patients’ health records via a community, regional or state Health Information Exchange
(HIE). We describe the architecture of the system, including how we address security and privacy concerns,
the REST API operations and HL7 subset data format used for lab results and observations. We also explain
why the early use of unit tests and integration tests were essential to the success of the project.

1 INTRODUCTION

In the ambulatory health care environment,
providers spend the majority of their time in an
examination room with patients. Although some
clinics have installed personal computers in the
exam room for use at the point of care, many
physician practices have yet to do so or have no such
intention. Reasons for not installing PCs in the exam
room include (among others) lack of space, security
concerns, and cost. Often, clinics have PCs installed
outside of the exam room to be used for encounter
documentation or health history research (i.e.,
reviewing the patient's health records). This physical
setup is often satisfactory for providers to complete
their documentation needs. Providers often scratch
rough notes on paper during an encounter, then
dictate or type their notes after the visit has ended.
The absence of computers in the exam room,
however, is a disadvantage for research activities.
Frequently, after listening to the patient's verbal
health history, a provider wishes to read past
records. If those records are in an electronic format,
it is optimal to access those records at the point of
care (i.e., in the exam room) (Shiffman et al., 1999).
Thus, computer devices that are smaller and more
mobile than a PC (e.g., smart phones, PDAs, tablets)

would be the optimal hardware choice to access
these electronic records (Sammon et al., 2006;
Kumar et al., 2009). Given that many physicians
carry smart phones, such mobile devices would be
the ultimate tools to look up patient records
(Watson, 2006).

Over the years, our group has developed
advanced Clinical Networking™ solutions for
hospitals, RHIOs and state-wide health information
exchanges (HIE). We have created a backend
infrastructure accessible for integration as software-
as-a-service (SaaS), most of them relying on Simple
Object Access Protocol (SOAP) APIs. One of the
issues we have encountered when creating an
architecture for mobile application was the type of
API to use between backend servers and the new
mobile clients.

In this paper, we explain the challenges (Pabllo
et al., 2008) faced when creating a new high
performance API accessible by mobile health care
applications for physicians and medical personnel.
We describe the technical choices that we have
made to simplify and to speed up the development,
management, extension and maintainability of the
features involved in such applications and the
associated service layer.

27
Andry F., Wan L. and Nicholson D..
A MOBILE APPLICATION ACCESSING PATIENTS’ HEALTH RECORDS THROUGH A REST API - How REST-Style Architecture can Help Speed up
the Development of Mobile Health Care Applications.
DOI: 10.5220/0003129600270032
In Proceedings of the International Conference on Health Informatics (HEALTHINF-2011), pages 27-32
ISBN: 978-989-8425-34-8
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

2 MOBILE APPLICATION

The initial mobile application that we built on top of
Elysium Virtual Health Record (VHR)
infrastructure, only displays lab results. Other types
of data (vital signs, radiology and transcribed
reports, medications, etc.), which are currently
accessible via a web-based application, will be
offered at a later time. The usage scenario for the
mobile application is as follows:

1. Physician logs in using her/his credentials.

2. After successfully logging in, the physician
is presented with a list of patients that
he/she has explicit consent to view. In
addition, there is also a search box that will
allow the physician to manually search for
patients.

3. The physician chooses the patient of
interest on the patient list (or search
results).

4. Once the patient is selected, the physician
sees a list of available lab results for that
patient.

5. The physician selects a lab result of interest
by tapping it. This opens the lab result and
displays all of its details in a detail screen,
with the option of going back to the
previous screen to retrieve another lab
result.

2.1 Security Concerns

In order to minimize security risks and to comply
with HIPAA security regulations, we chose not to
store any patient, login or password data on the
mobile device preventing non-authorized users from
gaining any access to a patient’s personal health
information (PHI).
Access to the patients’ health records are provided
after the user (typically a doctor) enters his or her
login and password on the client application. These
are sent to the server via an application
programming interface (API). After authentication is
successful, the server sends back a security token
that the client must reuse for each subsequent
request to the server API. Initially all users
(physicians) have the same access control to the data
as long as the patients have given consent to specific
physician practices. As a result, the authorization
function is very simple.

Figure 1: Patient search (iPhone application).

2.2 Client Platforms

The initial platforms chosen to deploy our mobile
applications are the iPhone and iPad. Additional
platforms (Google Android OS, Motion BlackBerry,
Windows Mobile OS) are planned for future
releases.
Building, deploying and maintaining stand-alone
applications for mobile platforms is different from
building browser-based web applications. Each
platform has its own design, development and
deployment process and tools.
Since the development of client applications on
different mobile platforms requires more time than
creating web applications for a handful of browsers,
it is important to minimize the complexity of the
integration with the back-end services and to try to
decouple the development and maintenance of the
client- and server-side components.

3 BACKEND INFRASTRUCTURE

For over 15 years, Axolotl (now part of Ingenix) has
developed and offered web-based applications to
access patient records. Until recently, these web-
application components were either tightly coupled
with the backend data sources or were accessing
data through Simple Object Access Protocol (SOAP)
based web services. In health care, SOAP is often

HEALTHINF 2011 - International Conference on Health Informatics

28

the top choice when it comes to web services. The
advantages of SOAP are:

 Type checking (via WSDL files)
 Availability of development tools
 Suitability for securely transferring large

numbers of data
Even though it was tempting to reuse the existing
SOAP APIs to leverage the existing infrastructure
and avoid new development on the server side, we
decided to create a more appropriate architecture
that would be easier to integrate and extend as more
types of data are added to the mobile health care
applications.

4 VHR REST API

The Representational State Transfer (REST)
architecture (Fielding 2000) is an alternative to
SOAP and offers certain characteristics that were
relevant to our use case:

 Lightweight and easy to build
 Extensible
 Scalable
 Easy to debug (human readable results)

SOAP based Web Services offer no separation of
concern, since the supported programming model
does not separate network centric operations from
local operations (Landre, Wesenberg, 2007). On the
other hand with REST APIs, the separation of
concern is clear. All resources are accessible using
the same protocol (HTTP). Also with SOAP,
interoperability problems can occur when native
types are present in the interface, whereas REST is
simpler as it completely constrains the set of
operations (Pautasso et al., 2008).

4.1 API Design and Development

With REST we are able to dynamically build unique
URLs to represent remote health records objects as
needed. The mobile application sends HTTP
requests over Secure Sockets Layer (SSL) to obtain
a JavaScript Object Notation (JSON) of patient
demographic info (DOB, name, etc) or health
records. JSON was chosen because, as a compact
data format, it offers better performance compared
to the complexity of an XML representation. In
addition to this, requests coming back from the
REST API are compressed using GZIP, which
further improves the performance between the server
and the client.

The API has been built using JBOSS JAX-RS
RestEasy library, which leverages Java annotations,

Figure 2: Integrated Mobile/REST API architecture.

making the definition of the resource mapping easy
to do in a very declarative manner. We use the
Jackson JSON/Java library to marshal and
unmarshal java objects into JSON format. The
integration of the API layer with the backend data
source, as well as other services such as
configuration, is done using the Java Spring
framework.
To define the API dependencies, modules, libraries
and to build the web archive artefact (war), we use
Apache Maven 2. Throughout the development
cycle, we have used a continuous integration process
with unit tests (JUnit).
The overall project has been managed through an
agile/SCRUM process, with iterative, incremental
development sprints, each lasting three weeks.

4.2 API Operations

With REST, the identification of the resources (user,
patient, lab results, etc.) is straightforward. There is
no need for the client to create complex request
envelopes to query the server.
The initial features of the mobile client is to access
the health record in a read-only mode; no data is
created or modified. As a result, most of the
operations use GET HTTP methods, with some

A MOBILE APPLICATION ACCESSING PATIENTS' HEALTH RECORDS THROUGH A REST API - How
REST-Style Architecture can Help Speed up the Development of Mobile Health Care Applications

29

restrictions for certain operations, where parts of the
PHI may be sent by the user back to the server. To
be compliant with HIPAA security regulations, a
POST method is used and the sensitive information
(e.g., a query on a patient name) is passed in the
body of the request as a JSON object over an SSL
connection.

Table 1: Health Record API operations examples.

POST /users/tokens authentication
for a user

GET /users/{user-id}/patients retrieve patients
GET or POST
 /users/{user-id}/patients/{patient-id}

profile of a
specific patient

GET
/users/{user-id}/patients/{patient-id}/lab-
results

lab-results of a
patient

All request and response headers have a content type
“application/json,” which means that complex
queries and responses are in the form of JSON
arrays or JSON objects. In addition to this, the
requests coming from the client need to provide the
security token provided initially by the server as a
cookie in the request header.
Because the REST API is stateless, queries for large
amounts of data which require more than one
request - have to provide a limit (maximum) for the
number of resource items and an offset where to
start the query to avoid returning the same set of
data. These are defined as string parameters or
posted queries.

Figure 3: VHR patient’s lab results summary (iPhone).

Example of a JSON query object for patients:
{"query":
 {"family":"...",
 "max":N,
 "offset":M}
}

Example of a JSON response object for patients:
{"patients":
 {"list":[list of patients],
 "count":X,
 "offset":Y,
 "remain":Z}
}

Heath Record data can be very complex. For
example in our data source, data is often stored as
HL7v2 fields. The REST API uses an HL7v2 to
HL7v3 transformation library to access Java
canonical representation of the observations and
unmarshal these plain Java objects (POJO) into an
HL7v3 JSON representation of the observation.

Example of a JSON response object for lab results:
{"lab-results":

{"list":
[{"lab-result":

{"entry":"...",
 "facility":"...",
 "normalcy":"...",
 "orderedBy":"...",
 "status":"...",

 "subject":"...",
 "urgency":"..."}},

 {"lab-result":
{"date":"...",
...}}, ...],

"count":{count},
"offset":{offset},
"remain":{remain}}

Figure 4: VHR patient’s lab results details (iPhone).

HEALTHINF 2011 - International Conference on Health Informatics

30

HL7 V3 Lab result entry (JSON format):

{"entry":{

"organizer":{
 "code":{"displayName":"..."}},
 "components":[
 {"component":{...}},
 {"component":{...}},...],
 "notes":[...]}}}

HL7 V3 Lab result component (JSON format):

{"component":{
 "observation":{
 "code":{"displayName":"..."},
 "effectiveTime":{"value":"<ISO-8601>"},
 "value":...,
 "interpretationCode":{"code":"..."},
 "referenceRange":{
 "observationRange":{...}},
 "notes":[...]}}}

5 INTEGRATION AND TESTS

The REST API is very easy to test using HTTP
requests from simple command tools such as cURL
or a web browser. Early in the project we were able
to create and deploy, in a few days, a full working
prototype of the API that was producing mocked-up
resources so that mobile clients were able to retrieve
sample data in the same fashion as the final API
production version.

During development we used a very small
footprint embedded java web server (TJWS) that
was running JUnit integration tests every time we
were compiling the project. As a result, the REST
API was always operational and ready to be
deployed as a war file to the staging server when
necessary.
On the client side, the very simple host, port and
base URL configuration is necessary to switch
between a staging and production server, which
makes development, testing and deploying
extremely easy.

The first version of our mobile health record will
be available late 2010 as a pilot program for a small
group of physicians participating in the New York
Rochester Regional Health Information
Organization (Rochester RHIO). It has already been
tested by the technical services of the New York
Rochester RHIO and we have incorporated changes
in the iPhone interface and REST API format to
support the variability of real world lab results
(which sometimes can be either incomplete or
contain badly formatted HL7 data sets).

Initially only the records of patients who have
provided consent will be accessible by the mobile
application. This represents, in Summer 2010
290,000 patients from more than 140 practices.

6 CONCLUSIONS

In this paper, we have presented the advantages of
using a REST architecture for designing a
lightweight and scalable API that is extremely easy
to build, integrate, test, extend and maintain. We
were able to create a working API prototype in a
matter of days and a full functioning set of
sophisticated health record web services accessible
by our mobile client application in few weeks.

In the next few months, we will be able to gather
user feedback from a large group of users
(physicians and nurses) and statistics about usage
that will be very valuable to improve the
performance of our health record REST API and the
user experience of the mobile application. Also the
audit of server logs for the REST API and the use of
data mining tools will be valuable to see
performance bottlenecks and usage trends.
Furthermore not only are REST APIs are
particularly suitable for fast and loosely-coupled
solution integration such as mobile applications, but
can also be used in health care for portal and mash-
up applications as well.

ACKNOWLEDGEMENTS

We are very grateful to Ted Kremer, Gloria
Hitchcock and LaRon Rowe from the Rochester
RHIO who have initiated this project and for their
early feedback on the prototype. Our appreciation to
David Stanfill and Nick Fisser and their team from
Remedy Systems who helped us develop the iPhone
mobile client. We would like to acknowledge the
supervision and guidance provided by Anand Shroff.
Thank you also to Terena Chinn-Fujii, Igor Kosoy,
Greg Kuhnen, Ravi Luthra, Brian Schott, Neal
Schultz, Nick Radov, Nicole Spencer, Dennis
Stratford, Sean Smith, Tom Wilson, Eileen Xie,
Oleg Zakharov and the Axolotl development team
for their technical contributions, comments and
support throughout this project.

A MOBILE APPLICATION ACCESSING PATIENTS' HEALTH RECORDS THROUGH A REST API - How
REST-Style Architecture can Help Speed up the Development of Mobile Health Care Applications

31

REFERENCES

Fielding R., 2000, Architectural Styles and the Design of
Network-based Software Architectures. Doctoral
dissertation, University of California, Irvine.

Fielding R., Taylor R., 2002,. Principled Design of the
Modern Web Architecture, in TOIT 2002: ACM
Transactions on Internet Technology, pp. 115–150.

HIPAA, The Health Insurance Portability and
Accountability Act of 1996 (HIPAA) Privacy and
Security Rules. http://www.hhs.gov/ocr/privacy/.

Kumar et al., 2009, ELMR: Lightweight Mobile Health
Records: A Study of Access Control. In SIGMOD '09:
Proceedings of the 35th SIGMOD international
conference on Management of data.

Landre E., Wesenberg H., 2007: Rest versus soap: as
architectural style for web services. In 5th
International OOPSLA Workshop on SOA & Web
services Best Practices, 2007.

Luo J., 2008. Mobile computing in healthcare: the dreams
and wishes of cliniciansm, In HealthNet '08:
Proceedings of the 2nd International Workshop on
Systems and Networking Support for Health Care and
Assisted Living Environments.

Pabllo C., Soto R., Campos J., 2008. Mobile Medication
Administration System: Application and Architecture.
In EATIS '08: Proceedings of the 2008 Euro American
Conference on Telematics and Information Systems.

Pautasso C., Zimmermann O., Leymann F., 2008.
RESTful Web Services vs. Big Web Services: Making
the Right Architectural Decision. In WWW2008: 17th
International World Wide Web Conference, Beijing,
China.

Sammon et al., 2006, MACCS: Enabling Communications
for Mobile Workers within Healthcare Environments.
In MobileHCI '06: Proceedings of the 8th conference
on Human-computer interaction with mobile devices
and services

Shiffman et al., 1999, Pen-Based, Mobile Decision
Support in Healthcare. In SIGBIO Newsletter, Volume
19 Issue 2.

Watson M., 2006, Mobile Healthcare Applications: A
Study of Access Control. In Proceedings of the 2006
International Conference on Privacy, Security and
Trust.

HEALTHINF 2011 - International Conference on Health Informatics

32

