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Abstract: Our paper emphasizes the relevance of Extreme Learning Machine (ELM) in Bioinformatics applications by
addressing the problem of predicting the disulfide connectivity from protein sequences. We test different
activation functions of the hidden neurons and we show that for the task at hand the Radial Basis Functions
are the best performing. We also show that the ELM approach performs better than the Back Propagation
learning algorithm both in terms of generalization accuracy and running time. Moreover, we find that for the
problem of the prediction of the disulfide connectivity it is possible to increase the predicting performance by
initializing the Radial Basis Function kernels with a k-mean clustering algorithm.
Finally, the ELM procedure is not only very fast but the final predicting networks can achieve an accuracy of
0.51 and 0.45, per-bonds and per-pattern, respectively. Our ELM results are in line with the state of the art
predictors addressing the same problem.

1 INTRODUCTION

The prediction of protein structures from their se-
quences is still an open problem in Structural Bioin-
formatics, especially considering that the dispropor-
tion between the huge number of putative protein se-
quences with respect to the smaller number of known
3D structures. Over the last two decades several ap-
proaches were described in order to find approximate
solutions to the protein folding problem and tools
have been developed to facilitate the search of a likely
structural template for the protein sequence at hand.
Among these, the identification of the correct pairing
of bonded cysteines in the protein sequence (disulfide
connectivity) helps in constraining its folded struc-
ture.

The problem of the prediction of disulfide connec-
tivity can be logically split into two steps: 1) predict-
ing the disulfide-bonding state (namely the identifica-
tion of the cysteine residues that in the protein chain
are/are not likely to make disulfide bonds); 2) assign-
ing the connectivity pattern of the bonded cysteines.
For the first step several methods are available and
achieve an average per-protein accuracy higher than
80% (Muskal et al., 1990; Fiser et al., 1992; Fariselli
et al., 1999; Fiser and Simon, 2000; Mucchielli-

Giorgi et al., 2002; Martelli et al., 2002; Chen et al.,
2004; Liu, 2007). Finding solutions for the second
step is generally harder than for the first one, since
cysteine pairing in the protein space is a problem
of global optimization in the protein feature space
and the bridge formation is not necessarily depen-
dent on local functional and structural motifs. Ma-
chine learning and computational methods have been
widely used to solve the disulfide connectivity pre-
diction problem over the past years with significant
progresses.

Fariselli and Casadio (2001) first addressed the
prediction of disulfide connectivity as a combinatorial
optimization problem that finds the maximum-weight
perfect matching of a complete undirected weighted
graph. According to this graph model vertices are
the putative bonded cysteines and edges represent
the strength of interactions among corresponding cys-
teine pairs. Since the graph is complete, the Edmond-
Gabows (EG) algorithm (Gabow, 1975) is the most
suitable method to solve the corresponding Linear
Programming problem. The weight edges were com-
puted using stochastic optimization methods (Fariselli
and Casadio, 2001) or neural networks (Fariselli et al.,
2002; Shi et al., 2008).

Later other methods were developed and these in-
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clude a bi-recursive neural network system (Vullo and
Frasconi, 2004), a method based on Cysteine Separa-
tion Profiles (CSPs) (Zhao et al., 2005), neural net-
works that exploit diresidue composition (Ferrè and
Clote, 2005), two dimensional recursive neural net-
works (Baldi et al., 2005), K-nearest neighbors algo-
rithm (Chen et al., 2006), support vector regression
(Song et al., 2007; Zhu et al., 2010), support vec-
tor machines (Lu et al., 2007), statistical analysis in-
cluding correlated mutations (Rubinstein and Fiser,
2008), decomposition convolution kernels (Vincent
et al., 2008) and recently prediction based on com-
parative modeling (Lin and Tseng, 2010).

Although it is difficult to compare the perfor-
mance of different predictors, often trained and tested
on different protein sets with different levels of ho-
mology, and implementing different protein features,
the present best performance is in the range of 50-
60% per protein accuracy depending on the num-
ber of disulfide bridges. In any case all the above
approaches are poorly performing when the num-
ber of bridges in the protein is≥5. This was/and
still remains due to the paucity of examples in the
PDB database of proteins with a large number (≥5)
of disulfide bridges included in the training/testing
set. In most of the neural network based methods
quoted above the networks were modeled as directed
acyclic graphs (DAG) trained with the very popu-
lar back-propagation (BP) algorithm that implements
the steepest gradient descent (GD) search through the
space of network weights. Trapping in local minima
is one of the major problem of this procedure and
the search in the weights space is generally slow and
time-consuming, especially considering that the num-
ber of training examples in the biological data bases
is exponentially increasing and methods need learn-
ing updating.

In this paper, we are approaching the problem of
disulfide connectivity prediction using single-hidden
layer feed-forward neural network (SLFN), with a lat-
est machine learning technology called the Extreme
Learning Machine (ELM) (Huang et al., 2004). We
investigate the performance of this algorithm with dif-
ferent activation functions as compared to the classi-
cal BP approach. We find that the ELM procedure
is very fast and that the final predicting networks can
achieve an accuracy of 0.51 and 0.45, per-bonds and
per-pattern respectively. Our ELM results are there-
fore in line with the state of the art predictors address-
ing the same problem and are obtained with less com-
putational time.

The remainder of the paper is organized as fol-
lows: Section 2 describes the ELM learning algo-
rithm. Section 3 presents our dataset and the exper-

imental protocol of our work. Section 4 shows and
discusses results, and concludes this paper.

2 BRIEF OF THE EXTREME
LEARNING MACHINE

Single-hidden layer feed-forward neural network
(SLFN) have been showed to be sufficient to solve
very difficult mapping (Huang, 2003; Tamura and
Tateishi, 1997). However, traditional learning al-
gorithms for feed-forward networks, like back-
propagation, require tuning many parameters over an
iterative procedure that is very time-consuming. To
overcome this issue, in the recent years the Extreme
Learning Machines have been introduced (Huang
et al., 2006b; Huang et al., 2004; Huang and Siew,
2004; Huang and Siew, 2005; Huang et al., 2006a).
For sake of clarity we briefly introduce the mathemat-
ical notation used to define ELM.

2.1 Mathematical Perspective on SLFNs

For N arbitrary distinct samples(xi , ti), wherexi =

[xi1,xi2, · · · ,xin]
T ∈ Rn andti = [ti1,ti2, · · · ,tim]T ∈ Rm

, a standard SLFN withN hidden neurons and an ac-
tivation functiong(x) is mathematically modeled as

Ñ

∑
i=1

βig(wi .x j +bi) = o j , j = 1, · · · ,N (1)

wherewi = [wi1,wi2, · · · ,win]
T is the weight vector

connecting theith hidden neuron and the input neu-
rons,βi = [βi1,βi2, · · · ,βim]T is the weight vector con-
necting theith hidden neuron and the output neurons,
andbi is the threshold of theith hidden neuron.wi ·x j
denotes the inner product ofwi andx j . The standard
SLFNs can approximate theseN samples with zero
error if there existβi, wi andbi such that

Ñ

∑
i=1

βig(wi .x j +bi) = t j , j = 1, · · · ,N (2)

The aboveN equations can be written compactly as:

Hβ = T (3)

where

H(w1, · · · ,wN,b1, · · · ,bN,x1, · · · ,xN) =






g(w1.x1 +b1) · · · g(wÑ.x1 +bÑ)
... · · ·

...
g(w1.xN +b1) · · · g(wÑ.xN +bÑ)







N×Ñ

(4)
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β =







βT
1
...

βN
Ñ







Ñ×m

and T=







tT
1
...

tN
Ñ







Ñ×m

(5)

H is called the hidden layer output matrix of the neu-
ral network (Huang, 2003); theith column ofH is
the ith hidden neuron output with respect to inputs
x1,x2, . . . ,xN.

The same formulation can be extended to Radial
Basis Function (RBF) networks, where eachg(wi .xi +
bi) in the hidden layer matrixH is substituted with a
RBF kernel:

φi(x) = φ
(

‖x−µi‖

σi

)

(6)

whereµi = [µi1,µi2, . . . ,µin]
T is the ith kernelś center

andσi is its impact width.

2.2 ELM Learning Algorithm

Since the number of distinct training examples is usu-
ally much greater than the number of hidden neu-
rons(N ≫ Ñ), the H matrix is a rectangular matrix
and tuning the parameterswi ,bi ,βi or µi ,σi ,βi(i =
1, . . .,Ñ) in order to obtain a unique solution forHβ =
T is not always possible. Gradient–based learning al-
gorithms try to find a solution that minimizes the cost
function

E =
N

∑
j=1

(

Ñ

∑
i=1

βi fi(x j)− t j

)2

(7)

where fi(x j) is the output of the ith hidden neuron
(additive or RBF kernel) when the training samplex j
is introduced to the network.

Seeking simplicity, Huang et al. (Huang et al.,
2004; Huang and Siew, 2004; Huang and Siew, 2005;
Huang et al., 2006a) showed that there is no need to
tune the input weights and biases of hidden neurons
or of the kernel parameters and that they can be ran-
domly set and then fixed. Assuming the input weights
and biases or kernel parameters are fixed, the training
of SLFN is simply finding a solution̂β for the linear
systemHβ = T. Usually this is achieved by adopting
the Moor-Penrose generalized inverse (see theorem in
P.147 of (Serre, 2002)), as:

β̂ = H†T (8)

whereH† is the pseudoinverse matrix of the hidden
layer output matrixH. As analyzed by Huang et
al., this method can reach good generalization per-
formance by ensuring two properties of learning: the
smallest norm of weights besides the smallest squared

error on the training samples, while the gradient-
based algorithms focuses on the later property only.
The three main steps involved in ELM algorithm can
be summarized as:

ELM Algorithm (Huang et al., 2004; Huang and
Siew, 2004). Given a training setD = {(xi ,ti)|xi ∈
Rn,t i ∈ Rm, i = 1, . . . ,N}, activation functiong or ker-
nel functionφ, and number of hidden neurons or ker-
nelsÑ,
Step 1 Assign randomly input weightswi and biases
bi for additive neurons or centersµi and impact widths
σi , i = 1, . . . ,Ñ for RBF kernels.
Step 2 Calculate the hidden layer output matrixH.
Step 3 Calculate the output weightsβ: β̂ = H†T.

The efficiency of this algorithm comes from its
ability to use many nonlinear activation and kernel
functions without restriction for being differential,
and to avoid the troubling issues such as stopping cri-
teria, learning rate, learning epochs and local minima.

3 IMPLEMENTATION AND
METHODS

3.1 Dataset PDB0909

From the Protein Data Bank (PDB) (Berman et al.,
2000), release of September 2009 we retrieved all
protein structures that are resolved by X-ray experi-
ments with resolution between 0 and 2.5A◦. Simi-
lar sequences were removed at 70% identity, then the
chain with longest length and highest resolution for
each protein was selected. To eliminate the redun-
dancy we followed this procedure: an all-against-all
BLAST (Altschul et al., 1990) sequence search was
performed on the starting protein set, then we clus-
tered similar chains together (as connected compo-
nents of an undirected graph) and only the longest
chain of each cluster was retained as representative.
Two protein chains are defined similar if they share a
sequence identity> 25% and an alignment coverage
> 80%. After this basic filtering process, we sorted
out only the protein chains that have at least two intra-
chain bonded cysteines, so that we ended up with 796
chains. In our study, we only focus on the chains that
have 2, 3, 4, and 5 intra-chain disulfide bonds since
chains with more than 5 bridges are very few and can-
not be statistically tested (chains with one disulfide
bridge are trivial cases). Table 1 shows the number
of chains with 2, 3, 4 and 5 bridges and other statis-
tics about each connectivity size. The % Coverage of
Patterns Space column shows the lack of patterns rep-
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resentation when the number of bonded cysteines gets
higher than eight.

3.2 Cross-validation Sets

A 4-fold cross-validation procedure was used to eval-
uate the performance of our predictor, in which the
dataset is partitioned into four almost-equal-size sub-
sets. The results obtained for the four tests are com-
bined to produce a single evaluation. In order to
guarantee the absence of homology among the folds
we further re-aligned with BLAST all the sequences
against themselves. We then defined two sequences as
similar if their identity is> 25%. According to this
labeling, similar sequences were then clustered and
chains of the same cluster were assigned to the same
cross-validation fold.

3.3 Measures of Performance

Given a protein primary sequence withN(= 2B) cys-
teines forming B disulfide bridges, the number of pos-
sible cysteine pairs is:

Nc =

(

2B
2

)

=
2B!

2!(2B−2)!
= B(2B−1), (9)

and the number of possible connectivity patterns is:

Np = (2B−1)!! =
(2n)!
2n.n!

(10)

The number of possible connectivity patterns dra-
matically grows as the number of disulfide bridges in-
creases. For this reason among the several indexes
that can be used to score the predictions (Ferrè and
Clote, 2005; Baldi et al., 2005), the most informative
are: the disulfide bond indexQc and disulfide pattern
indexQp (Fariselli and Casadio, 2001).Qp, globally
evaluates the ability of a predictive system to correctly
predict disulfide connectivity patterns and is given by:

Qp =
∑

Tp
i=1 δi(x,y)

Tp
, (11)

whereδi(x,y) is equal to 1 if the predicted patterny of
the ith protein coincides with its correct patternx and
Tp is the total number of predicted protein chains. In
4-fold cross-validation, we collect the numbers of cor-
rectly predicted patterns from all folds, and then av-
erage them over the size of the un-partitioned dataset.
Alternatively, Qc is a pair-wise index that estimates
the predictive accuracy of individual disulfide bonds
i.e. the percentage of disulfide bridges that are cor-
rectly predicted, and is given by:

Qc =
∑

Tp
i=1 ∑B

j=1 δ j(x,y)

Tc
, (12)

whereδ j(x,y) is equal to 1 if thejth predicted disul-
fide bondy of the ith predicted pattern coincides with
a correct disulfide bondx in the correct pattern,B
is the connectivity size of theith pattern, andTc is
the total number of possible pairs in theTp proteins.
Similarly, the numbers of correctly predicted pairs are
collected from all folds during cross-validation and
the total Qc value is computed by averaging these
numbers over the total number of pairs in the un-
partitioned dataset.

To score the performance we define arandom pre-
dictor Rp without bias a predictor that assigns ran-
domly the bonding pairs. ForRp the performances
can be theoretically computed as:

Qp(Rp) =
1

Np
=

1
(2B−1)!!

(13)

Qc(Rp) =
B
Nc

=
B

B(2B−1)
=

1
2B−1

(14)

Qp(Rp) is vanishing much faster thanQc(Rp)
although both depend on the number of disulfide
bridges.

3.4 Multiple Feature Vectors

To assign pairwise probabilities we defined vectors
that represent each cysteine pairs and some global
protein descriptors (Song et al., 2007).

Local Descriptors
Evolutionary information: this descriptor consti-

tutes the largest portion of our multiple sequence fea-
ture vectors that it is composed ofw∗20∗2 compo-
nents when the neighbor amino acidic residues around
the two cysteine forming disufide bond are comprised
in a window of sizew. We evaluate different window
sizes of the cysteine local context and found out that
w= 13 (six residues flanking the cysteine at each side)
is the most appropriate value. Each position in the
neighbor environment of cysteines, including the cys-
teine position, is encoded with 20 values that are the
frequencies of each residue at this particular position.
This evolutionary information is obtained using the
PSI-BLAST program (Altschul et al., 1997) from the
multiple sequence alignment portrayed in the form of
position-specific scoring matrices (PSSM). The PSI-
BLAST was run against the non-redundant database
for 3 iterations with an E-value cutoff of 0.001.

Secondary Structure Information: it is also a key
player in improving the prediction accuracy increas-
ing the training vectors with new informative at-
tributes relative to the local environment of cysteines.
In this paper, the DSSP program (Kabsch and Sander,
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Table 1: The PDB0909 Dataset. % Coverage of Patterns Space represents the percentage of disulfide patterns, out of all
possible patterns, that are observed in our dataset. e.g. for B=2, the patterns space contains 3 patterns (C1C2, C3C4), (C1C3,
C2C4), (C1C4, C2C3). % Coverage of Pairs Space represents the same value, but in terms of ordered cysteine pairs. e.g. for
B=2, the pairs space is composed of 6 pairs (C1C2, C1C3, C1C4,C2C3, C2C4, C3C4).

Connectivity

Size (B)

# of

Chains

# of Bonded

Cysteines

# of Free

Cysteines

Total # of

Cysteines

% Coverage of

Patterns Space

% Coverage of

Pairs Space

2 146 584 103 687 100 100

3 104 624 60 684 100 100

4 52 416 20 436 25.71 100

5 40 400 17 417 3.39 84.44

Total 342 2024 200 2224 7.21 92.55

1983) was used to obtain the secondary structure in-
formation which was encoded into a 3-letters repre-
sentation. The letterA represents the alpha helix (H),
3-helix (G) and 5 helix (I) from the DSSP output, the
letter B encodes for the residues in isolated bridges
(B) and extended strands (E) in the DSSP output, and
finally the letterC stands for the hydrogen bonded
turns (T), the bends (S) and the loops and irregular el-
ements (blank). Technically, each letter was encoded
by three binary bits: 100 for A, 010 for B, 001 for
C and 000 for X (empty place). This descriptor con-
tributes 39 components(13∗3) for each training vec-
tor whenw = 13.

Global Descriptors
Residues Composition: it describes the residues

content in a protein sequence as 20-dimensions vec-
tor of the relative frequencies of residues of different
types. These dimensions can be mathematically for-
mulated as following:

AAi =
ni

L
; i = 1, . . . ,20 (15)

whereni is the number of occurrences of the residues
of type i in the sequence andL is the length of the
protein sequence.

Protein Sequence Length: when considering a
proteini with Ĺi residues from a proteins dataset, the
normalized protein lengthLi is given by:

Li =
Ĺi − L̄

SD
(16)

where the mean protein length̄L and the standard de-
viation SD of protein lengths are computed on the
whole dataset.

Protein Molecular Weight: similarly to the equa-
tion above, for a proteini with Mi total molecular
weight we normalized the value as:

Mi =
Ḿi − M̄

SD
(17)

where the mean molecular weight̄M and the standard
deviationSDare computed on the whole dataset. The

Figure 1: The testing accuracy of prediction when using ad-
ditive neurons and training different connectivity sizes to-
gether. The red, blue, green and magenta curves represent
the accuracies for 2, 3, 4 and 5 connectivty sizes, repsec-
tively. The black curve represents the overall accuracy re-
gardless of the connectivity size.

molecular weight values for the single residues are
taken from ProtScale (Gasteiger et al., 2005).

Cysteines Separation Distance: we coded the cys-
teine sequence separation as:

SEP(Ci,Cj ) = log(| j − i|) (18)

wherei and j are the sequence positions of cysteines
Ci andCj , respectively.

Relative Order of Cysteines: this feature en-
codes for two different values of the input vec-
tor, representing the normalized relative order of
the two cysteines. For instance, given a pro-
tein P with 4 cysteines(C1,C2,C3,C4) the cor-
responding normalized ordered list of cysteine is
(1/4,2/4,3/4,4/4) = (0.25,0.5,0.75,1). So that
when the method train/predict a pair of cysteines the
two corresponding values are taken from the list (e.g.
the pair[C2,C3] is encoded as[0.5,0.75]).
As a result, the final training/testing vectors consist
of 623 components based on these protein sequence
features.
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Figure 2: The testing accuracy of prediction when using
L1 RBF kernels and training different connectivity sizes to-
gether.

Figure 3: The general scheme of our proposed disulfide
connectivity prediction method. The steps of our procedure
have been illustrated for the chain F of Interleukin-15 re-
ceptor protein whose PDB ID 2PSM.

3.5 Experimental Protocol

The implementation of the proposed model (see Fig-
ure 3) was done using the free scripting language
Python 2.6 (Van Rossum et al., 1991) along with its
numerical package Numpy 1.3 (Oliphant, 2006), used
to compute the pseudo-inverse matrix of the matrix
H in the ELM learning algorithm. Single experi-
ment with different numbers of additive and kernel
hidden neurons have been carried out to find the best
estimation of the hidden layers size. Since some of

the network parameters are randomly initialized, each
experiment was run 50 times and then the average
measurements were taken to evaluate the performance
of our Model. The additive neurons were activated
using the sigmoid activation functiong(x) = 1

1+e−x

while two Gaussian functionsL1(x) = e
−‖x−µ‖

σ and

L2(x) = e
−‖x−µ‖2

σ2 were tested for the RBF kernels. Fur-
thermore, one output neuron was used in most of the
experiments unless otherwise mentioned. We also ex-
amined the performance of the Backpropagation (BP)
learning algorithm on SLFNs with a symmetric sig-
moid activation function for the hidden layer and a
sigmoid activation function for the output layer. The
learning rate was set to 0.1 and MSE threshold error to
0.0001. Interestingly, early stopping condition based
on the accuracy of validation sets has been also em-
ployed to avoid overfitting of training data and reduce
training time. The online incremental approach was
used to update weights.

The simulations were executed on a computer of
8 processors, each one with 2.5 GHz frequency, and
16 GB of RAM.

4 RESULTS AND DISCUSSION

We first evaluate the SLFN performance as a function
of the number of hidden units adopting a four-fold
cross validation procedure. The results at increasing
number of additive neurons are reported in Figure 1
for the disulfide pattern index Qp. Similar graphs re-
porting the Qp values are shown in Figures 2 and 4
when the transfer function during the learning phase
is the Gaussian function with L1 and L2 norms. In
all reported cases, the SLFN performance reaches a
plateau when the number of hidden neuron is larger
than 100. It is worth noticing that the training time
is nearly a linear function of the number of hidden
neurons irrespectively of the transfer function adopted
(Figure 5). The accuracy index Qp when plotted as a
function of the number of hidden units obtained with
the Back Propagation (BP) learning algorithm is less
stable then that obtained with the EML learning (com-
pare Fig.1,2,4 with Figure 6). Furthermore, the BP
training time as a function of the number of hidden
neurons shows a significantly steeper slope with re-
spect to the ELM approach (compare Figures 5(a) and
5(b) with Figure 7). These results highlight the ef-
fective time saving of ELM with respect to BP when
training is performed. The detailed results for the best
performing number of neurons for the different SLFN
models are reported in Table 2, where it is listed that
the RBF networks with L1 function achieve the best
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overall performance both in term of Qc and Qp . This
picture holds also when the performance is evaluated
separately for each subset comprising proteins with a
different number of disulfide bonds (Table 2). Table
2 reports also the required learning time, and it ap-
pears that the Back Propagation (BP) algorithm is far
slower than the ELM algorithm.

Figure 4: The testing accuracy of prediction when using
L2 RBF kernels and training different connectivity sizes to-
gether.

(a) Additive hidden neurons.

(b) RBF hidden neurons.

Figure 5: The training time of SLFNs over 4-folds cross-
validation procedure when training different connectivity
sizes together.

Figure 6: The testing accuracy of prediction when using BP
learning algorithm and training different connectivity sizes
together.

Figure 7: The training time of SLFNs over 4-folds cross-
validation procedure when using BP learning algorithm and
training different connectivity sizes together.

4.1 Performance Enhancement

Instead of random initializing the first layers of
weights, we select them using a standard K-mean
clustering approach to set the centers and impact
widths of kernels. The value of the selected number of
clusters K corresponds to the number of hidden neu-
rons. Next, for each hidden kernel its center is set by
the center of a cluster while its impact width is set
as the standard deviation of the cluster vectors from
its center. The performance of ELM with L1 Gaus-
sian functions and K-mean clustering algorithm is re-
ported in Figure 8 for Qp. The training time is dom-
inated by the K-mean clustering procedure and can
be several times greater than the random initialization
(compare Figure 9 with Figure 5). This is particu-
lar evident by considering that the K-mean clustering
running time increases with the number of clusters
(K) up to a given threshold that depends on the ratio
between the number of data and the K value.

Then the training time as a function of the num-
ber of hidden neurons decreases (Figure 9), becom-
ing constant when K equates the number of elements
to cluster. Nonetheless, the best results obtained by
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Table 2: Comparison of different ELM-trained models with BP-trained model when different connectivity sizes are trained
together. NH is the best number of hidden neurons (when additive) and kernels (when RBF). Qc and Qp (%) have been
thoroughly explained earlier. ELM (Sig) is a neural networktrained with ELM algorithm using sigmoid activation function
for the hidden neurons. ELM (Li RBF) is an RBF neural network trained with ELM algorithm using Li Gaussian function.
Time (s) is the average training time, given in seconds, of 50experiments.

Model
B = 2 B = 3 B = 4 B = 5 Overall Best # of

neurons

Time

(s)Qc Qp Qc Qp Qc Qp Qc Qp Qc Qp

ELM (Sig) 65 65 42 28 42 24 27 4 46 41 150 28.52

ELM (L1 RBF) 66 66 45 32 45 26 31 5 48 43 90 18.55

ELM (L2 RBF) 64 64 42 28 39 22 28 5 45 40 95 18.55

BP 62 62 38 26 40 23 29 5 44 38 95 559.29

Figure 8: The testing accuracy of prediction when using K-
Mean clustering algorithm to initialize L1 RBF kernels and
training different connectivity sizes togehther.

Figure 9: The training time of SLFNs over 4-folds cross-
validation procedure when using K-mean clustering algo-
rithm to initialize RBF kernels and training different con-
nectivity sizes together.

using the K-mean clustering initialization are slightly
better than the random initialization approach (Table
3).

4.2 Comparison with some Previous
Works

As mentioned in the introduction it is not easy to com-
pare our results with those obtained before, since dif-

Table 3: Our method performance with L1 RBF kernels ini-
tialized using k-mean clustering. The best number of hid-
den neurons is 270 and the corresponding training time is
425.11 seconds.

Connectivity Size 2 3 4 5 overall

Qc 67 48 44 37 51

Qp 67 36 27 6 45

ferent authors adopted different datasets (sometimes
without reducing the sequence identity between train-
ing and testing sets). Nonetheless for sake of clarity
in Table 4 we compare our best ELM cross-validation
performance with the Random predictorRp, the his-
torical benchmark Fariselli et al. 2002, and two state
of the art methods Vullo and Frasconi (2004) and
Baldi et al. (2005). It is evident that all the meth-
ods perform better than the random predictor and that
the ELM approach compare very well with the state
of the art methods making it a fast and efficient al-
ternative when the problem of the prediction of the
disulfide connectivity is addressed.

5 CONCLUSIONS

In this paper we address the problem of the prediction
of the disulfide connectivity using an Extreme Learn-
ing Machine approach. We test different activation
functions of the hidden neurons and different way of
initializing the first layer of weights. We also evalu-
ate the performance of the different methods both in
term of accuracy and running times. We show that
the ELM learning is faster and generalizes better than
the corresponding Back Propagation training. Among
our tested models we verify that the RBF neural net-
works trained with an ELM procedure are the best
performing approach for the task at hands. We find
that a K-mean clustering procedure to select the first
layer of weights, improves the overall EML accuracy

BIOINFORMATICS 2011 - International Conference on Bioinformatics Models, Methods and Algorithms

12



Table 4: Comparison with previous works on disulfide connectivity prediction. These results were generated on a benchmark
dataset called SP39 (Fariselli and Casadio, 2001).

Proposed Method
B = 2 B = 3 B = 4 B = 5 Overall

Qc Qp Qc Qp Qc Qp Qc Qp Qc Qp

Rp 33 33 20 7 14 1 11 0 19 10

Fariselli et al. (2002) 68 68 37 22 37 20 26 2 42 34

Vullo and Frasconi. (2004) 73 73 51 41 37 24 30 13 49 44

Baldi et al. (2005) 74 74 61 51 44 27 41 11 56 49

ELM 72 72 45 33 49 31 44 22 52 45

and that the trained neural system well compares with
the state of the art methods.
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