
AN INVESTIGATION OF THE EFFECT OF
INPUT REPRESENTATION IN ANFIS MODELLING

OF BREAST CANCER SURVIVAL

Hazlina Hamdan and Jonathan M. Garibaldi
Intelligent Modelling and Analysis (IMA) Research Group, School of Computer Science

The University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, U.K.

Keywords: Adaptive neuro-fuzzy inference system, Survival analysis, Breast cancer, Nottingham prognostic index.

Abstract: Fuzzy inference systems have been applied in recent years in various medical fields due to their ability to
obtain good results featuring white-box models. Adaptive Neuro-Fuzzy Inference System (ANFIS), which
combines adaptive neural network capabilities with the fuzzy logic qualitative approach, has been previously
used in modelling survival of breast cancer patients based on patient groups derived from the Nottingham
Prognostic Index (NPI), as discussed in our previous paper. In this paper, we extend our previous work to
examine whether the ANFIS model can be trained to better match the data with the NPI variable represented
as a real number, rather than a categorical group. Two input models have been developed and trained with
different structures of ANFIS. The performance of these models, in the capability to predict the survival rate
in survival of patients following operative surgery for breast cancer, is examined.

1 INTRODUCTION

The use of artificial intelligence (AI) techniques in the
medical field in the early 1970s emerged to model ex-
pert behaviour by utilising the knowledge and repre-
senting it in symbolic form. Medical AI has since
become very popular and has more recently been ac-
cepted by clinicians for its ability to produce high-
quality results and demonstrate improvements upon
previous techniques used (Joseph and David, 2006).
In clinical situations such as diagnosis, treatment and
prognosis in which there are complex interactions of
clinical, biological and pathological variables, com-
puterised analytical tools are needed to exploit the re-
lationships between these variables. Soft-computing
approaches including artificial neural networks and
fuzzy inference systems (and many others) have been
used to address this problem.

An artificial neural network (ANN) is an infor-
mation processing system inspired by the structure
of the human brain. ANNs have been the sub-
ject of great interest, following the discovery of the
back-propagation algorithm, and recently have be-
come very popular in the prediction of survival in
medical contexts (Joseph and David, 2006; Lisboa,
2002; Burke et al., 1997). With their ability to learn
through experience, neural networks work by detect-

ing patterns in data, learning from the relationships
and adapting to them. This knowledge is then used to
predict the outcome for new combinations of data.

Fuzzy inference is based on the concepts of fuzzy
set theory, fuzzy if-then rules, and fuzzy reasoning in
which a mapping from a given input to an output is
defined based on expert knowledge. The knowledge
is encoded as a set of explicit linguistic rules, which
can be easily understood by people without techni-
cal expertise. In medical fields, fuzzy inference have
been used extensively for over a decade in data clas-
sification, decision analysis, diagnosis and prognosis
(Yardimci, 2009). As fuzzy information deals with
knowledge that is uncertain, ambiguous or imprecise,
it is suitable to be used in the medical contexts to rep-
resent certain elements as members of sets with some
degree of membership.

A hybrid methodology which combines the ad-
vantages of ANNs and fuzzy inference known as
adaptive neuro-fuzzy inference system (ANFIS) tech-
nique was presented in modelling survival (Hamdan
and Garibaldi, 2010). In this previous study, the Not-
tingham Prognostic Index (NPI) variable was repre-
sented as a categorical group. We now present a fur-
ther study in which we extend our previous work by
examining whether the ANFIS model can be trained
to better match the data with the NPI variable repre-
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sented as a real number. In addition, two input models
are presented to the ANFIS model and comparison of
these two models is made as to the effect of member-
ship function and generalization performance.

2 BACKGROUND

2.1 Breast Cancer

Cancer is a leading cause of death worldwide, as
reported by the World Health Organization (WHO,
2010). Lung, stomach, liver, colon and breast can-
cer are all major contributors to the overall cancer
mortality each year. Breast cancer is one of the most
common cancers to afflict the female population. It is
estimated that one in nine women in the UK will de-
velop breast cancer at some point in their life (Cancer
Research UK, 2010).

Breast cancer is a malignant tumour that devel-
ops from uncontrolled growth of cells in the breast.
A malignant tumour is composed of cells that invade
or spread to other parts of the body. The exact cause
of the breast cancer is not really known, but is most
likely to be a combination of genetic and environmen-
tal factors. However, in general, earlier diagnosis and
treatment should increase the survival rates, as the dis-
ease is much easier to control if it has not spread to
other parts of the body.

Breast cancer patients can be assigned into prog-
nosis groups using a ‘prognostic index’. The ‘Not-
tingham Prognostic Index’ (NPI) has been widely ac-
cepted in clinical practice to categorise patients into
high (78%), intermediate (50%) or low (20%) risk
groups. This index is based on pathological size,
grade of tumor and the number of axillary nodes ef-
fected are identified significant in the prediction of
survival (Galea et al., 1992). The NPI score can be
calculated as:

NPI=0.2*pathological tumor size(cm)+lymph node
stage+histological grade

Table 1 shows the accepted clinical cut-offs of the
NPI score into categories patient into ‘good’, ‘moder-
ate’ or ‘poor’.

Table 1: Category of NPI score.

NPI score Category
Less than 3.41 Good

Between 3.41 to 5.4 Moderate

Over 5.4 Poor

2.2 Survival Analysis

Survival analysis describes the analysis of data that
corresponds to the time from when an individual en-
ters a study until the occurrence of some particular
event or end-point. In medical contexts, the event can
be the response to a treatment, recurrence or disease-
free survival, or death. An individuals with cancer
cannot all be observed for the same length of time,
because some individual are diagnosed at the begin-
ning of the period under study, some near the end and
others may be diagnosed at any time in the study.

Basically, survival data contains uncensored and
censored observations. Uncensored observations in-
volved patients who are observed until they reach the
end of the study. Censored observations on the other
hand, involve only patients who survive beyond the
end or who are lost to follow-up at some point.

The survival function is defined as the probability
that an individual survives longer than time t, where T
denotes a positive random variable associated with the
survival time, represented as (Biganzoli et al., 1998):

S(t) = P(T > t) (1)

On the other hand, the hazard function, also known
as conditional failure probability, is the probability an
individual will die at a certain time t (conditioned on
survival up to that time) and so denotes the instanta-
neous death rate. It can be shown in this form:

hl = P(T 2 Al jT > tl�1) =

�
S(tl�1)�S(tl)

S(tl�1)

�
(2)

where the time interval l = 1;2; :::;L forms disjoint
intervals Al = (tl�1; tl ].

The survival and hazard functions are related to
each other, in that the estimation of survival function
can be written as:

S(t) = Õ
l:tl�t

(1�hl) (3)

Statistical methods, such as the Kaplan-Meier es-
timate, are usually used to explain the data and to
model the disease progression with the ability to han-
dle censored data. A plot of the Kaplan-Meier is to
represent the estimation of the survival function of
some particular groups against time, can be view as
a series of horizontal steps of declining magnitude.

2.3 ANFIS Architecture

The use of fuzzy logic in medical contexts may be
said have been introduced by (Zadeh, 1969) in his pa-
per entitled ‘Biological application of the theory of
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fuzzy sets and system’ (Yardimci, 2009; ?). Fuzzy
logic is based on fuzzy sets that use linguistic vari-
ables with certain degree of membership and which
can then be connected using IF-THEN rules to form
a series of fuzzy rules. Fuzzy rules can have mul-
tiple antecedents connected with AND or OR opera-
tors, where all parts are calculated simultaneously and
resolved into a single number. Consequents can also
be comprised of multiple parts, which are then aggre-
gated into a single output of a fuzzy set (Negnevitsky,
2005).

Fuzzy inference is a process of mapping from a
given input to an output using the methods of fuzzy
set manipulations. Two types of fuzzy inference most
commonly used are the Mamdani method (Mamdani
and Assilian, 1975) and the Sugeno method (Sugeno,
1985). The difference between these two fuzzy infer-
ences methodologies is the specification of the con-
sequent part. In the Mamdani method, consequents
are fuzzy sets, and the final crisp output of Mam-
dani method is based on defuzzification of the over-
all fuzzy output using various types of defuzzification
method. In contrast, in the Sugeno method, conse-
quents are real numbers, which can be either linear or
constant (zero-order Sugeno model). The final output
(known as a singleton output membership function),
is the weighted average of each rule’s output.

Using an adaptation of the Sugeno fuzzy inference
method, (Jang, 1993) proposed the adaptive neuro-
fuzzy inference system (ANFIS) method that com-
bined the neural network adaptive capabilities and
the fuzzy logic qualitative approach. The ANFIS
architecture contains a six-layer feed-forward neural
network as shown in Figure 1 (Negnevitsky, 2005).
Briefly, the functional of each layer are as given be-
low:

Layer 1 is the input layer that passes external crisp
signals to Layer 2.

Layer 2 known as the fuzzification layer, to deter-
mine the membership grades for each input imple-
mented by the given fuzzy membership function.

Layer 3 is the rule layer, which calculates the firing
strength of the rule as the product of the member-
ship grades.

Layer 4 called the ‘normalised firing strengths’, in
which each neuron in the layer receives inputs
from all neurons in Layer 3, and calculates the ra-
tio of the firing strength of a given rule to the sum
of firing strengths of all rules.

Layer 5 is the defuzzification layer that yields the
parameters of the consequent part of the rule.

Layer 6 is a single node that calculates the overall
output as the summation of all incoming signals.

Full details of the ANFIS process can be found in
(Jang, 1993) and (Negnevitsky, 2005).

ANFIS training can use alternative algorithms to
reduce the error of the training. A hybrid approach,
featuring a combination of the gradient descent algo-
rithm and a least squares algorithm, is used for an ef-
fective search for the optimal parameters. The main
benefit of such a hybrid approach is that it converges
much faster, since it reduces the search space dimen-
sions of the backpropagation method used in neural
networks (Jang, 1993).

Figure 1: Adaptive Neuro-Fuzzy Inference System (AN-
FIS).

3 DATA AND METHODS

3.1 Data

A set of 958 breast cancer patients collected by the
Breast Cancer Pathology Research Group in the Uni-
versity of Nottingham were used in a previous study
to model the survival curve using the ANFIS model
(Hamdan and Garibaldi, 2010). In the study, the pa-
tients are assigned into three groups of NPI whether
good, moderate or poor (represented as 1, 2, and 3,
respectively) based on the clinical cut-offs as shown
in Table 1.

In this study, we used the same data set as a pre-
vious study with two variables as the input which are
NPI values and survival time. However, the NPI vari-
able in this study is presented as a real number (orig-
inal values from the clinical). The ANFIS model was
applied to the data set to examine whether the mem-
bership functions of a real-valued NPI can be trained
to better match the data.

3.2 Methods

Data pre-processing was based on that of the non-
linear method known as Partial Logistic Artificial
Neural Network (PLANN) (Biganzoli et al., 1998)
to produce smooth estimation of hazard rate. This
method was created to allow the use of a standard
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back-propagation ANN architecture to be used for
modelling survival. A major process is to perform
a specific form of data replication that was used in
training phase of ANFIS method.

As stated in a previous study (Hamdan and
Garibaldi, 2010), for training purposes, each patient
is replicated for all the intervals in which the patient
is observed, using the event indicator as the target.
The input of the network (survival time and NPI val-
ues) is replicated into t times which is the maximum
survival time of an individual patient. The event at-
tribute as a target of the network is also replicated and
assigned as zero until the last time value is reached,
where the event is 1 for occurrence and zero for cen-
sored. An example of replication as shown in Table 2
which suitable to be train by the ANFIS.

While for the testing data to find the estimation
of hazard rate for each interval time, each patient is
replicated until the maximum time is observed or the
full study time is reached. The hazard rate for each
interval is the mean of hazard rate of all patient in that
particular interval, and this depends on the cut-off of
NPI to group the patients into good, moderate or poor.
The estimation of survival function is determined us-
ing equation (3).

Initial parameters of the fuzzy inference system
have to be established before the training process
commences. Several ANFIS model were configured
with different numbers of membership functions for
the survival time, ranging from 3 to 7 and the number
of membership functions for the NPI variable is based
on the clinical groups (which is three). Gaussians
were used for the membership functions and constants
were used for the rule outputs (a zeroth-order Sugeno
model). Hybrid learning, the combination of gradient
descent and least squares algorithm, was selected as
the learning algorithm.

4 EXPERIMENTAL RESULTS
AND DISCUSSION

Data from 958 breast cancer patients were subjected
to the pre-processing described above before being
passed to the training process. This section presents
the result of two models input into the ANFIS model:
the final membership function generated, the learning
rate and the conditional event probability will be dis-
cussed. Also, a comparison of survival rate of two
input models is made according to the Kaplan-Meier
method.

Two models of inputs are presented to the AN-
FIS model. In the first input model, the survival time
is based in months with an observation time of 120

Table 2: Replication for training.

Time interval NPI Event
1 4.4 0

Patient 1 2 4.4 0
3 4.4 1

1 2.8 0
2 2.8 0

Patient 2 3 2.8 0
4 2.8 0
5 2.8 0

Patient 3 1 6.3 0
2 6.3 1

months while, in the second input model, the survival
time was transformed into a yearly basis, correspond-
ing to a ten year period of observation. Both models
used real values of NPI.

Four membership functions of survival time were
finally selected as it was observed that these provided
a smooth conditional hazard function for the both in-
put models. Figure 2 shows the initial membership
functions for the first input model.

Figure 2: Initial membership functions of first input model.

In the training phase, the learning rate taken by
the first input model is quite long, with 1100 epochs,
rather than the second input model with only 100
epochs. In addition, the final membership functions
of NPI generated by the second input model provide
better interpretability than the first input model. Fig-
ure 3 and Figure 4 shows the final memberships of the
first and second input models, respectively.

After both input models have been trained using
the ANFIS methodology, we perform fuzzy inference
calculations using the testing data as described in Sec-
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Figure 3: Final membership functions of first input model.

Figure 4: Final membership functions of second input
model.

tion 3.2. The output of the testing is the estimation of
conditional failure probability for each time interval
(i.e. the hazard function). From this, the estimation
of survival function using Equation (3) can be plot-
ted. Figure 5 and Figure 6 shows the estimates of
survival function for the first input model and second
input model, respectively, against the Kaplan-Meier
plot for the original (observed) data.

It can be seen that, while the fitted-curve obtained
from the second input model are close to Kaplan-
Meier plot for the ‘poor’ category (red line), the first
input model produces better a fitted-curve for the
‘moderate’ category (green line). However, both in-
put models gave approximately the same fitted-curve
for the ‘good’ category. It can be seen that, the curves
obtained from the ANFIS model are close to those
of the Kaplan-Meier plot when the NPI value is pre-
sented as a real number.
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Figure 5: Survival curve of actual Kaplan-Meier (balck
solid lines) estimated against the first input model (color
lines).
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Figure 6: Survival curve of actual Kaplan-Meier (balck
solid lines) estimated against the second input model (color
lines).

5 CONCLUSIONS

The ANFIS models have been applied to the Notting-
ham Breast Cancer data set with the NPI variable rep-
resented as a real number to estimate the conditional
failure probability and the survival curve. This com-
pares to our previous work, in which the NPI was pre-
sented as a categorical input. Two input models have
been developed and data replication performed in or-
der for the data to used to train an ANFIS model. With
the NPI represented in real values, the ANFIS model
can estimate the proportional hazard rates and, fur-
thermore, the survival function can be plotted.

In general, as ANFIS adapts the neural network
learning, normally before training neural network, it
is necessary to transform the data to new represen-
tation to reduce the dimensionality of input data and
to optimise the generalization performance (Bishop,
2007). In our findings, when the input variables
span similar ranges or scale, it produces a better in-
terpretability on the final membership function with
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short learning rate. That is, the results obtained when
representing the time in months differ from those in
which the time is represented in years, despite the fact
this is just a simple scaling.

6 FUTURE WORK

In the future, we aim to investigate how to restrict the
constant value of the singleton output of the rules pro-
ducing by the ANFIS to be all positive, so that we can
obtain a smooth curve of conditional probability with
non-negative values in any of the time intervals.

Further investigations into the effects of scaling
the inputs to the ANFIS model will also be under-
taken, to see whether there are any significant effects
on learning rate and/or final membership functions.

We also aim to create ANFIS models for other
clinical data sets — we have recently obtained data for
a cohort of over 400 colorectal cancer patients with
ten year follow-up survival data.
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