
ACCURATE LONG READ MAPPING
USING ENHANCED SUFFIX ARRAYS

Michaël Vyverman1, Joachim De Schrijver2, Wim Van Criekinge2, Peter Dawyndt1 and Veerle Fack1
1Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281-S9, B-9000 Ghent, Belgium

2Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium

Keywords: Inexact string matching, DNA sequencing, Read mapping, Enhanced suffix arrays.

Abstract: With the rise of high throughput sequencing, new programs have been developed for dealing with the align-
ment of a huge amount of short read data to reference genomes. Recent developments in sequencing tech-
nology allow longer reads, but the mappers for short reads are not suited for reads of several hundreds of
base pairs. We propose an algorithm for mapping longer reads, which is based on chaining maximal exact
matches and uses heuristics and the Needleman-Wunsch algorithm to bridge the gaps. To compute maximal
exact matches we use a specialized index structure, called enhanced suffix array. The proposed algorithm is
very accurate and can handle large reads with mutations and long insertions and deletions.

1 INTRODUCTION

With the rise of the second generation sequencing
technology the size of the sequencing data has in-
creased dramatically. New applications and new chal-
lenges have arisen, including the need for new al-
gorithms and data structures to handle the increased
amount of data and new error models. The efficient
mapping of sequencing reads to a reference genome
is one of the most important challenges of the new
sequencing technology, especially when considering
the reassembly of genomes and its application in the
prestiguous1000 Genomes Project.

Typical features of the new sequencing technol-
ogy are the small read length and new types of se-
quencing errors. In recent years, many mapping pro-
grams have been developed for handling short read
lengths. But, while sequencing technology advances,
the read length of second generation sequencing tech-
nology is increasing and third generation sequencing
promises read lengths of more than 1kbp. Moreover,
most mapping algorithms for short reads focus on mu-
tations as being the main error, while the longer 454
reads contain mostly insertions and deletions.

In this paper we focus on mapping reads of sev-
eral hundreds of base pairs to a medium sized refer-
ence sequence, where the reads may contain a small
number of long insertions and deletions, as well as
mutations. The proposed method is based on chain-
ing together maximal exact matches (MEMs) using

heuristics for speeding up the search. In order to
obtain the MEMs between query and reference se-
quence, we store the reference sequence in a special-
ized data structure, the so-called enhanced suffix ar-
ray (ESA) (Abouelhoda et al., 2004). The MEMs are
used as anchors in the alignment and are combined
or chained in a full local alignment using a combi-
nation of the Needleman-Wunsch algorithm (Needle-
man and Wunsch, 1970) for global alignment together
with some heuristics.

Related Work. Many fast and accurate short-read
mappers exist today. SOAP (Li et al., 2008),
Bowtie (Langmead et al., 2009) andBWA (Li and
Durbin, 2009) all perform well when used for short
reads with few mismatches. The upper bounds for
the read length are 200bp forBWA and 1024bp for
Bowtie andSOAP. Hoffmann et al. introduced a new
short sequence mappersegemehland compared its
performance withSOAP, BWA and Bowtie (Hoff-
mann et al., 2009). Their results show that most map-
ping programs are not capable of forming a correct
alignment when 4 or more differences between query
and reference sequence are present. Recently a fast
and accurate long read mapperBWA-SW using the
Burrows-Wheeler transform was introduced (Li and
Durbin, 2010).

Also mapping programs based on maximal ex-
act matches have already been investigated. For ex-

102 Vyverman M., De Schrijver J., Van Criekinge W., Dawyndt P. and Fack V..
ACCURATE LONG READ MAPPING USING ENHANCED SUFFIX ARRAYS.
DOI: 10.5220/0003126201020107
In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms (BIOINFORMATICS-2011), pages 102-107
ISBN: 978-989-8425-36-2
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

ample,AVID (Bray et al., 2003) is a global align-
ment program that uses MEMs as anchors for a global
alignment. AVID further uses recursion and in a fi-
nal step the Needleman-Wunsch algorithm is used in
order to fill the gaps between the MEMs. MUM-
mer (Kurtz et al., 2004) is another alignment pro-
gram that uses a suffix tree-based seed and extension
algorithm. MUMmer uses maximal unique matches
(MUMs) instead of MEMs.

2 PRELIMINARIES

By Σ = {A,C,G,T} we denote the alphabet of nu-
cleotides. LetS be a reference sequence over the al-
phabetΣ and letQ be a set of query sequences with
q ∈ Q. The inexact string matching problemis de-
fined as finding an optimal local alignment between
the query sequences and the reference sequenceS.
The queries can contain mismatches and gaps. The
differences can be the result of genetic differences, se-
quencing errors or other sources; however, the source
of the differences is not important for our purposes
and the gaps will be referred to asmutations, inser-
tions anddeletions. The solution of the stated prob-
lem gives a starting position, followed by a list of the
positions of the insertions, deletions and mutations
along with their length if necessary. Theedit distance
betweenS and a queryq is defined as the number of
‘errors’ (insertions, deletions or mutations) of the op-
timal local alignment found.

A maximal exact match(MEM) can intuitively be
seen as an exact match between substrings of two se-
quences that is no substring of another exact match-
ing substring between the two sequences. In this con-
text, a maximal exact match between the reference se-
quenceSand the query sequenceq is a triple(qs, ℓ,P),
whereqs is a position inq corresponding to the start
of the match inq, ℓ is the length of the match andP
is a list of index positionspi in S that correspond to
starting positions of the match inS. When the listP
contains only one index positionp we can also denote
the MEM as(qs, ℓ, p). The substrings correspond-
ing to [qs,qs+ℓ], [p1, p1+ℓ], . . . , [p|P|, p|P|+ℓ] are ex-
act matches. The matches are maximal in the sense
that no exactly matching substring inScan be found
for the substrings corresponding to[qs− 1, ℓ] and
[qs, ℓ+ 1]. The definition of maximal exact matches
here is biased towards the query sequence. The rea-
son for this bias is that maximal exact matches will be
used to traverse the query sequence from left to right,
allowing the same substring inq to be encountered
more than once.

A suffix tree(Gusfield, 1997) for a stringS (de-

noted byT) is a tree-like data structure that indexes
S, by forming a one-to-one correspondence between
the suffixes of the string and the leaves of the tree.
The main assets of the suffix tree are its construction
cost, which is linear in the length of the string, and its
pattern matching cost, which is linear in the length of
the pattern.

Because many implementations and variants of
suffix trees exist, it is important to note thatT is a
suffix tree with suffix links. In our implementation we
use a variant of the suffix tree, a so-calledenhanced
suffix array (ESA) (Abouelhoda et al., 2004), al-
though the idea behind the algorithm intuitively uses
a suffix tree. We will use the general termindex struc-
ture to refer to variants of both suffix trees and suffix
arrays.

3 ALGORITHM

3.1 Overview

The proposed algorithm first builds an enhanced suf-
fix array (ESA) for the reference sequenceSand then
processes the query file one query at a time. Note that
the ESA data structure forScan be reused for all the
queries and in later projects. The ESA index is first
used to calculate maximal exact matches (MEMs) be-
tween the reference sequenceS and a query. After-
wards, the obtained MEMs are filtered (using some
heuristics). After filtering, the MEMs roughly cor-
responding to the best alignment position are joined
together. The chaining is done by traversing the list
of filtered MEMs from left to right, relative to their
starting positions in the query sequence. The actual
joining process uses the Needleman-Wunsch global
alignment algorithm.

The main idea behind the algorithm is based on
first pinpointing the exact position of the query in the
reference genome corresponding to the optimal align-
ment. Then the MEMs can be seen as a sort of an-
chors or seeds in the alignment. The chaining idea
is based on dynamic programming, where the matrix
rows correspond to the query, while the colums cor-
respond to the reference sequence and the MEMs are
diagonals in the matrix. The chaining algorithm tries
to combine diagonals that score well in order to find
an optimal alginment.

3.2 Main Algorithm

Algorithm 1 requires as input the reference se-
quenceS, a queryq, the index structureT of S$, and

ACCURATE LONG READ MAPPING USING ENHANCED SUFFIX ARRAYS

103

the expected edit distancek. The expected edit dis-
tancek is an important parameter but can be an ap-
proximation. The algorithm will try to find an optimal
alignment ofq in a substring ofSof size|q|+2k.

The matching process starts by finding the list
of all MEMs betweenS andq (line 1). In the next
step (line 2), the list is filtered so that only the most
promising MEMs remain. For every MEM(qs, ℓ,P)
remaining after the filtering, it holds thatP contains
only one element. In most cases, the first MEM is
part of the best alignment, but even in the worst case,
the filtering process guarantees that it is part of a sub-
optimal alignment that is located withink positions of
the optimal alignment.

During the main loop (lines 9-16), the list of fil-
tered MEMs is traversed. For every current MEM,
corresponding to an interval inq and an interval inS,
the closest MEM to the right of the current match is
searched. More details on the definition of ‘closest’
MEM and the steps in the inner loop (lines 11-12)
are given in the next paragraphs. Once the closest
MEM is found, the gap between the two matches is
bridged (line 14), using a mix of heuristics and the
Needleman-Wunsch global alignment algorithm.

It is possible that, due to errors in the first and/or
last characters ofq, the alignment obtained during
the main loop does not cover the entire query. The
functions dynProgBegin() (line 5) and dynProgEnd()
(line 18) are used to find those parts of the alignment.

Algorithm 1: Main Algorithm.

Require: S, T , q∈Q, expected edit distancek
Ensure: an optimal local alignment ofq in S

1: mems←mems(S,q,T)
2: mems←filter (mems, q, k)
3: mem←mems.get(1)
4: if mem.qs > 0 then
5: sol← dynProgBegin(S,q,mem,k)
6: else
7: sol←mem.P {starting pos. of alignment inS}
8: i← 2
9: while (i ≤ |mems|) do

10: j ← i
11: while j ≤ |mems|∧ distance betweenmemand

mems.get(j) is descendingdo
12: j ← j +1
13: newMem←mems.get(j−1)
14: sol← sol+ findGap(S,q,mem,newMem)
15: mem← newMem
16: i← j
17: if mem.qs+ ℓ < |q| then
18: sol← sol+ dynProgEnd(S,q,mem,k)
19: return sol

3.3 Calculating the MEMs

The maximal exact matches betweenS and q are
found using an adaptation of the matching statistics
algorithm described in (Gusfield, 1997). The main
idea behind the algorithm consists of matching every
suffix of q to the suffix tree ofS. After a mismatch
is found for one suffix, a suffix link is used in or-
der to speed up the search for the next suffix. Using
some tricks, the algorithm runs in linear time com-
plexity O (|q|). The main difference between their al-
gorithm and our approach is that the reference textS
and query (or pattern)q are switched. Normally, it
would be more interesting to build the index structure
for the shortest sequence (i.e.q), but in our case build-
ing an index structure once for the reference sequence
is more interesting than building an index structure
for every query, since the sum of the lengths of the
queries is much larger than the length ofS. The ben-
efit of this approach is that the MEMs are sorted in
increasing starting position inq. Also, the listP, cor-
responding to the positions of a match inS, is sorted in
increasing order. In order to suppress the output of the
algorithm, a minimal length depending onk and|q| is
induced upon the MEMs.

3.4 Filtering the MEMs

The list of MEMs and their listsP of positions inS
can be large. Filtering the list of MEMs using fast
heuristics has the advantage of speeding up the main
loop in Algorithm 1, but it also allows to find the first
MEM (with the smallestqs) that is contained in an
optimal local alignment.

First the list of MEMs is traversed in order to find
a match with maximal length, which is assumed to be
in the optimal alignment and is referred to as the an-
chor of the alignment. Searching for a longest match
allows some error on the choice of parameterk. Next,
the list is traversed again and filtered, keeping only
MEMs that ‘have potential’ and that contain a posi-
tion p∈ P that is ‘close to’ the anchor.

A MEM (qs, ℓ,P) is said to ‘have potential’ if the
following condition holds:

(ℓ≥
|q|
k
)∨ (|P|= 1)∨ (ℓ= ℓ′),

whereℓ′ is the length of the anchor. This means that
the heuristic allows long matches, matches that are
unique inS and matches with the same length of the
anchor. The last of these conditions is important when
dealing with short reads, highly repetitive regions or
a wrong estimate ofk.

The condition that decides whether a potential
match is added to the filtered list, traverses the listP

BIOINFORMATICS 2011 - International Conference on Bioinformatics Models, Methods and Algorithms

104

and searches the first positionp such that the rela-
tive position of the current match to the anchor is
located within a window[−k,+k] of the position it
would have if there were no errors or differences in
the alignment.

Experiments show that the combination of the
above heuristics filters almost always all MEMs not
corresponding to an optimal alignment related to the
longest MEM, while keeping most of the MEMs that
do form an optimal alignment around the longest
MEM. We believe that repeating the filtering step,
but using a different reference MEM instead of the
longest match, allows to find other alignments.

3.5 Finding the ‘Closest’ MEM

The distance between two MEMs(qs, ℓ, p) and
(qs′ , ℓ, p

′) is defined as follows. First, distances inq
and S are determined asqDist := qs + ℓ− qs′ and
refDist := p+ ℓ− p′. If both distances are positive,
which is the most common situation, the distance be-
tween the two MEMs is the maximum of the two dis-
tancesqDist andrefDist. If both are negative, result-
ing in overlapping MEMs, the resulting distance is
| |refDist|− |qDist| |. If one is positive and the other
negative then the distance is defined as the sum of the
positive distance and the absolute value of the nega-
tive distance.

If at least one of the differences is negative (qDist
or refDist), then the shortest distance between the
MEMs is a single insertion or deletion (according to
the chosen score function). The case of two positive
differences is explained in the next section.

Using this definition and the ordering on the list
of MEMs from the first step, one can see that the
distance between the two MEMs in general only de-
scends at first, reaches a minimum and then starts in-
creasing. This means that during the main loop of the
algorithm every MEM is checked at most twice.

3.6 Closing the Gaps

Gaps and mismatches can occur between the begin-
ning of the query and the first MEM in the list, be-
tween two MEMs in the list and between the last
MEM and the end of the query.

The first and last gaps are bridged by using a vari-
ant of the Needleman-Wunsch global alignment algo-
rithm, usually referred to as semi-global alignment.
The first variant allows gaps at the beginning ofSthat
are not penalized and the second variant allows for
free gaps at the end ofS.

In order to find the gaps between two MEMs, the
distance and the differences from the previous para-

graph are used. First, the algorithm checks if a sin-
gle insertion, deletion or mutation fills the gap. Oth-
erwise, a global alignment is performed between the
right bounds of the first MEM and the left bounds of
the second MEM.

The Needleman-Wunsch algorithm was always
executed with a score+2 for matches,−1 for mis-
matches and an affine gap penalty with an opening
gap penalty of−2 and an extension penalty of−1.
Other scores can be used, resulting in a different
alignment, especially at the ends of the query.

3.7 Implementation and Complexity

We implemented the above algorithm in Java. An en-
hanced suffix array (ESA) was used instead of a stan-
dard suffix tree because an ESA has a lower memory
footprint, has a modular design and maintains the full
functionality of the suffix tree. The ESA (Abouelhoda
et al., 2004) contains four arrays: the suffix array, the
longest common prefix (lcp) table, the child table and
the suffix link table. The suffix array was constructed
using the difference cover algorithm of Karkkainen
and Sanders (Kärkkäinen and Sanders, 2003). The
lcp table was constructed using the algorithm of Ka-
sai et al. (Kasai et al., 2001). The child table was con-
structed using the algorithms described in (Abouel-
hoda et al., 2004) and finally the suffix link table was
constructed using Maaß algorithm (Maaß, 2007).

The memory footprint of the algorithm mainly de-
pends on the size of the ESA and storage of the refer-
ence sequences and query sequences. The implemen-
tation of the ESA without memory optimization takes
about 20 bytes per character, which results in an index
structure of about 100MB for a sequence likeE. coli.
Since the query sequences are in general much shorter
than the reference sequence and MEMs are not too
abundant, the memory needed for storing the MEMs
is low.

The theoretical time complexity of the algorithm
depends on the construction of the index structure, the
search for MEMs, and the filtering and chaining of the
MEMs using the Needleman-Wunsch algorithm. For
one queryq of lengthm and a reference sequenceS
of sizen the asymptotic time complexity can be cal-
culated as follows. Constructing the ESA can be done
in O (n) time (Abouelhoda et al., 2004), while calcu-
lating the MEMs can be done inO (m) time (Gusfield,
1997). Finding the positionsP for every MEM can
be done in constant time using an ESA. Filtering the
MEMs can be done inO (∑P), where the sum runs
over the number of found MEMs, which is bounded
by m. In theory, if the listsP are large (meaning a
lot of repeats or small maximal exact matches), this

ACCURATE LONG READ MAPPING USING ENHANCED SUFFIX ARRAYS

105

Table 1: Alignment of the simulated data using our algo-
rithm andBowtie. The row ‘# of different alignments’ gives
the number of queries where our algorithm found an opti-
mal alignment that differed from the alignment suggested
by simulating the errors.

Our algorithm Bowtie
time (sec.) 7.5 264
of correct alignments 75381 24252
of different alignments 1835
of failed alignments 2150 55123
percentage correct 95% 31%

sum can become very large. However, in practice the
heuristics speed this up considerably. The main loop
of Algorithm 1 can be executed inO (m) time plus
the time used for the executions of the Needleman-
Wunsch algorithm. The worst case scenario is when
only one small MEM is found, which translates in a
time complexity ofO ((m+ 2k)2), which is the time
complexity of a Needleman-Wunsch alignment, when
the position ofq in S is known. When many or long
MEMs are found and not filtered out, the main loop is
very fast. Currently the bottleneck of the algorithm is
the calculation of the maximal exact matches.

4 RESULTS

4.1 Preliminary Results

We tested our algorithm on simulated BRCA1 data.
BRCA1 is a gene known to be involved in the devel-
opment of breast cancer when mutated (Friedenson,
2007) and is routineously screened in older women.
The diagnostic community is currently implementing
next-generation sequencing to carry out these screen-
ings, hence BRCA1 data was used to test and validate
the algorithm.

A reference sequence of 80kbp was used together
with a query file containing about 80000 queries rang-
ing in size from 8bp to 1021bp with an average length
of about 600bp. The total number of insertions, dele-
tions and mutations for one query was bounded by 4
errors of each type, while on average the total number
of errors was 2.5. The longest indels were 10bp long
and the average edit distance was 5.73.

The simulated queries were aligned with our al-
gorithm andBowtie (Langmead et al., 2009), where
Bowtie was executed with the default parameters.
The results of the alignments are shown in Table 1.
This includes the running time in seconds, as well as
the number of correct and failed alignments. Note that
in some cases our algorithm finds an alignment that is
different from what would be suggested by the sim-
ulation of the errors, but has the same edit distance;

these cases are also shown in the table.
The tests show that our algorithm is both faster

and more accurate thanBowtie. However, note that
Bowtie was not optimized for performance, which
could explain its low speed. The large amount of
failed alignments forBowtie can be explained by the
large length of the queries and the high edit distance
and/or large insertions and deletions.

The results show that our algorithm was able to
find an optimal alignment for almost all the queries
(95% of them). The set of failed alignments con-
tains 129 queries with a larger edit distance and
2021 queries with a smaller edit distance (than the
alignment given by the simulation). Some of the
alignments with smaller edit distance are due to the
scoring in the Needleman-Wunsch algorithm. The
failed alignments are mostly caused by using wrong
MEMs in the alignment, which stem from too rigor-
ous filtering of the MEMs or the greedily defined dis-
tance between MEMs. However, even if part of the
alignment failed for a given query, the ‘true position’
of the query was found in all but 6 cases.

4.2 Current and Future Work

Currently we are testing our algorithm for datasets
with longer reads and more erroneous reads. We
also work on comparing its results with other long
read aligning programs, such asBWA-SW (Li and
Durbin, 2010),MUMmer (Kurtz et al., 2004) and
RazerS(Weese et al., 2009).

In this version of the algorithm, only one possi-
ble best local alignment is returned. This is consistent
with the default option of many widely used align-
ment programs today. In future versions of the al-
gorithm, an option could be included allowing more
alignments to be returned. There can be some issues
with small reads and reference sequences containing a
lot of long repetitive regions, because a good first an-
chor MEM cannot be found in those circumstances.
However, since the latter is not regularly screened by
sequencing, this present no big problems in practice.
When screening repeat regions, both the biology as
the informatics need some customization, which is
not the scope of this manuscript.

In spite of its linear memory usage, the index
structure used in the current implementation still has
a relatively large memory footprint (i.e. 20 bytes per
character). According to Abouelhoda et al. (Abouel-
hoda et al., 2004), the memory footprint can be scaled
down to 8 bytes per character. Moreover, the main
bottleneck in speed is finding the MEMs. Recently,
Khan et al. (Khan et al., 2009) used a sparse suffix ar-
ray to compute MEMs. Also, many mapping progra-

BIOINFORMATICS 2011 - International Conference on Bioinformatics Models, Methods and Algorithms

106

ms use an FM-index instead of suffix trees to improve
the memory requirements. In future versions, our al-
gorithm could implement a more memory-friendly in-
dex structure. A possibility to increase accuracy is
changing the anchors or seeds from MEMs to max-
imal unique matches as inMUMmer (Kurtz et al.,
2004) or using spaced or inexact matches.

5 CONCLUSIONS

We presented an algorithm for mapping large reads
to a reference genome which is fast and accurate in
finding an optimal local alignment. The algorithm is
easy to understand and has few parameters. Our first
results show that the algorithm is able to map reads
with insertions, deletions and mutations and with a
length of several hundreds of base pairs successfully
to a reference sequence.

The algorithm is more accurate given longer
queries with lower error rates. The main algorithm
takes several parameters which can be tuned. These
are: the expected edit distance and the cost parameters
for the Needleman-Wunsch algorithm. The expected
edit distance can be approximated and allows some
deviation from the real edit distance. Better results
are obtained with an overestimate than with an un-
derestimate. The algorithm is devised in such a way
that an alignment is always found even if it is subop-
timal. Even if reads contain insertions, deletions or
mutations in the first or last parts of the query, our
algorithm was able to find an optimal alignment.

ACKNOWLEDGEMENTS

The research of MV is funded by a grant from the
N2N-MRP at Ghent University.

REFERENCES

Abouelhoda, M. I., Kurtz, S., and Ohlebusch, E. (2004). Re-
placing suffix trees with enhanced suffix arrays.Jour-
nal of Discrete Algorithms, 2:53–86.

Bray, N., Dubchak, I., and Patcher, L. (2003). AVID: a
global alignment program.Genome Research, 13:97–
102.

Friedenson, B. (2007). The BRCA1/2 pathway prevents
hematologic cancers in addition to breast and ovarian
cancers.BMC Cancer, 7:152.

Gusfield, D. (1997).Algorithms on strings, trees, and se-
quences. Cambridge university press, 32 Avenue of
the Americas, New York, NY 10013-2473, USA, 11th
edition.

Hoffmann, S., Otto, C., Kurtz, S., Sharma, C., Khaitovich,
P., Vogel, J., Stadler, P., and Hackermüller, J. (2009).
Fast mapping of short sequences with mismatches, in-
sertions and deletions using index structures.PLoS
Computational Biology, 9:e1000502.

Kärkkäinen, J. and Sanders, P. (2003). Simple linear
work suffix array construction. InProceedings of
the 30th International Conference on Automata Lan-
guages and Programming, volume 2719 ofLecture
Notes in Computer Science, pages 943–955. Springer-
Verlag.

Kasai, T., Lee, G., Arimura, H., Arikawa, S., and Park, K.
(2001). Linear-time longest-common-prefix computa-
tion in suffix arrays and its applications. InProceed-
ings of the 12th Symposium on Combinatorial Pattern
Matching (CPM 01), volume 2089 ofLecture Notes in
Computer Science, pages 181–192. Springer-Verlag.

Khan, Z., Bloom, J., Kruglyak, L., and Singh, M. (2009). A
practical algorithm for finding maximal exact matches
in large sequence datasets using sparse suffix arrays.
Bioinformatics, 13:1609–1616.

Kurtz, S., Phillippy, A., Delcher, A., Smoot, M., Shumway,
M., Antonescu, C., and Salzberg, S. (2004). Versa-
tile and open software for comparing large genomes.
Genome Biology, 5:R12.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.
(2009). Ultrafast and memory-efficient alignment of
short DNA sequences to the human genome.Genome
Biology, 10:R25.

Li, H. and Durbin, R. (2009). Fast and accurate short read
alignment with Burrows-Wheeler transform.Bioin-
formatics, 25:1754–1760.

Li, H. and Durbin, R. (2010). Fast and accurate long read
alignment with Burrows-Wheeler transform.Bioin-
formatics, 5:589–595.

Li, R., Li, Y., Kristiansen, K., and Wang, J. (2008). SOAP:
short oligonucleotide alignment program.Bioinfor-
matics, 24:713–714.

Maaß, M. (2007). Computing suffix links for suffix trees
and arrays.Information Processing Letters, 101:250–
254.

Needleman, S. B. and Wunsch, C. D. (1970). A gen-
eral method applicable to the search for similarities
in the amino acid sequence of two proteins.Journal
of Molecular Biology, 48(3):443–453.

Weese, D., Emde, A.-K., Rausch, T., Döring, A., and Rein-
ert, K. (2009). RazerS – fast read mapping with sen-
sitivity control. Genome Research, 19:1646–1654.

ACCURATE LONG READ MAPPING USING ENHANCED SUFFIX ARRAYS

107

