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Abstract: Colonoscopy is an endoscopic technique that allows a physician to inspect the mucosa of the human colon. 
It has contributed to a marked decline in the number of colorectal cancer related deaths. However, recent 
data suggest that there is a significant (4-12%) miss-rate for the detection of even large polyps and cancers. 
To address this, we have investigated automated post-procedure and real-time quality measurements by 
analyzing colonoscopy videos. One of the fundamental steps is separating informative frames from non-
informative frames, a process called Informative Frame Filtering (IFF). Non-informative frames comprise 
out-of-focus frames and frames lacking typical features of the colon. We introduce a new IFF algorithm in 
this paper, which is much more accurate than our previous one. Also, we exploit the many-core GPU 
(Graphics Processing Unit) to create an IFF software module for High Performance Computing (HPC). 
Code optimizations embedded in the many-core GPU resulted in a 40-fold acceleration compared to CPU-
only implementation for our IFF software module. 

1 INTRODUCTION 

Colonoscopy is an endoscopic technique that allows 
a physician to inspect the mucosa of the human 
colon. It has contributed to a marked decline in the 
number of colorectal cancer related deaths 
[American Cancer Society, 2008]. However, recent 
data suggest that there is a significant (4-12%) miss-
rate for the detection of even large polyps and 
cancers [Johnson, D., et al. 2007, Pabby, A., et al. 
2005]. To address this, we have been investigating 
two approaches. One is to measure post-procedure 
quality automatically by analyzing colonoscopy 
videos captured during colonoscopy. The other is to 
inform the endoscopist of possible sub-optimal 
inspection immediately during colonoscopy in order 
to improve the quality of the  actual procedure being  

performed. To provide this immediate feedback, we 
need to achieve real-time analysis of colonoscopy 
videos. 

A fundamental step of the above two approaches 
is to distinguish non-informative frames from 
informative ones. An informative frame in a 
colonoscopy video can be broadly defined as a 
frame which is useful for convenient naked-eye 
analysis of the colon (Figure 1). A non-informative 
frame has the opposite definition (Figure 2). In 
general, non-informative frames can be considered 
out-of-focus frames. Our intention is not to increase 
the sharpness of these frames (which is commonly 
known as 'auto-focusing technique'), but to just filter 
them out. 

Informative and non-informative frames can be 
loosely termed as clear and blurry frames 
respectively. But, these loose definitions are not 
sufficient for proper frame filtering in colonoscopy 
video. In a colonoscopy context, the definition of 
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informative and non-informative frames is slightly 
different from the conventional definition of clear 
and blurry images. We presume that a typical 
informative frame in colonoscopy is primarily 
characterized by curvaceously (circular or semi-
circular) connected vivid lines (not just any lines 
like horizontal, vertical or broken lines), because 
that is the typical content of an informative colon 
frame (Figure 1(d)). Curvaceous connectivity means 
more connectivity in diagonal and circular 
directions. Our intention is to retain frames which 
satisfy this definition and to filter out the rest. The 
best way to completely realize this definition is 
firstly to detect the presence of such vivid lines, and 
secondly to measure the amount of curvaceous 
connectivity they possess. Then, with the help of a 
carefully chosen threshold, we identify frames which 
exhibit more curvaceous connectivity and classify 
them as informative, and vice-versa. In this paper, 
we propose a highly accurate algorithm for this 
informative frame filtering (IFF). 

 
Figure 1: Examples of Informative Frames. 

 
Figure 2: Examples of Non Informative Frames. 

As already mentioned, IFF is a fundamental step 
for generating quality measurement of colonoscopy 
video for both post-processing and real-time. To 
provide automated quality measurement in real-time 
for colonscopy videos which are captured at 30 fps 
(frames per second), we have only around 33 ms 
(milliseconds) window to process each frame and 
generate quality metrics if all 30 frames are need to 
be processed. There are several steps to generate 
quality metrics. For a good real-time system, we 
ensure that all these steps are completed in that 33ms 
time inteval. Therefore, the primary design 
consideration of IFF software module is to consume 
as less time as possible (below 33 ms),  and to leave 
the more remaining time for other steps to execute. 
The major contributions of this paper can be 
summarized as follows: Our previous edge-based 
algorithm [Oh, J., et al. 2007] is  inaccurate due to 
lack of consideration of the deeper meaning of 
informative colon frames. We propose a new edge-

based algorithm with higher accuracy compared to 
the previous one. IFF is the first among many other 
steps in automated colonoscopy quality 
measurement. Based on our new algorithm, we 
propose a software solution using GPU to evaluate 
frame quality under real-time constraints.  

2 PROPOSED IFF ALGORITHM 

We describe three major requirements for effective 
IFF based on our new definition of informative 
frame (Section 1) below. 

The first requirement is to produce an edge map 
which shows connectivity only when there is 
"information", and does not show any hints of 
connectivity when there is no "information". The 
second requirement is to estimate the amount of 
connectivity possessed by an edge map, and the third 
requirement is to quantify the percentage of 
connected pixels.  Based on a threshold for the 
percentage, we make the final decision whether a 
frame is informative or not. Both the second and the 
third requirements could not be satisfied using our 
previous edge-based technique. We design our new 
algorithm by dividing it into three stages based on 
these three requirements (Figure 3). 

 
Figure 3: New IFF Algorithm Scheme. 

2.1 Stage-1: Generating Edge Map 

To satisfy the first requirement, we need an edge 
detector which can detect connected edge pixels if 
there is any real information. Based on our 
experiences, low-sensitivity edge detector is better 
for this. So, the fundamental rule of thumb for edge-
based IFF is to use low-sensitive parameters for 
edge detection. Despite of low-sensitivity, Canny 
edge detector generates vivid lines for non-
informative frames, which may be misinterpreted as 
information. We found Sobel edge detector [Canny, 
J., 1986] with low-sensitive parameters can be better 
than Canny edge detector. 

With Sobel edge detector as the choice, we 
generate the edge map as follows. If p is a pixel 
point at the location (x, y) in a gray scale image, and 
q is a pixel point at the same location (x, y) in its 
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binary edge map, then their values are represented 
by f(p) and e(q), respectively. The relationship 
between them is defined by the equation: e(q) = 
T[f(p)], where T is Sobel operator.  The Sobel 
operator could be separated into x-direction and y-
direction operators. If the two Sobel operators are 
applied to a pixel position, the resulting gradient 
could be defined as ∇f = (Gx, Gy). The magnitude of 
the gradient is defined as  

║∇f ║ = [Gx
2 + Gy

2]1/2 (1) 

The range of ║∇f║ varies. To standardize the edge 
detection criteria, we approximate this value to a 
value between 0 and 1. Hence, if ‘ε’ is defined as a 
threshold for Sobel edge detector, the binary edge 
map at pixel ‘q’ is given by, 

e (q) = 0, if 0 ≤ ║∇f║ ≤ ε, otherwise, e (q) = 1 (2)

To ensure that the low-sensitivity rule of thumb 
is satisfied, we chose the threshold value for Sobel 
edge detector, ‘ε’ as 0.33. 

2.2 Stage-2: Generating 
Connectivity Map  

In this stage, first, we generate a connectivity map to 
estimate the amount of connectivity from an edge 
map generated in Stage 1. An edge pixel’s 
connectivity, Cx,y can be described as the amount of 
connectivity it possesses with its neighbouring edge 
pixels in a 8-connected neighbourhood (Figure 4(a)). 
According to the definition of an informative frame 
in Section 1, colon frames are considered more 
informative (or connected) if there are more 
diagonal connections in their edge map. If we give 
the same weight to both adjacent (vertical and 
horizontal) and diagonal connections, it will not 
properly quantify the amount of connectivity for the 
IFF. Hence, we give diagonal connection twice the 
weight of an adjacent connection.  

Second, the connectivity at ‘q’ in edge map is 
calculated based on its connection to only four of its 
neighbouring pixels (immediate right, immediate 
bottom, immediate diagonal left, immediate diagonal 
right), and these are shown with red arrows in Figure 
4(c)). This is done to avoid redundancy (redundancy 
is marked with light green arrows in Figure 4(c)) in 
the calculation of cumulative connectivity when 
traversing from top left to bottom right corners of 
the image.  For easier computation of connectivity, a 
non-redundant connectivity mask is designed 
(Figure 4(b)). In an 8-connected neighbourhood, the 
connectivity at pixel 'q', is given by, 

C x, y = (z6+2z7+z8+2z9) * e (q). (3)

 
Figure 4: (a) 8-connected neighbourhood with 0 ≤ {z1, 
z2… z9} ≤ 255 if c=p and 0 ≤ { z1, z2… z9} ≤ 1 if c=q; (b) 
Non-redundant connectivity mask; (c) Explanation of 
redundancy during connectivity calculation in an edge 
map. 

2.3 Stage-3: Quantifying the 
Informative Portion of a Frame  

To quantify the information, the connectivity map is 
divided into a number of blocks, and checked for the 
number of blocks which have sufficient connectivity 
(or information). The image is resized to (Mr, Nr), 
such that the height and width are multiples of block 
size m x m. So, with a block size of m x m pixels, the 
total number of blocks will be, µ = (Mr x Nr)/(m x 
m). The total connectivity of a block, Bi, is given by, 

Bi = ∑
−−

=

1,1

0,

,

mm

yx

yxC  , where i = 1, 2, 3…. µ. (4) 

If ‘€’ is defined as the block connectivity 
threshold, then a block is considered as non-
informative if Bi ≤ €. Assume that a connectivity 
map has β number of informative blocks. If we 
define α as the ratio of informative blocks over total 
blocks, and ф as a threshold for informative block 
ratio, then α = β/µ; a frame is considered informative 
if α ≥ ф. After careful experimental analyses on 
many frames, the chosen set of parameters is: m = 
64, ε = 0.33, € = 5, ф = 0.3. The new algorithm’s 
accuracy results are discussed in Section 5.2. 

From Figure 3, the computational cost of IFF 
algorithm can be 15(Mr x Nr) since Stage 1 has 
13(Mr x Nr), Stage 2 has (Mr x Nr), and Stage 3 has 
(Mr x Nr), which are all numerically intensive 
sequential iterations. We mitigate these costs by 
using the many-core GPU (Graphics Processing 
Unit). 

3 GPU ARCHITECTURE 

For a GPU, the ‘EVGA 01G-P3-1280-RX GeForce 
GTX 280 1GB 512-bit GDDR3 PCI Express 2.0 x16 
HDCP Ready SLI Support Video Card’ was used. 
This graphics card has 1 GB global memory and 256 
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KB L1 texture cache. From hardware standpoint, the 
card is viewed as a combination of 10 
Texture/Thread Processing Clusters (TPCs). Each 
TPC holds 24 KB L2 texture cache, and evenly 
distributes it across three Streaming Multi-
processors (SMs). Each SM has 8 scalar processors 
(SPs), 16 KB of shared memory, and 32 KB register 
file which is evenly partitioned amongst resident 
threads when the device is used for computing. From 
programming standpoint, we use the NVIDIA® 
CUDA™ (Compute Unified Device Architecture) 
programming model [NVIDIA CUDA Programming 
Guide 3.0-beta1, 2009] to run this device in 
computing mode with CUDA Compute Capability 
1.2.  CUDA views the device as a pool of threads 
and calls it a Grid.  

4 IFF ALGORITHM ON GPU 

In this section we are implementing the IFF 
algorithm discussed in Section 2 on a GPU using 
CUDA. We use three types of memories for our 
algorithm - Global, Texture and Shared memories. 
In Global memory, its size is large (i.e., 1GB as 
mentioned in Section 3), but it has more latency 
(means less speed) compared to other GPU 
memories. When the CUDA threads access data in 
global memory with an offset, the speed is further 
reduced [CUDA Programming Best Practices Guide 
3.0-beta1, 2009] since the data is stored in a linear 
pattern (Figure 5(b)). In our GPU implementation, 
therefore, global memory is limited to only those 
CUDA kernels in which memory access with an 
offset is not present.  

In Texture memory, data is stored in a two-
dimensional pattern (Figure 5(a)). So, when CUDA 
threads need to access data with an offset, texture 
memory is preferred to global memory for better 
speed because it is cached and offset access will be 
performed in a symmetric 2-D pattern (Figure 5(a)) 
rather than linear 1-D pattern as in global memory 
(Figure 5(b)). In Shared Memory, the data is stored 
on the chip (i.e., the Streaming Multiprocessor 
(SM)) in linear pattern. It is faster than global 
memory because it is an on-chip memory, but it has 
a limited space of 16KB per SM (Section 3). It is 
used when the number of threads operating on a data 
keeps changing or when threads access the same 
data again and again in a loop while performing a 
particular operation in a CUDA kernel. 

Throughout the GPU implementation, we set the 
number of CUDA threads in x-direction as 16 and y-
direction as 8, making it a total of 128 threads per 

CUDA thread block. With this background, we 
present the GPU implementation of each stage of 
IFF algorithm next. 

 
Figure 5: (a) 2-D Locality View of Texture Memory; (b) 
Linear or 1-D view of Global Memory. 

4.1 GPU Implementation of Stage 1 

The input of Stage 1 is a gray scale frame, and the 
output is a binary edge map comprising 0's and 1's. 
The gray scale image data is copied to global 
memory of the GPU. According to Section 2, we 
first need the Sobel component gradients in x- and y- 
directions. Then, based on Equations (1) and (2), we 
evaluate the actual gradient to output an edge map. 
We divide the GPU implementation into three steps 
here. In Step 1, we calculate the Sobel gradient in x-
direction using separable Sobel masks. An original 
Sobel mask has 3x3 dimensions, and it is separable 
into 3x1 and 1x3 masks whose product will give us 
back the original 3x3 mask (Figure 6(a) and 6(b)). 
We call these masks as row mask and column mask 
for convenience. We apply row mask to the gray 
scale image first and then we apply the column mask 
to that result in order to obtain the final Sobel 
gradient component in x-direction. We use separable 
filters because the offset required to access data is 
less and this helps in improving the execution time 
of the program.  

 
Figure 6: (a) Separable Masks for Sobel gradient in x-
direction; (b) Separable Masks for Sobel gradient in y-
direction. 

In Step 2, we calculate Sobel gradient in y-
direction using another set of separable Sobel masks 
in exactly the same way explained before for Sobel 
gradient in x-direction. Since texture memory is 
read-only, we store the gradients in the global 
memory. In Step 3, we compute the edge map based 
on Equations (1) and (2). Here, we do not need 
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texture memory because threads do not access data 
with an offset. So, we perform computations of 
Equations (1) and (2) using GPU registers and store 
the final edge map in global memory. Due to the fact 
that we used CUDA threads and blocks with 100% 
device occupancy, we will obtain a good speed 
despite using global memory here. 

4.2 GPU Implementation of Stage 2 

The input of Stage 2 is the edge map obtained from 
Stage 1. The output is a connectivity map which is 
obtained by applying the connectivity mask shown 
in Figure 4(b) and Equation (3). As we see in Figure 
4(b), connectivity mask is not separable like a Sobel 
mask. So, we access the edge map which resides in 
global memory via texture memory, then perform 
the computations of Equation (3) using registers. 
The result (connectivity map) is stored back in 
global memory. We do not use shared memory in 
either Stage 1 or Stage 2, and limit our calculations 
to texture memory because the masks applied in 
both stages are of size 3x3 pixels, which is small.  

4.3 GPU Implementation of Stage 3 

The input of Stage 3 is a connectivity map from 
Stage 2. The output is the block sums obtained by 
performing computations on the connectivity map 
based on Equation (4). In Section 2.3, we choose the 
block size as 64 x 64. According to Equation (4), we 
are supposed to calculate the square root of sum of 
values of all 64 x 64 pixels (i.e., a total of 4096 
pixels) for each block in the connectivity map. We 
divide this stage into two steps. Initially, the 
connectivity map resides in the global memory. We 
use 128 threads per CUDA block to perform the sum 
of 4096 pixels as follows. In Step 1, we first assign 
each thread in a CUDA block to add 4096/128 = 32 
pixels in global memory, and store the results in 
shared memory. In other words, we have 128 
parallel partial sum computations using global 
memory. We do not use share memory in this step 
because we will loose the 100% device occupancy 
and eventually loose speed if we load 4096 pixels 
into the shared memory directly just to perform a 
simple addition. So, now we have 128 elements in 
shared memory for each CUDA block. 

In Step 2, we use parallel summation in shared 
memory [CUDA Technical Training, 2008]. We 
reduce the number of threads to 64 such that each 
thread adds two consecutive pixel values and stores 
it back in shared memory. Now, we have 64 values 
in shared memory. We reduce the number of threads 

to 32 and perform the same operation again. This 
process is repeated until we get the final sum of 
4096 pixels. We perform Step 2 using shared 
memory because the number of threads performing 
summation is varied at every level of summation, 
and these threads repeatedly access same locations. 
Utilizing shared memory is more effective than 
using global memory in this case. Finally, we obtain 
the block sums of each block, and we perform a 
square root operation on each block sum (according 
to Equation (4)) in shared memory, then transfer the 
block sums back to global memory. 

Next, we calculate the number of blocks which 
are informative based on a threshold and decide 
whether a frame is informative (see Section 2.3) on 
CPU. This is a trivial operation and does not require 
GPU power.  

5 EXPERIMENTS AND RESULTS 

For our experiments, we used a machine having an 
Intel Quad Core CPU @ 3.0 GHz with 3 GB RAM 
and an NVIDIA GTX 280 card with 1 GB GDDR3. 
For execution time acceleration, we compared our 
GPU implementation with CPU-only 
implementation.  We used C language for CPU-only 
implementation. For effectiveness, we compare our 
new IFF algorithm with our previous one [Oh, J., et 
al. 2007]. 

5.1 Acceleration 

We present a comparative analysis of GPU and CPU 
versions of the IFF algorithm on different frame 
types (Table 1). We chose six different video input 
sources with different frame resolutions, and fed 
them to our CPU and GPU IFF algorithm versions. 
Each algorithm is run over more than a 100 frames 
of every video type. Table 1 shows the average 
processing times taken by the CPU/GPU IFF 
algorithms to process a single frame belonging to 
each of these video inputs. 

From Table 1, with the increase in the frame 
size, the CPU processing time increases rapidly. On 
the other hand, the GPU processing time increases 
minimally. When programmed with CUDA for 
numerical data intensive operations, the results are 
also a testimony of the instruction throughput and 
memory throughput achieved by the kernels we 
designed for our GPU algorithm. For the highest 
resolution frame we tested (HD 1080), we achieved 
up to 40x speed- up using our new GPU IFF 
algorithm. The commonly used video capture 
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resolution standard currently is DVD, but we are 
expecting HD videos to replace the DVD format 
soon. 

Table 1: IFF Software Module Results for a single frame 
from different video inputs. 

Video Type Frame Size GPU  (ms) CPU (ms) Speed Up 

VGA 640 x 480 6.73 85.76 12.74 
DVD 720 x 480 8.0 94.46 11.81 
HD 576 720 x 576 9.53 121.99 12.8 
XGA 1024 x 768 12.7 236.29 18.61 
HD 720 1280 x 720 11.58 268.81 23.22 
HD1080 1920x 1080 14.88 595.12 40.0 

5.2 Effectiveness  

We use typical four quality metrics (Precision, 
Sensitivity, Specificity and Accuracy) shown to 
evaluate the performance of the new and the 
previous algorithms. The ground truths of the 
informative and the non-informative frames were 
verified by the domain expert. Table 2 shows the 
average values for 10 colonoscopy videos. Table 2 
shows that our new algorithm discussed in this paper 
(IFF#2) outperforms our previous algorithm [Oh, J., 
et al. 2007] (IFF#1) in all four metrics. IFF#2 
provided around 97.6% of accuracy – meaning 7% 
increase compared to our previous one – IFF#1 
which offers only 90.6 accuracy for this data set. We 
tested more than 100 videos, and found that our new 
algorithm has around 96% overall accuracy. 

Table 2: Comparison of Previous (IFF#1) and New 
(IFF#2) algorithms on over 100 videos. 

Metrics IFF#1 IFF#2 
Precision 89.1% 97.0% 

Sensitivity 88.3% 97.9% 
Specificity 92.1% 97.0% 
Accuracy 90.6% 97.6% 

6 CONCLUSIONS 

In this paper, we discussed a new IFF algorithm 
which is around 15% more accurate compared to our 
previous algorithm. Through a proper understanding 
of the meaning of an informative frame, we 
introduced a new definition to an informative colon 
frame. The computing constraints which reside 
within the algorithm have been mitigated with our 
IFF software module which consumes 8 ms 
(Table 1) out of the total real-time constraint – 33 
ms (Section 1), and provides 25 ms credit for other 
steps of automated colonoscopy quality 

measurement to complete. In comparison to CPU, 
our GPU algorithm is 40 times faster for a HD 1080 
video. Our future work will be focused on 
combining multiple GPUs together to further 
accelerate colonoscopy video analysis. 
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